code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def create_audit_event(self, code='AUDIT'): event = self._meta.event_model(code=code, model=self.__class__.__name__) if current_user: event.created_by = current_user.get_id() self.copy_foreign_keys(event) self.populate_audit_fields(event) return event
Creates a generic auditing Event logging the changes between saves and the initial data in creates. Kwargs: code (str): The code to set the new Event to. Returns: Event: A new event with relevant info inserted into it
codesearchnet
def read(self, length=(- 1)): if (0 <= length < len(self)): newpos = (self.pos + length) data = self.buf[self.pos:newpos] self.pos = newpos self.__discard() return data data = self.buf[self.pos:] self.clear() return data
Reads from the FIFO. Reads as much data as possible from the FIFO up to the specified length. If the length argument is negative or ommited all data currently available in the FIFO will be read. If there is no data available in the FIFO an empty string is returned. Args: length: The amount of data to read from the FIFO. Defaults to -1.
codesearchnet
def run_gpu_or_tpu(func: _F) -> _F: if tf_inspect.isclass(func): raise ValueError('`run_gpu_or_tpu` only supports test methods.') def decorated(self: 'TensorFlowTestCase', *args, **kwargs): if config.list_physical_devices('GPU'): return func(self, 'GPU', *args, **kwargs) if config.list_physical_devices('TPU'): return func(self, 'TPU', *args, **kwargs) self.skipTest('Test requires GPU or TPU') return decorated
Execute the decorated test only if a physical GPU or TPU is available. This function is intended to be applied to tests that require the presence of a physical GPU or TPU. It complies with the following rules: - If a GPU is available, the test will run on the GPU. - If a GPU is absent and a TPU is available, the test will run on the TPU. - If both GPU and TPU are absent, the test will be skipped. Args: func: function to be annotated. Returns: Returns a function that will conditionally skip the decorated test method.
github-repos
def FromDBInstance(db_token): hash_ar = bytearray(binascii.unhexlify(db_token.ContractHash)) hash_ar.reverse() hash = UInt160(data=hash_ar) token = NEP5Token(script=None) token.SetScriptHash(hash) token.name = db_token.Name token.symbol = db_token.Symbol token.decimals = db_token.Decimals return token
Get a NEP5Token instance from a database token. Args: db_token (neo.Implementations.Wallets.peewee.Models.NEP5Token): Returns: NEP5Token: self.
codesearchnet
def AddArguments(cls, argument_group): storage_formats = sorted(definitions.STORAGE_FORMATS) argument_group.add_argument( '--storage_format', '--storage-format', action='store', choices=storage_formats, dest='storage_format', type=str, metavar='FORMAT', default=definitions.DEFAULT_STORAGE_FORMAT, help=( 'Format of the storage file, the default is: {0:s}. Supported ' 'options: {1:s}'.format( definitions.DEFAULT_STORAGE_FORMAT, ', '.join(storage_formats))))
Adds command line arguments to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group.
juraj-google-style
def map_across_full_axis(self, axis, map_func): num_splits = self._compute_num_partitions() preprocessed_map_func = self.preprocess_func(map_func) partitions = self.column_partitions if not axis else self.row_partitions result_blocks = np.array( [ part.apply(preprocessed_map_func, num_splits=num_splits) for part in partitions ] ) return ( self.__constructor__(result_blocks.T) if not axis else self.__constructor__(result_blocks) )
Applies `map_func` to every partition. Note: This method should be used in the case that `map_func` relies on some global information about the axis. Args: axis: The axis to perform the map across (0 - index, 1 - columns). map_func: The function to apply. Returns: A new BaseFrameManager object, the type of object that called this.
juraj-google-style
def add_line(self, start, end, color=(0.5, 0.5, 0.5), width=1): source = vtk.vtkLineSource() source.SetPoint1(start) source.SetPoint2(end) vertexIDs = vtk.vtkStringArray() vertexIDs.SetNumberOfComponents(1) vertexIDs.SetName("VertexIDs") vertexIDs.InsertNextValue("a") vertexIDs.InsertNextValue("b") source.GetOutput().GetPointData().AddArray(vertexIDs) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(source.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(color) actor.GetProperty().SetLineWidth(width) self.ren.AddActor(actor)
Adds a line. Args: start: Starting coordinates for line. end: Ending coordinates for line. color: Color for text as RGB. Defaults to grey. width: Width of line. Defaults to 1.
juraj-google-style
def sget_timestamp(self, cycle, step, dataset_number=None): dataset_number = self._validate_dataset_number(dataset_number) if dataset_number is None: self._report_empty_dataset() return cycle_index_header = self.headers_normal.cycle_index_txt timestamp_header = self.headers_normal.test_time_txt step_index_header = self.headers_normal.step_index_txt test = self.datasets[dataset_number].dfdata if isinstance(step, (list, tuple)): warnings.warn(f"The varialbe step is a list." f"Should be an integer." f"{step}") step = step[0] c = test[(test[cycle_index_header] == cycle) & (test[step_index_header] == step)] if not self.is_empty(c): t = c[timestamp_header] return t else: return pd.Series()
Returns timestamp for cycle, step. Convinience function; same as issuing dfdata[(dfdata[cycle_index_header] == cycle) & (dfdata[step_index_header] == step)][timestamp_header] Args: cycle: cycle number step: step number dataset_number: the dataset number (automatic selection if None) Returns: pandas.Series
juraj-google-style
def condense(input_string): try: assert isinstance(input_string, basestring) except AssertionError: raise TypeError removed_leading_whitespace = re.sub('>\s+', '>', input_string).strip() removed_trailing_whitespace = re.sub('\s+<', '<', removed_leading_whitespace).strip() return removed_trailing_whitespace
Trims leadings and trailing whitespace between tags in an html document Args: input_string: A (possible unicode) string representing HTML. Returns: A (possibly unicode) string representing HTML. Raises: TypeError: Raised if input_string isn't a unicode string or string.
juraj-google-style
def DataRefreshRequired(self, path=None, last=None): if (last is None): if (path is None): raise type_info.TypeValueError("Either 'path' or 'last' must be supplied as an argument.") fd = aff4.FACTORY.Open(self.root.Add(path), token=self.token) stat_obj = fd.Get(fd.Schema.STAT) if stat_obj: last = stat_obj.age else: last = rdfvalue.RDFDatetime(0) if (last is None): return True last = last.AsDatetime() return ((datetime.datetime.utcnow() - last) > self.max_age_before_refresh)
True if we need to update this path from the client. Args: path: The path relative to the root to check freshness of. last: An aff4:last attribute to check freshness of. At least one of path or last must be supplied. Returns: True if the path hasn't been updated in the last self.max_age_before_refresh seconds, else False. Raises: type_info.TypeValueError: If no arguments are supplied.
codesearchnet
def start(self, **kwargs): return self.client.api.start(self.id, **kwargs)
Start this container. Similar to the ``docker start`` command, but doesn't support attach options. Raises: :py:class:`docker.errors.APIError` If the server returns an error.
codesearchnet
def _make_query_from_terms(self, terms): match_query = '' expanded_terms = self._expand_terms(terms) if expanded_terms['doc']: match_query = self.backend._and_join(expanded_terms['doc']) if expanded_terms['keywords']: if match_query: match_query = self.backend._and_join( [match_query, self.backend._join_keywords(expanded_terms['keywords'])]) else: match_query = self.backend._join_keywords(expanded_terms['keywords']) if match_query: query = text() query_params = { 'match_query': match_query} else: query = text() query_params = {} return query, query_params
Creates a query for partition from decomposed search terms. Args: terms (dict or unicode or string): Returns: tuple of (str, dict): First element is str with FTS query, second is parameters of the query.
juraj-google-style
def get_continent(self, callsign, timestamp=timestamp_now): return self.get_all(callsign, timestamp)[const.CONTINENT]
Returns the continent Identifier of a callsign Args: callsign (str): Amateur Radio callsign timestamp (datetime, optional): datetime in UTC (tzinfo=pytz.UTC) Returns: str: continent identified Raises: KeyError: No Continent found for callsign Note: The following continent identifiers are used: - EU: Europe - NA: North America - SA: South America - AS: Asia - AF: Africa - OC: Oceania - AN: Antarctica
codesearchnet
def parse(response_text: str, *, batch: bool, validate_against_schema: bool=True) -> Union[(JSONRPCResponse, List[JSONRPCResponse])]: if (not response_text): if batch: return [] else: return NotificationResponse() deserialized = deserialize(response_text) if validate_against_schema: jsonschema.validate(deserialized, schema) if isinstance(deserialized, list): return [get_response(r) for r in deserialized if ('id' in r)] return get_response(deserialized)
Parses response text, returning JSONRPCResponse objects. Args: response_text: JSON-RPC response string. batch: If the response_text is an empty string, this determines how to parse. validate_against_schema: Validate against the json-rpc schema. Returns: Either a JSONRPCResponse, or a list of them. Raises: json.JSONDecodeError: The response was not valid JSON. jsonschema.ValidationError: The response was not a valid JSON-RPC response object.
codesearchnet
def from_stream(credential_filename): if credential_filename and os.path.isfile(credential_filename): try: return _get_application_default_credential_from_file( credential_filename) except (ApplicationDefaultCredentialsError, ValueError) as error: extra_help = (' (provided as parameter to the ' 'from_stream() method)') _raise_exception_for_reading_json(credential_filename, extra_help, error) else: raise ApplicationDefaultCredentialsError( 'The parameter passed to the from_stream() ' 'method should point to a file.')
Create a Credentials object by reading information from a file. It returns an object of type GoogleCredentials. Args: credential_filename: the path to the file from where the credentials are to be read Raises: ApplicationDefaultCredentialsError: raised when the credentials fail to be retrieved.
juraj-google-style
def _to_json(self, strip, to_serialize=None): curr_type = self.__class__ if (to_serialize is None): to_serialize = copy.copy(self.__dict__) else: to_serialize = copy.copy(to_serialize) for member in strip: if (member in to_serialize): del to_serialize[member] to_serialize['token_expiry'] = _parse_expiry(to_serialize.get('token_expiry')) to_serialize['_class'] = curr_type.__name__ to_serialize['_module'] = curr_type.__module__ for (key, val) in to_serialize.items(): if isinstance(val, bytes): to_serialize[key] = val.decode('utf-8') if isinstance(val, set): to_serialize[key] = list(val) return json.dumps(to_serialize)
Utility function that creates JSON repr. of a Credentials object. Args: strip: array, An array of names of members to exclude from the JSON. to_serialize: dict, (Optional) The properties for this object that will be serialized. This allows callers to modify before serializing. Returns: string, a JSON representation of this instance, suitable to pass to from_json().
codesearchnet
def insert_tile(self, tile_info): for (i, tile) in enumerate(self.registered_tiles): if (tile.slot == tile_info.slot): self.registered_tiles[i] = tile_info return self.registered_tiles.append(tile_info)
Add or replace an entry in the tile cache. Args: tile_info (TileInfo): The newly registered tile.
codesearchnet
def _create_or_get_tensor_history_values_cache(self, cache_name, graph, shape=None, dtype=dtypes.float32): if graph is None: raise ValueError('Invalid graph.') if graph not in self._history_value_cache: self._history_value_cache[graph] = {} if cache_name not in self._history_value_cache[graph]: if shape is None: raise ValueError('shape must be provided at cache creation.') if dtype.is_integer: init_val = int(_COMPACT_TRACE_ENTRY_INIT_VALUE) else: init_val = _COMPACT_TRACE_ENTRY_INIT_VALUE with graph.as_default() as g, g.name_scope(None): self._history_value_cache[graph][cache_name] = variable_scope.get_variable('tt_history' + '_' + self._escape_namescopes(cache_name), shape=shape, dtype=dtype, initializer=init_ops.constant_initializer(init_val), trainable=False, use_resource=True, collections=[_TENSOR_TRACER_STORAGE, ops.GraphKeys.LOCAL_VARIABLES]) return self._history_value_cache[graph][cache_name]
Creates a variable as the cache to store historic intermediate tensor values. Args: cache_name: Name to be given to the cache (an instance of tf.variable). graph: Tensorflow graph. shape: A list of dimensions. dtype: Data type of created cache. Returns: A ref to newly created or existing cache with the given dimensions. Raises: ValueError: (1) If graph is None, or (2) shape is None when a new cache needs to be created.
github-repos
def dotd(A, B): r A = asarray(A, float) B = asarray(B, float) if A.ndim == 1 and B.ndim == 1: return dot(A, B) out = empty((A.shape[0],), float) out[:] = sum(A * B.T, axis=1) return out
r"""Diagonal of :math:`\mathrm A\mathrm B^\intercal`. If ``A`` is :math:`n\times p` and ``B`` is :math:`p\times n`, it is done in :math:`O(pn)`. Args: A (array_like): Left matrix. B (array_like): Right matrix. Returns: :class:`numpy.ndarray`: Resulting diagonal.
juraj-google-style
def parse_uri(self, uri=None): if not uri: return rdflib.term.URIRef(self.root) elif type(uri) == str: if type(uri) == str and not uri.startswith('http'): return rdflib.term.URIRef("%s%s" % (self.root, uri)) else: return rdflib.term.URIRef(uri) elif type(uri) == rdflib.term.URIRef: return uri else: raise TypeError('invalid URI input')
parses and cleans up possible uri inputs, return instance of rdflib.term.URIRef Args: uri (rdflib.term.URIRef,str): input URI Returns: rdflib.term.URIRef
juraj-google-style
def download_and_install(uri, name=DEFAULT_MODULE_NAME, cache=True): should_use_cache = (cache and exists(name)) if (not should_use_cache): with _files.tmpdir() as tmpdir: if uri.startswith('s3: dst = os.path.join(tmpdir, 'tar_file') _files.s3_download(uri, dst) module_path = os.path.join(tmpdir, 'module_dir') os.makedirs(module_path) with tarfile.open(name=dst, mode='r:gz') as t: t.extractall(path=module_path) else: module_path = uri prepare(module_path, name) install(module_path)
Download, prepare and install a compressed tar file from S3 or local directory as a module. The SageMaker Python SDK saves the user provided scripts as compressed tar files in S3. This function downloads this compressed file and, if provided, transforms it into a module before installing it. This method is the predecessor of :meth:`~sagemaker_containers.beta.framework.files.download_and_extract` and has been kept for backward-compatibility purposes. Args: name (str): name of the script or module. uri (str): the location of the module. cache (bool): defaults to True. It will not download and install the module again if it is already installed.
codesearchnet
def generate_sigproc_header(f): header_string = b'' header_string += to_sigproc_keyword(b'HEADER_START') for keyword in f.header.keys(): if keyword == b'src_raj': header_string += to_sigproc_keyword(b'src_raj') + to_sigproc_angle(f.header[b'src_raj']) elif keyword == b'src_dej': header_string += to_sigproc_keyword(b'src_dej') + to_sigproc_angle(f.header[b'src_dej']) elif keyword == b'az_start' or keyword == b'za_start': header_string += to_sigproc_keyword(keyword) + np.float64(f.header[keyword]).tostring() elif keyword not in header_keyword_types.keys(): pass else: header_string += to_sigproc_keyword(keyword, f.header[keyword]) header_string += to_sigproc_keyword(b'HEADER_END') return header_string
Generate a serialzed sigproc header which can be written to disk. Args: f (Filterbank object): Filterbank object for which to generate header Returns: header_str (str): Serialized string corresponding to header
juraj-google-style
def get_size(fileobj): old_pos = fileobj.tell() try: fileobj.seek(0, 2) return fileobj.tell() finally: fileobj.seek(old_pos, 0)
Returns the size of the file. The position when passed in will be preserved if no error occurs. Args: fileobj (fileobj) Returns: int: The size of the file Raises: IOError
codesearchnet
def get_max_recv_data_size(self, target): fname = 'get_max_recv_data_size' cname = ((self.__class__.__module__ + '.') + self.__class__.__name__) raise NotImplementedError(('%s.%s() is required' % (cname, fname)))
Returns the maximum number of data bytes for receiving. The maximum number of data bytes acceptable for receiving with either :meth:`send_cmd_recv_rsp` or :meth:`send_rsp_recv_cmd`. The value reflects the local device capabilities for receiving in the mode determined by *target*. It does not relate to any protocol capabilities and negotiations. Arguments: target (nfc.clf.Target): The current local or remote communication target. Returns: int: Maximum number of data bytes supported for receiving.
codesearchnet
def scores2recos(self, scores, candidates, rev=False): sorted_indices = np.argsort(scores) if rev: sorted_indices = sorted_indices[::(- 1)] return (candidates[sorted_indices], scores[sorted_indices])
Get recommendation list for a user u_index based on scores. Args: scores (numpy array; (n_target_items,)): Scores for the target items. Smaller score indicates a promising item. candidates (numpy array; (# target items, )): Target items' indices. Only these items are considered as the recommendation candidates. rev (bool): If true, return items in an descending order. A ascending order (i.e., smaller scores are more promising) is default. Returns: (numpy array, numpy array) : (Sorted list of items, Sorted scores).
codesearchnet
def convert_outlook_msg(msg_bytes): if (not is_outlook_msg(msg_bytes)): raise ValueError('The supplied bytes are not an Outlook MSG file') orig_dir = os.getcwd() tmp_dir = tempfile.mkdtemp() os.chdir(tmp_dir) with open('sample.msg', 'wb') as msg_file: msg_file.write(msg_bytes) try: subprocess.check_call(['msgconvert', 'sample.msg'], stdout=null_file, stderr=null_file) eml_path = 'sample.eml' with open(eml_path, 'rb') as eml_file: rfc822 = eml_file.read() except FileNotFoundError: raise EmailParserError('Failed to convert Outlook MSG: msgconvert utility not found') finally: os.chdir(orig_dir) shutil.rmtree(tmp_dir) return rfc822
Uses the ``msgconvert`` Perl utility to convert an Outlook MS file to standard RFC 822 format Args: msg_bytes (bytes): the content of the .msg file Returns: A RFC 822 string
codesearchnet
def check_for_wdiff(): cmd = ['which', CMD_WDIFF] DEVNULL = open(os.devnull, 'wb') proc = sub.Popen(cmd, stdout=DEVNULL) proc.wait() DEVNULL.close() if (proc.returncode != 0): msg = "the `{}` command can't be found".format(CMD_WDIFF) raise WdiffNotFoundError(msg)
Checks if the `wdiff` command can be found. Raises: WdiffNotFoundError: if ``wdiff`` is not found.
codesearchnet
def start(self, extra_args='', tag=''): if self.started: return utils.create_dir(self.log_path) if tag: tag = (tag + ',') out_file_name = 'IPerfServer,{},{}{}.log'.format(self.port, tag, len(self.log_files)) full_out_path = os.path.join(self.log_path, out_file_name) cmd = ('%s %s > %s' % (self.iperf_str, extra_args, full_out_path)) self.iperf_process = utils.start_standing_subprocess(cmd, shell=True) self.log_files.append(full_out_path) self.started = True
Starts iperf server on specified port. Args: extra_args: A string representing extra arguments to start iperf server with. tag: Appended to log file name to identify logs from different iperf runs.
codesearchnet
def find_container_traits(cls_or_string): if utils.is_str(cls_or_string): if not templates.is_instantiation(cls_or_string): return None name = templates.name(cls_or_string) if name.startswith('std::'): name = name[len('std::'):] if name.startswith('std::tr1::'): name = name[len('std::tr1::'):] for cls_traits in all_container_traits: if cls_traits.name() == name: return cls_traits else: if isinstance(cls_or_string, class_declaration.class_types): if cls_or_string.cache.container_traits is not None: return cls_or_string.cache.container_traits for cls_traits in all_container_traits: if cls_traits.is_my_case(cls_or_string): if isinstance(cls_or_string, class_declaration.class_types): cls_or_string.cache.container_traits = cls_traits return cls_traits
Find the container traits type of a declaration. Args: cls_or_string (str | declarations.declaration_t): a string Returns: declarations.container_traits: a container traits
juraj-google-style
def self(self) -> 'EFBChat': self.chat_name = 'You' self.chat_alias = None self.chat_uid = EFBChat.SELF_ID self.chat_type = ChatType.User return self
Set the chat as yourself. In this context, "yourself" means the user behind the master channel. Every channel should relate this to the corresponding target. Returns: EFBChat: This object.
codesearchnet
def _DisableNetworkManager(self, interfaces, logger): for interface in interfaces: interface_config = os.path.join( self.network_path, 'ifcfg-%s' % interface) if os.path.exists(interface_config): self._ModifyInterface( interface_config, 'DEVICE', interface, replace=False) self._ModifyInterface( interface_config, 'NM_CONTROLLED', 'no', replace=True) else: with open(interface_config, 'w') as interface_file: interface_content = [ ' 'BOOTPROTO=none', 'DEFROUTE=no', 'DEVICE=%s' % interface, 'IPV6INIT=no', 'NM_CONTROLLED=no', 'NOZEROCONF=yes', '', ] interface_file.write('\n'.join(interface_content)) logger.info('Created config file for interface %s.', interface)
Disable network manager management on a list of network interfaces. Args: interfaces: list of string, the output device names enable. logger: logger object, used to write to SysLog and serial port.
juraj-google-style
def all_near_zero_mod(a: Union[(float, complex, Iterable[float], np.ndarray)], period: float, *, atol: float=1e-08) -> bool: b = (((np.asarray(a) + (period / 2)) % period) - (period / 2)) return np.all(np.less_equal(np.abs(b), atol))
Checks if the tensor's elements are all near multiples of the period. Args: a: Tensor of elements that could all be near multiples of the period. period: The period, e.g. 2 pi when working in radians. atol: Absolute tolerance.
codesearchnet
def send_state_event(self, event_type, content, state_key=""): return self.client.api.send_state_event( self.room_id, event_type, content, state_key )
Send a state event to the room. Args: event_type (str): The type of event that you are sending. content (): An object with the content of the message. state_key (str, optional): A unique key to identify the state.
juraj-google-style
def altcode(msg): if df(msg) not in [0, 4, 16, 20]: raise RuntimeError("Message must be Downlink Format 0, 4, 16, or 20.") mbin = hex2bin(msg) mbit = mbin[25] qbit = mbin[27] if mbit == '0': if qbit == '1': vbin = mbin[19:25] + mbin[26] + mbin[28:32] alt = bin2int(vbin) * 25 - 1000 if qbit == '0': C1 = mbin[19] A1 = mbin[20] C2 = mbin[21] A2 = mbin[22] C4 = mbin[23] A4 = mbin[24] B1 = mbin[26] B2 = mbin[28] D2 = mbin[29] B4 = mbin[30] D4 = mbin[31] graystr = D2 + D4 + A1 + A2 + A4 + B1 + B2 + B4 + C1 + C2 + C4 alt = gray2alt(graystr) if mbit == '1': vbin = mbin[19:25] + mbin[26:31] alt = int(bin2int(vbin) * 3.28084) return alt
Computes the altitude from DF4 or DF20 message, bit 20-32. credit: @fbyrkjeland Args: msg (String): 28 bytes hexadecimal message string Returns: int: altitude in ft
juraj-google-style
def to_dict(mapreduce_yaml): all_configs = [] for config in mapreduce_yaml.mapreduce: out = { "name": config.name, "mapper_input_reader": config.mapper.input_reader, "mapper_handler": config.mapper.handler, } if config.mapper.params_validator: out["mapper_params_validator"] = config.mapper.params_validator if config.mapper.params: param_defaults = {} for param in config.mapper.params: param_defaults[param.name] = param.default or param.value out["mapper_params"] = param_defaults if config.params: param_defaults = {} for param in config.params: param_defaults[param.name] = param.default or param.value out["params"] = param_defaults if config.mapper.output_writer: out["mapper_output_writer"] = config.mapper.output_writer all_configs.append(out) return all_configs
Converts a MapReduceYaml file into a JSON-encodable dictionary. For use in user-visible UI and internal methods for interfacing with user code (like param validation). as a list Args: mapreduce_yaml: The Pyton representation of the mapreduce.yaml document. Returns: A list of configuration dictionaries.
juraj-google-style
def _get_colors(n): import matplotlib.pyplot as plt from matplotlib.colors import rgb2hex as r2h from numpy import linspace cols = linspace(0.05, 0.95, n) cmap = plt.get_cmap('nipy_spectral') return [r2h(cmap(i)) for i in cols]
Returns n unique and "evenly" spaced colors for the backgrounds of the projects. Args: n (int): The number of unique colors wanted. Returns: colors (list of str): The colors in hex form.
codesearchnet
def format_unitary(mat, decimals=None): num_basis = len(mat) mat_complex = np.zeros((num_basis, num_basis), dtype=complex) for i, vec in enumerate(mat): mat_complex[i] = format_statevector(vec, decimals) return mat_complex
Format unitary coming from the backend to present to the Qiskit user. Args: mat (list[list]): a list of list of [re, im] complex numbers decimals (int): the number of decimals in the statevector. If None, no rounding is done. Returns: list[list[complex]]: a matrix of complex numbers
juraj-google-style
def run(self): return self._test_suite
Runs the dynamically generated test suite. This method simply returns the test suite class created during initialization. The test runner (e.g., unittest.main()) can then be used to discover and run the tests within this suite. Returns: The dynamically created unittest.TestCase subclass.
github-repos
def _GetConfigValue(self, config_parser, section_name, value_name): try: return config_parser.get(section_name, value_name) except configparser.NoOptionError: return None
Retrieves a value from the config parser. Args: config_parser (ConfigParser): configuration parser. section_name (str): name of the section that contains the value. value_name (str): name of the value. Returns: object: configuration value or None if the value does not exists.
codesearchnet
def copy_pkg(self, filename, _): basename = os.path.basename(filename) self._copy(filename, os.path.join(self.connection['mount_point'], 'Packages', basename))
Copy a package to the repo's Package subdirectory. Args: filename: Path for file to copy. _: Ignored. Used for compatibility with JDS repos.
codesearchnet
def run(data, base_logdir, session_id, group_id, hparams): model = model_fn(hparams=hparams, seed=session_id) logdir = os.path.join(base_logdir, session_id) callback = tf.keras.callbacks.TensorBoard( logdir, update_freq=flags.FLAGS.summary_freq, profile_batch=0, ) hparams_callback = hp.KerasCallback(logdir, hparams, group_name=group_id) ((x_train, y_train), (x_test, y_test)) = data result = model.fit( x=x_train, y=y_train, epochs=flags.FLAGS.num_epochs, shuffle=False, validation_data=(x_test, y_test), callbacks=[callback, hparams_callback], )
Run a training/validation session. Flags must have been parsed for this function to behave. Args: data: The data as loaded by `prepare_data()`. base_logdir: The top-level logdir to which to write summary data. session_id: A unique string ID for this session. group_id: The string ID of the session group that includes this session. hparams: A dict mapping hyperparameters in `HPARAMS` to values.
juraj-google-style
def predict_features(self, df_features, df_target, idx=0, C=.1, **kwargs): lsvc = LinearSVR(C=C).fit(df_features.values, df_target.values) return np.abs(lsvc.coef_)
For one variable, predict its neighbouring nodes. Args: df_features (pandas.DataFrame): df_target (pandas.Series): idx (int): (optional) for printing purposes kwargs (dict): additional options for algorithms C (float): Penalty parameter of the error term Returns: list: scores of each feature relatively to the target
juraj-google-style
def _add_step(self, step): self._closed() self.has_workflow_step = self.has_workflow_step or step.is_workflow self.wf_steps[step.name_in_workflow] = step
Add a step to the workflow. Args: step (Step): a step from the steps library.
juraj-google-style
def ensure_app_data_dir(appname, *args): from ubelt import util_path dpath = get_app_data_dir(appname, *args) util_path.ensuredir(dpath) return dpath
Calls `get_app_data_dir` but ensures the directory exists. Args: appname (str): the name of the application *args: any other subdirectories may be specified SeeAlso: get_app_data_dir Example: >>> import ubelt as ub >>> dpath = ub.ensure_app_data_dir('ubelt') >>> assert exists(dpath)
codesearchnet
def GetFailedTasks(self): with self._lock: return [task for task in self._tasks_abandoned.values() if (not task.has_retry)]
Retrieves all failed tasks. Failed tasks are tasks that were abandoned and have no retry task once the foreman is done processing. Returns: list[Task]: tasks.
codesearchnet
def decorate(fn): if (not isfunction(fn)): raise TypeError('paco: fn must be a callable object') @functools.wraps(fn) def decorator(*args, **kw): for arg in args: if iscoro_or_corofunc(arg): return fn(*args, **kw) if (len(args) and (args[0] is None)): raise TypeError('paco: first argument cannot be empty') def wrapper(coro, *_args, **_kw): if (not iscoro_or_corofunc(coro)): raise TypeError('paco: first argument must be a coroutine or coroutine function') _args = ((coro,) + (args + _args)) kw.update(_kw) return fn(*_args, **kw) return wrapper return decorator
Generic decorator for coroutines helper functions allowing multiple variadic initialization arguments. This function is intended to be used internally. Arguments: fn (function): target function to decorate. Raises: TypeError: if function or coroutine function is not provided. Returns: function: decorated function.
codesearchnet
def easeInOutCubic(n): _checkRange(n) n = (2 * n) if (n < 1): return (0.5 * (n ** 3)) else: n = (n - 2) return (0.5 * ((n ** 3) + 2))
A cubic tween function that accelerates, reaches the midpoint, and then decelerates. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
codesearchnet
def recipe_fred_series_to_bigquery(config, auth, fred_api_key, fred_series_id, fred_units, fred_frequency, fred_aggregation_method, project, dataset): fred(config, {'auth': auth, 'api_key': fred_api_key, 'frequency': fred_frequency, 'series': [{'series_id': fred_series_id, 'units': fred_units, 'aggregation_method': fred_aggregation_method}], 'out': {'bigquery': {'project': project, 'dataset': dataset}}})
Download federal reserve series. Args: auth (authentication) - Credentials used for writing data. fred_api_key (string) - 32 character alpha-numeric lowercase string. fred_series_id (string) - Series ID to pull data from. fred_units (choice) - A key that indicates a data value transformation. fred_frequency (choice) - An optional parameter that indicates a lower frequency to aggregate values to. fred_aggregation_method (choice) - A key that indicates the aggregation method used for frequency aggregation. project (string) - Existing BigQuery project. dataset (string) - Existing BigQuery dataset.
github-repos
def show_constant(val: types.BaseValue) -> str: def _ellipsis_printer(v): if isinstance(v, types.PythonConstant): return v.str_of_constant(_ellipsis_printer) return '...' return _ellipsis_printer(val)
Pretty-print a value if it is a constant. Recurses into a constant, printing the underlying Python value for constants and just using "..." for everything else (e.g., Variables). This is useful for generating clear error messages that show the exact values related to an error while preventing implementation details from leaking into the message. Args: val: an abstract value. Returns: A string of the pretty-printed constant.
github-repos
def get_player_stats(self, player_key, board_key): player_stats_url = self.api_path + 'player/' + player_key + '/league/' + board_key + '/stats/' response = self.get_response(player_stats_url) return response
Calling the Player Stats API Args: player_key: Key of the player board_key: key of the board Return: json data
juraj-google-style
class XLNetPoolerEndLogits(nn.Module): def __init__(self, config: XLNetConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor]=None, start_positions: Optional[torch.LongTensor]=None, p_mask: Optional[torch.FloatTensor]=None) -> torch.FloatTensor: assert start_states is not None or start_positions is not None, 'One of start_states, start_positions should be not None' if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) start_states = hidden_states.gather(-2, start_positions) start_states = start_states.expand(-1, slen, -1) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if p_mask.dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e+30 * p_mask return x
Compute SQuAD end logits from sequence hidden states. Args: config ([`XLNetConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use.
github-repos
def update_ref(profile, ref, sha): resource = "/refs/" + ref payload = {"sha": sha} data = api.patch_request(profile, resource, payload) return prepare(data)
Point a ref to a new SHA. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. ref The ref to update, e.g., ``heads/my-feature-branch``. sha The SHA of the commit to point the ref to. Returns A dict with data about the ref.
juraj-google-style
def _format_param_val(self, param_val): if isinstance(param_val, list): return ' '.join((str(x) for x in param_val)) else: return str(param_val)
Internal method to format values in the packmol parameter dictionaries Args: param_val: Some object to turn into String Returns: string representation of the object
codesearchnet
def Eq(left: str, right: str) -> BooleanTerm: if left == right: return TRUE elif left > right: return _Eq(left, right) else: return _Eq(right, left)
Create an equality or its simplified equivalent. This will ensure that left > right. (For left == right, it'll just return TRUE). Args: left: A string. Left side of the equality. This will get sorted, so it might end up on the right. right: A string. Right side of the equality. This will get sorted, so it might end up on the left. Returns: A BooleanTerm.
github-repos
def get_attrs(obj: object) -> dict[str, object]: attrs = {} for k in dir(obj) + object.__dir__(obj): if k in attrs: continue try: v = getattr(obj, k) except Exception as e: v = ExceptionWrapper(e) attrs[k] = v return attrs
Parse all attributes from an object. Limitation: * Descriptor will be resolved, so all properties are executed (some can have side effects, or take a lot of time to compute) Args: obj: Object to inspect Returns: Dict mapping attribute name to values.
github-repos
def grating_coupler_period(wavelength, n_eff, n_clad, incidence_angle_deg, diffration_order=1): k0 = ((2.0 * np.pi) / wavelength) beta = (n_eff.real * k0) n_inc = n_clad grating_period = (((2.0 * np.pi) * diffration_order) / (beta - ((k0 * n_inc) * np.sin(np.radians(incidence_angle_deg))))) return grating_period
Calculate the period needed for a grating coupler. Args: wavelength (float): The target wavelength for the grating coupler. n_eff (float): The effective index of the mode of a waveguide with the width of the grating coupler. n_clad (float): The refractive index of the cladding. incidence_angle_deg (float): The incidence angle the grating coupler should operate at [degrees]. diffration_order (int): The grating order the coupler should work at. Default is 1st order (1). Returns: float: The period needed for the grating coupler in the same units as the wavelength was given at.
codesearchnet
def add_spectrum(self, label, spectrum, color=None): self._spectra[label] = spectrum self.colors.append((color or self.colors_cycle[(len(self._spectra) % len(self.colors_cycle))]))
Adds a Spectrum for plotting. Args: label (str): Label for the Spectrum. Must be unique. spectrum: Spectrum object color (str): This is passed on to matplotlib. E.g., "k--" indicates a dashed black line. If None, a color will be chosen based on the default color cycle.
codesearchnet
def files(self, request, id): gist = self.send(request, id).json() return gist['files']
Returns a list of files in the gist Arguments: request: an initial request object id: the gist identifier Returns: A list of the files
juraj-google-style
def ReadFromDirectory(self, artifacts_reader, path, extension='yaml'): for artifact_definition in artifacts_reader.ReadDirectory( path, extension=extension): self.RegisterDefinition(artifact_definition)
Reads artifact definitions into the registry from files in a directory. This function does not recurse sub directories. Args: artifacts_reader (ArtifactsReader): an artifacts reader. path (str): path of the directory to read from. extension (Optional[str]): extension of the filenames to read. Raises: KeyError: if a duplicate artifact definition is encountered.
juraj-google-style
def install(self, updates): if (updates.count() == 0): ret = {'Success': False, 'Updates': 'Nothing to install'} return ret installer = self._session.CreateUpdateInstaller() self._session.ClientApplicationID = 'Salt: Install Update' with salt.utils.winapi.Com(): install_list = win32com.client.Dispatch('Microsoft.Update.UpdateColl') ret = {'Updates': {}} for update in updates.updates: uid = update.Identity.UpdateID ret['Updates'][uid] = {} ret['Updates'][uid]['Title'] = update.Title ret['Updates'][uid]['AlreadyInstalled'] = bool(update.IsInstalled) if (not salt.utils.data.is_true(update.IsInstalled)): log.debug('To Be Installed: %s', uid) log.debug('\tTitle: %s', update.Title) install_list.Add(update) if (install_list.Count == 0): ret = {'Success': True, 'Updates': 'Nothing to install'} return ret installer.Updates = install_list try: log.debug('Installing Updates') result = installer.Install() except pywintypes.com_error as error: (hr, msg, exc, arg) = error.args try: failure_code = self.fail_codes[exc[5]] except KeyError: failure_code = 'Unknown Failure: {0}'.format(error) log.error('Install Failed: %s', failure_code) raise CommandExecutionError(failure_code) result_code = {0: 'Installation Not Started', 1: 'Installation In Progress', 2: 'Installation Succeeded', 3: 'Installation Succeeded With Errors', 4: 'Installation Failed', 5: 'Installation Aborted'} log.debug('Install Complete') log.debug(result_code[result.ResultCode]) ret['Message'] = result_code[result.ResultCode] if (result.ResultCode in [2, 3]): ret['Success'] = True ret['NeedsReboot'] = result.RebootRequired log.debug('NeedsReboot: %s', result.RebootRequired) else: log.debug('Install Failed') ret['Success'] = False reboot = {0: 'Never Reboot', 1: 'Always Reboot', 2: 'Poss Reboot'} for i in range(install_list.Count): uid = install_list.Item(i).Identity.UpdateID ret['Updates'][uid]['Result'] = result_code[result.GetUpdateResult(i).ResultCode] ret['Updates'][uid]['RebootBehavior'] = reboot[install_list.Item(i).InstallationBehavior.RebootBehavior] return ret
Install the updates passed in the updates collection. Load the updates collection using the ``search`` or ``available`` functions. If the updates need to be downloaded, use the ``download`` function. Args: updates (Updates): An instance of the Updates class containing a the updates to be installed. Returns: dict: A dictionary containing the results of the installation Code Example: .. code-block:: python import salt.utils.win_update wua = salt.utils.win_update.WindowsUpdateAgent() # install KB3195454 updates = wua.search('KB3195454') results = wua.download(updates) results = wua.install(updates)
codesearchnet
async def get(self, request): ticket = await self.get_ticket(request) if ticket is None: return None try: now = time.time() fields = self._ticket.validate(ticket, self._get_ip(request), now) if (self._reissue_time is not None and now >= (fields.valid_until - self._reissue_time)): request[_REISSUE_KEY] = self._new_ticket(request, fields.user_id) return fields.user_id except TicketError as e: return None
Gets the user_id for the request. Gets the ticket for the request using the get_ticket() function, and authenticates the ticket. Args: request: aiohttp Request object. Returns: The userid for the request, or None if the ticket is not authenticated.
juraj-google-style
def _encode_required_fields(self, builder: expressions.Builder) -> List[validation_pb2.SqlRequirement]: if not isinstance(builder.return_type, _fhir_path_data_types.StructureDataType): return [] if builder.return_type.element_type == 'Extension': return [] encoded_requirements: List[validation_pb2.SqlRequirement] = [] for name, desc_message in builder.return_type.iter_all_descendants(): containing_type_builder = builder child_builder = containing_type_builder paths = name.split('.') for path in paths: if isinstance(child_builder.return_type, _fhir_path_data_types.StructureDataType): containing_type_builder = child_builder child_builder = self._get_new_child_builder(child_builder, path) if not child_builder: break if not child_builder: continue name = paths[-1] requirement = self._encode_required_field(name, containing_type_builder, child_builder, desc_message) if requirement: encoded_requirements.append(requirement) return encoded_requirements
Returns `SqlRequirement`s for all required fields in `ElementDefinition`. Args: builder: The builder containing the element to encode required fields for. Returns: A list of `SqlRequirement`s representing requirements generated from required fields on the element.
github-repos
def _get_userprofile_from_registry(user, sid): profile_dir = __utils__['reg.read_value']('HKEY_LOCAL_MACHINE', 'SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\ProfileList\\{0}'.format(sid), 'ProfileImagePath')['vdata'] log.debug('user %s with sid=%s profile is located at "%s"', user, sid, profile_dir) return profile_dir
In case net user doesn't return the userprofile we can get it from the registry Args: user (str): The user name, used in debug message sid (str): The sid to lookup in the registry Returns: str: Profile directory
codesearchnet
def _code_search(query, github_user=None): github_client = temple.utils.GithubClient() headers = {'Accept': 'application/vnd.github.v3.text-match+json'} resp = github_client.get('/search/code', params={'q': query, 'per_page': 100}, headers=headers) if ((resp.status_code == requests.codes.unprocessable_entity) and github_user): raise temple.exceptions.InvalidGithubUserError('Invalid Github user or org - "{}"'.format(github_user)) resp.raise_for_status() resp_data = resp.json() repositories = collections.defaultdict(dict) while True: repositories.update({'git@github.com:{}.git'.format(repo['repository']['full_name']): repo['repository'] for repo in resp_data['items']}) next_url = _parse_link_header(resp.headers).get('next') if next_url: resp = requests.get(next_url, headers=headers) resp.raise_for_status() resp_data = resp.json() else: break return repositories
Performs a Github API code search Args: query (str): The query sent to Github's code search github_user (str, optional): The Github user being searched in the query string Returns: dict: A dictionary of repository information keyed on the git SSH url Raises: `InvalidGithubUserError`: When ``github_user`` is invalid
codesearchnet
def _prefix_from_ip_int(self, ip_int): trailing_zeroes = _count_righthand_zero_bits(ip_int, self._max_prefixlen) prefixlen = self._max_prefixlen - trailing_zeroes leading_ones = ip_int >> trailing_zeroes all_ones = (1 << prefixlen) - 1 if leading_ones != all_ones: byteslen = self._max_prefixlen details = _int_to_bytes(ip_int, byteslen, 'big') msg = 'Netmask pattern %r mixes zeroes & ones' raise ValueError(msg % details) return prefixlen
Return prefix length from the bitwise netmask. Args: ip_int: An integer, the netmask in expanded bitwise format Returns: An integer, the prefix length. Raises: ValueError: If the input intermingles zeroes & ones
juraj-google-style
def __init__(self, connect_func, max_size=10): self.connect_func = connect_func self.limiter = threading.BoundedSemaphore(max_size) self.idle_conns = [] self.closed = False
Creates a ConnectionPool. Args: connect_func: A closure which returns a new connection to the underlying database, i.e. a MySQLdb.Connection. Should raise or block if the database is unavailable. max_size: The maximum number of simultaneous connections.
juraj-google-style
def top_kth_iterative(x, k): def next_x(cur_x, _): top_x = tf.reduce_max(cur_x, axis=-1, keep_dims=True) return cur_x * to_float(cur_x < top_x) fin_x = tf.foldl(next_x, tf.range(k - 1), initializer=tf.stop_gradient(x), parallel_iterations=2, back_prop=False) return tf.stop_gradient(tf.reduce_max(fin_x, axis=-1, keep_dims=True))
Compute the k-th top element of x on the last axis iteratively. This assumes values in x are non-negative, rescale if needed. It is often faster than tf.nn.top_k for small k, especially if k < 30. Note: this does not support back-propagation, it stops gradients! Args: x: a Tensor of non-negative numbers of type float. k: a python integer. Returns: a float tensor of the same shape as x but with 1 on the last axis that contains the k-th largest number in x.
juraj-google-style
def bind(self, devices_to_bind): if self.entity_api_key == "": return {'status': 'failure', 'response': 'No API key found in request'} url = self.base_url + "api/0.1.0/subscribe/bind" headers = {"apikey": self.entity_api_key} data = { "exchange": "amq.topic", "keys": devices_to_bind, "queue": self.entity_id } with self.no_ssl_verification(): r = requests.post(url, json=data, headers=headers) response = dict() if "No API key" in str(r.content.decode("utf-8")): response["status"] = "failure" r = json.loads(r.content.decode("utf-8"))['message'] elif 'bind queue ok' in str(r.content.decode("utf-8")): response["status"] = "success" r = r.content.decode("utf-8") else: response["status"] = "failure" r = r.content.decode("utf-8") response["response"] = str(r) return response
This function allows an entity to list the devices to subscribe for data. This function must be called at least once, before doing a subscribe. Subscribe function will listen to devices that are bound here. Args: devices_to_bind (list): an array of devices to listen to. Example bind(["test100","testDemo"])
juraj-google-style
def run(self, dag): if self.layout is None: if self.property_set["layout"]: self.layout = self.property_set["layout"] else: self.layout = Layout.generate_trivial_layout(*dag.qregs.values()) self.property_set['is_swap_mapped'] = True for gate in dag.twoQ_gates(): physical_q0 = self.layout[gate.qargs[0]] physical_q1 = self.layout[gate.qargs[1]] if self.coupling_map.distance(physical_q0, physical_q1) != 1: self.property_set['is_swap_mapped'] = False return
If `dag` is mapped to `coupling_map`, the property `is_swap_mapped` is set to True (or to False otherwise). Args: dag (DAGCircuit): DAG to map.
juraj-google-style
def Normalize(self, fraction=1.0): if self.log: raise ValueError('Pmf is under a log transform') total = self.Total() if (total == 0.0): raise ValueError('total probability is zero.') logging.warning('Normalize: total probability is zero.') return total factor = (float(fraction) / total) for x in self.d: self.d[x] *= factor return total
Normalizes this PMF so the sum of all probs is fraction. Args: fraction: what the total should be after normalization Returns: the total probability before normalizing
codesearchnet
def _get_bucket_attribute(bucket, query_param, xml_response_tag, retry_params=None, _account_id=None): api = storage_api._get_storage_api(retry_params=retry_params, account_id=_account_id) common.validate_bucket_path(bucket) (status, headers, content) = api.get_bucket(('%s?%s' % (bucket, query_param))) errors.check_status(status, [200], bucket, resp_headers=headers, body=content) root = ET.fromstring(content) if ((root.tag == xml_response_tag) and root.text): return root.text return None
Helper method to request a bucket parameter and parse the response. Args: bucket: A Google Cloud Storage bucket of form '/bucket'. query_param: The query parameter to include in the get bucket request. xml_response_tag: The expected tag in the xml response. retry_params: An api_utils.RetryParams for this call to GCS. If None, the default one is used. _account_id: Internal-use only. Returns: The xml value as a string. None if the returned xml does not match expected format. Raises: errors.AuthorizationError: if authorization failed. errors.NotFoundError: if the bucket does not exist.
codesearchnet
def create_sequence_pretty_tensor(sequence_input, shape=None, save_state=True): inputs = prettytensor.wrap_sequence(sequence_input.inputs, tensor_shape=shape) targets = prettytensor.wrap_sequence(sequence_input.targets) if save_state: bookkeeper.set_recurrent_state_saver(sequence_input) return inputs, targets
Creates a PrettyTensor object for the given sequence. The first dimension is treated as a time-dimension * batch and a default is set for `unroll` and `state_saver`. TODO(eiderman): Remove shape. Args: sequence_input: A SequenceInput or StateSavingSequenceInput shape: The shape of each item in the sequence (including batch). save_state: If true, use the sequence_input's state and save_state methods. Returns: 2 Layers: inputs, targets
juraj-google-style
def pow(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "pow", other, axis=axis, level=level, fill_value=fill_value )
Pow this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the pow against this. axis: The axis to pow over. level: The Multilevel index level to apply pow over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Pow applied.
juraj-google-style
def read(self, key): key = quote(key, safe='~') url = '/internal/playbooks/keyValue/{}'.format(key) r = self.tcex.session.get(url) data = r.content if ((data is not None) and (not isinstance(data, str))): data = str(r.content, 'utf-8') return data
Read data from remote KV store for the provided key. Args: key (string): The key to read in remote KV store. Returns: (any): The response data from the remote KV store.
codesearchnet
def __init__(self, prefs, g, kappa=2.0, omega=0.5, beta=1.0, mu=1.0, freeparams=['kappa', 'omega', 'beta', 'mu']): _checkParam('g', g, self.PARAMLIMITS, self.PARAMTYPES) assert abs(1 - g.sum()) <= ALMOST_ZERO, "g doesn't sum to 1" self.g = g.copy() self.g /= self.g.sum() super(ExpCM_empirical_phi, self).__init__(prefs, kappa=kappa, omega=omega, beta=beta, mu=mu, freeparams=freeparams)
Initialize an `ExpCM_empirical_phi` object. Args: `prefs`, `kappa`, `omega`, `beta`, `mu`, `freeparams` Same meaning as for an `ExpCM` `g` Has the meaning described in the main class doc string.
juraj-google-style
def get_section_header(self, section): self._ensure_section_headers_loaded() if (type(section) is int): return self._section_headers_by_index[section] else: return self._section_headers_by_name[section]
Get a specific section header by index or name. Args: section(int or str): The index or name of the section header to return. Returns: :class:`~ELF.SectionHeader`: The section header. Raises: KeyError: The requested section header does not exist.
codesearchnet
def export_warnings(self, export_file): warn_filepath = op.dirname(export_file) warn_filename = op.splitext(op.basename(export_file))[0] self._add_entry(templates.EXPORT_WARNINGS.format(warnings_export_path=warn_filepath, warnings_export_file=warn_filename))
Append an export warnings entry to the journal. This instructs Revit to export warnings from the opened model. Currently Revit will stop journal execution if the model does not have any warnings and the export warnings UI button is disabled. Args: export_file (str): full path of the ouput html file
codesearchnet
def rank_dated_files(pattern, dir, descending=True): files = glob.glob(op.join(dir, pattern)) return sorted(files, reverse=descending)
Search a directory for files that match a pattern. Return an ordered list of these files by filename. Args: pattern: The glob pattern to search for. dir: Path to directory where the files will be searched for. descending: Default True, will sort alphabetically by descending order. Returns: list: Rank-ordered list by filename.
codesearchnet
def nextindx(self): indx = 0 with s_lmdbslab.Scan(self.slab, self.db) as curs: last_key = curs.last_key() if (last_key is not None): indx = (s_common.int64un(last_key) + 1) return indx
Determine the next insert offset according to storage. Returns: int: The next insert offset.
codesearchnet
def _preprocess_numpy_input(x, data_format, mode): if not issubclass(x.dtype.type, np.floating): x = x.astype(backend.floatx(), copy=False) if mode == 'tf': x /= 127.5 x -= 1.0 return x elif mode == 'torch': x /= 255.0 mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] else: if data_format == 'channels_first': if len(x.shape) == 3: x = x[::-1, ...] else: x = x[:, ::-1, ...] else: x = x[..., ::-1] mean = [103.939, 116.779, 123.68] std = None if data_format == 'channels_first': if len(x.shape) == 3: x[0, :, :] -= mean[0] x[1, :, :] -= mean[1] x[2, :, :] -= mean[2] if std is not None: x[0, :, :] /= std[0] x[1, :, :] /= std[1] x[2, :, :] /= std[2] else: x[:, 0, :, :] -= mean[0] x[:, 1, :, :] -= mean[1] x[:, 2, :, :] -= mean[2] if std is not None: x[:, 0, :, :] /= std[0] x[:, 1, :, :] /= std[1] x[:, 2, :, :] /= std[2] else: x[..., 0] -= mean[0] x[..., 1] -= mean[1] x[..., 2] -= mean[2] if std is not None: x[..., 0] /= std[0] x[..., 1] /= std[1] x[..., 2] /= std[2] return x
Preprocesses a NumPy array encoding a batch of images. Args: x: Input array, 3D or 4D. data_format: Data format of the image array. mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. Returns: Preprocessed Numpy array.
github-repos
async def post(self): logging.debug('\n\n[+] -- Account debugging. ') if settings.SIGNATURE_VERIFICATION: super().verify() try: data = json.loads(self.request.body) except: self.set_status(400) self.write({'error': 400, 'reason': 'Unexpected data format. JSON required'}) raise tornado.web.Finish message = data['message'] new_account = (await self.account.createaccount(**data)) logging.debug('\n\n [+] -- New account debugging.') logging.debug(new_account['id']) if ('error' in new_account.keys()): self.set_status(new_account['error']) self.write(new_account) raise tornado.web.Finish wallets = (await self.account.balance.get_wallets(uid=new_account['id'])) if isinstance(wallets, dict): if ('error' in wallets.keys()): self.set_status(wallets['error']) self.write(wallets) raise tornado.web.Finish new_account.update({'href': ((settings.ENDPOINTS['ams'] + '/') + new_account['public_key']), 'wallets': json.dumps(wallets['wallets'])}) if new_account.get('email'): email_data = {'to': new_account['email'], 'subject': 'Robin8 Support', 'optional': (('Your account was created on %s' % settings.domain) + new_account['href'])} (await self.account.mailer.sendmail(**email_data)) self.write(new_account)
Creates new account Accepts: - message (signed dict): - "device_id" - str - "email" - str - "phone" - str - "public_key" - str - "signature" - str Returns: dictionary with following fields: - "device_id" - str - "phone" - str - "public_key" - str - "count" - int ( wallets amount ) - "level" - int (2 by default) - "news_count" - int (0 by default) - "email" - str - "href" - str - "wallets" - list Verified: True
codesearchnet
def set_membership(self, room_id, user_id, membership, reason="", profile=None, timestamp=None): if profile is None: profile = {} body = { "membership": membership, "reason": reason } if 'displayname' in profile: body["displayname"] = profile["displayname"] if 'avatar_url' in profile: body["avatar_url"] = profile["avatar_url"] return self.send_state_event(room_id, "m.room.member", body, state_key=user_id, timestamp=timestamp)
Perform PUT /rooms/$room_id/state/m.room.member/$user_id Args: room_id (str): The room ID user_id (str): The user ID membership (str): New membership value reason (str): The reason timestamp (int): Set origin_server_ts (For application services only)
juraj-google-style
def __sid_to_username(sid): if sid is None or sid == '': return '' try: sid_bin = win32security.GetBinarySid(sid) except pywintypes.error as exc: raise ValueError( 'pkg: Software owned by {0} is not valid: [{1}] {2}'.format(sid, exc.winerror, exc.strerror) ) try: name, domain, _account_type = win32security.LookupAccountSid(None, sid_bin) user_name = '{0}\\{1}'.format(domain, name) except pywintypes.error as exc: if exc.winerror == winerror.ERROR_NONE_MAPPED: return sid else: raise ValueError( 'Failed looking up sid \'{0}\' username: [{1}] {2}'.format(sid, exc.winerror, exc.strerror) ) try: user_principal = win32security.TranslateName( user_name, win32api.NameSamCompatible, win32api.NameUserPrincipal) except pywintypes.error as exc: if exc.winerror in (winerror.ERROR_NO_SUCH_DOMAIN, winerror.ERROR_INVALID_DOMAINNAME, winerror.ERROR_NONE_MAPPED): return '{0}@{1}'.format(name.lower(), domain.lower()) else: raise return user_principal
Provided with a valid Windows Security Identifier (SID) and returns a Username Args: sid (str): Security Identifier (SID). Returns: str: Username in the format of username@realm or username@computer.
juraj-google-style
def set_hasher(self, hash, rounds=None): hash = hash.replace('-', '_') if (hash not in VALID_HASHERS): raise WrongHashAlgorithm(WRONG_HASH_MESSAGE) hasher = getattr(ph, hash) utils.test_hasher(hasher) default_rounds = getattr(hasher, 'default_rounds', 1) min_rounds = getattr(hasher, 'min_rounds', 1) max_rounds = getattr(hasher, 'max_rounds', float('inf')) rounds = min(max((rounds or default_rounds), min_rounds), max_rounds) op = {'schemes': (VALID_HASHERS + DEPRECATED_HASHERS), 'deprecated': DEPRECATED_HASHERS, 'default': hash, (hash + '__default_rounds'): rounds} self.hasher = CryptContext(**op) self.hash = hash.replace('_', '-') self.rounds = rounds
Updates the has algorithm and, optionally, the number of rounds to use. Raises: `~WrongHashAlgorithm` if new algorithm isn't one of the three recomended options.
codesearchnet
def _open_script_interface(self, connection_id, callback): try: context = self.connections.get_context(connection_id) except ArgumentError: callback(connection_id, self.id, False, "Could not find connection information") return success = HighSpeedChar in context['services'][TileBusService] reason = None if not success: reason = 'Could not find high speed streaming characteristic' callback(connection_id, self.id, success, reason)
Enable script streaming interface for this IOTile device Args: connection_id (int): The unique identifier for the connection callback (callback): Callback to be called when this command finishes callback(conn_id, adapter_id, success, failure_reason)
juraj-google-style
def _get_values(self, data_blob, dtype_enum, shape_string): buf = np.frombuffer(data_blob, dtype=tf.DType(dtype_enum).as_numpy_dtype) return buf.reshape([int(i) for i in shape_string.split(',')]).tolist()
Obtains values for histogram data given blob and dtype enum. Args: data_blob: The blob obtained from the database. dtype_enum: The enum representing the dtype. shape_string: A comma-separated string of numbers denoting shape. Returns: The histogram values as a list served to the frontend.
juraj-google-style
def send_log_messages(self, messages: List[LogMessage]) -> None: pass
Sends multiple log messages to be handled. Args: * messages: list of LogMessage dictionaries Returns: * None
github-repos
def resolve_backend_name(name, backends, deprecated, aliased): available = [backend.name() for backend in backends] resolved_name = deprecated.get(name, aliased.get(name, name)) if isinstance(resolved_name, list): resolved_name = next((b for b in resolved_name if (b in available)), '') if (resolved_name not in available): raise LookupError("backend '{}' not found.".format(name)) if (name in deprecated): logger.warning("WARNING: '%s' is deprecated. Use '%s'.", name, resolved_name) return resolved_name
Resolve backend name from a deprecated name or an alias. A group will be resolved in order of member priorities, depending on availability. Args: name (str): name of backend to resolve backends (list[BaseBackend]): list of available backends. deprecated (dict[str: str]): dict of deprecated names. aliased (dict[str: list[str]]): dict of aliased names. Returns: str: resolved name (name of an available backend) Raises: LookupError: if name cannot be resolved through regular available names, nor deprecated, nor alias names.
codesearchnet
def _reconstruct_sequence_inputs(op_def, inputs, attrs) -> list[Union[tensor_lib.Tensor, list[tensor_lib.Tensor]]]: grouped_inputs = [] i = 0 for input_arg in op_def.input_arg: if input_arg.number_attr: input_len = attrs[input_arg.number_attr].i is_sequence = True elif input_arg.type_list_attr: input_len = len(attrs[input_arg.type_list_attr].list.type) is_sequence = True else: input_len = 1 is_sequence = False if is_sequence: grouped_inputs.append(inputs[i:i + input_len]) else: grouped_inputs.append(inputs[i]) i += input_len assert i == len(inputs) return grouped_inputs
Regroups a flat list of input tensors into scalar and sequence inputs. Args: op_def: The `op_def_pb2.OpDef` (for knowing the input types) inputs: a list of input `Tensor`s to the op. attrs: mapping from attr name to `attr_value_pb2.AttrValue` (these define how long each sequence is) Returns: A list of `Tensor`s (corresponding to scalar inputs) and lists of `Tensor`s (corresponding to sequence inputs).
github-repos
def get_create_agent(agent_kwargs): def create_agent(sess, environment, summary_writer=None): 'Creates a DQN agent.\n\n Simplified version of `dopamine.discrete_domains.train.create_agent`\n\n Args:\n sess: a session\n environment: an environment\n summary_writer: a summary writer.\n\n Returns:\n a DQN agent.\n ' return BatchDQNAgent(env_batch_size=environment.batch_size, sess=sess, num_actions=environment.action_space.n, summary_writer=summary_writer, tf_device='/gpu:*', **agent_kwargs) return create_agent
Factory for dopamine agent initialization. Args: agent_kwargs: dict of BatchDQNAgent parameters Returns: Function(sess, environment, summary_writer) -> BatchDQNAgent instance.
codesearchnet
def with_attributes(name, checkpointable_objects=None, functions=None, copy_from=None): checkpointable_objects = checkpointable_objects or [] functions = functions or [] if copy_from is not None: for cls in copy_from: checkpointable_objects.extend(cls.all_checkpointable_objects) functions.extend(cls.all_functions) classdict = {'all_checkpointable_objects': set(checkpointable_objects), 'all_functions': set(functions)} return type(name, (SerializedAttributes,), classdict)
Creates a subclass with all attributes as specified in the arguments. Args: name: Name of subclass checkpointable_objects: List of checkpointable objects to be serialized in the SavedModel. functions: List of functions to be serialized in the SavedModel. copy_from: List of other SerializedAttributes subclasses. The returned class will copy checkpoint objects/functions from each subclass. Returns: Child class with attributes as defined in the `checkpointable_objects` and `functions` lists.
github-repos
def _ParseRecordLogline(self, parser_mediator, structure): date_time = dfdatetime_time_elements.TimeElementsInMilliseconds() try: datetime_iso8601 = self._GetISO8601String(structure.date_time) date_time.CopyFromStringISO8601(datetime_iso8601) except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0!s}'.format(structure.date_time)) return event_data = GoogleDriveSyncLogEventData() event_data.log_level = structure.log_level event_data.pid = structure.pid event_data.thread = structure.thread event_data.source_code = structure.source_code event_data.message = structure.message.replace('\n', ' ') event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_ADDED) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a logline record structure and produces events. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file.
juraj-google-style
def _shard_num_args(self, constant_dict: Dict[(str, Any)]=None) -> List[Dict[(str, Any)]]: args = [] for shard_num in range(self._num_shards): append_dict = (dict(constant_dict) if constant_dict else {}) append_dict['shard_num'] = shard_num append_dict['num_shards'] = self._num_shards append_dict['num_shard_qubits'] = self._num_shard_qubits append_dict.update(self._shared_mem_dict) args.append(append_dict) return args
Helper that returns a list of dicts including a num_shard entry. The dict for each entry also includes shared_mem_dict, the number of shards, the number of shard qubits, and the supplied constant dict. Args: constant_dict: Dictionary that will be updated to every element of the returned list of dictionaries. Returns: A list of dictionaries. Each dictionary is constant except for the 'shard_num' key which ranges from 0 to number of shards - 1. Included keys are 'num_shards' and 'num_shard_qubits' along with all the keys in constant_dict.
codesearchnet
def _async_open(self, session_id, proto_version): try: (yield self.application_context.create_session_if_needed(session_id, self.request)) session = self.application_context.get_session(session_id) protocol = Protocol(proto_version) self.receiver = Receiver(protocol) log.debug('Receiver created for %r', protocol) self.handler = ProtocolHandler() log.debug('ProtocolHandler created for %r', protocol) self.connection = self.application.new_connection(protocol, self, self.application_context, session) log.info('ServerConnection created') except ProtocolError as e: log.error('Could not create new server session, reason: %s', e) self.close() raise e msg = self.connection.protocol.create('ACK') (yield self.send_message(msg)) raise gen.Return(None)
Perform the specific steps needed to open a connection to a Bokeh session Specifically, this method coordinates: * Getting a session for a session ID (creating a new one if needed) * Creating a protocol receiver and hander * Opening a new ServerConnection and sending it an ACK Args: session_id (str) : A session ID to for a session to connect to If no session exists with the given ID, a new session is made proto_version (str): The protocol version requested by the connecting client. Returns: None
codesearchnet
def _concatenate_inner(self, direction): tmp_bucket = [] source_chunks = (self if direction else self[::(- 1)]) target_chunks = ChunkList() for chunk in source_chunks: if ((chunk.dependency == direction) or ((direction is False) and chunk.is_space())): tmp_bucket.append(chunk) continue tmp_bucket.append(chunk) if (not direction): tmp_bucket = tmp_bucket[::(- 1)] new_word = ''.join([tmp_chunk.word for tmp_chunk in tmp_bucket]) new_chunk = Chunk(new_word, pos=chunk.pos, label=chunk.label, dependency=chunk.dependency) target_chunks.append(new_chunk) tmp_bucket = ChunkList() if tmp_bucket: target_chunks += tmp_bucket if (not direction): target_chunks = target_chunks[::(- 1)] self.list = target_chunks
Concatenates chunks based on each chunk's dependency. Args: direction (bool): Direction of concatenation process. True for forward.
codesearchnet
def get_strategy() -> 'StrategyBase': return _get_per_thread_mode().strategy
Returns the current `tf.distribute.Strategy` object. Typically only used in a cross-replica context: ``` if tf.distribute.in_cross_replica_context(): strategy = tf.distribute.get_strategy() ... ``` Returns: A `tf.distribute.Strategy` object. Inside a `with strategy.scope()` block, it returns `strategy`, otherwise it returns the default (single-replica) `tf.distribute.Strategy` object.
github-repos
def _transpile_circuit(circuit_config_tuple): (circuit, transpile_config) = circuit_config_tuple if transpile_config.pass_manager: pass_manager = transpile_config.pass_manager elif transpile_config.coupling_map: pass_manager = default_pass_manager(transpile_config.basis_gates, transpile_config.coupling_map, transpile_config.initial_layout, transpile_config.seed_transpiler) else: pass_manager = default_pass_manager_simulator(transpile_config.basis_gates) return pass_manager.run(circuit)
Select a PassManager and run a single circuit through it. Args: circuit_config_tuple (tuple): circuit (QuantumCircuit): circuit to transpile transpile_config (TranspileConfig): configuration dictating how to transpile Returns: QuantumCircuit: transpiled circuit
codesearchnet
def _avro_rows(block, avro_schema): blockio = six.BytesIO(block.avro_rows.serialized_binary_rows) while True: try: (yield fastavro.schemaless_reader(blockio, avro_schema)) except StopIteration: break
Parse all rows in a stream block. Args: block ( \ ~google.cloud.bigquery_storage_v1beta1.types.ReadRowsResponse \ ): A block containing Avro bytes to parse into rows. avro_schema (fastavro.schema): A parsed Avro schema, used to deserialized the bytes in the block. Returns: Iterable[Mapping]: A sequence of rows, represented as dictionaries.
codesearchnet
def can_fetch(self, request: Request, file=None) -> bool: try: return self.can_fetch_pool(request) except NotInPoolError: pass (yield from self.fetch_robots_txt(request, file=file)) return self.can_fetch_pool(request)
Return whether the request can fetched. Args: request: Request. file: A file object to where the robots.txt contents are written. Coroutine.
codesearchnet
def append( self, moment_or_operation_tree: Union[ops.Moment, ops.OP_TREE], strategy: InsertStrategy = InsertStrategy.EARLIEST): self.insert(len(self._moments), moment_or_operation_tree, strategy)
Appends operations onto the end of the circuit. Moments within the operation tree are appended intact. Args: moment_or_operation_tree: The moment or operation tree to append. strategy: How to pick/create the moment to put operations into.
juraj-google-style