code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def buckets_list(self, projection='noAcl', max_results=0, page_token=None, project_id=None): if (max_results == 0): max_results = Api._MAX_RESULTS args = {'project': (project_id if project_id else self._project_id), 'maxResults': max_results} if (projection is not None): args['projection'] = projection if (page_token is not None): args['pageToken'] = page_token url = (Api._ENDPOINT + (Api._BUCKET_PATH % '')) return google.datalab.utils.Http.request(url, args=args, credentials=self._credentials)
Issues a request to retrieve the list of buckets. Args: projection: the projection of the bucket information to retrieve. max_results: an optional maximum number of objects to retrieve. page_token: an optional token to continue the retrieval. project_id: the project whose buckets should be listed. Returns: A parsed list of bucket information dictionaries. Raises: Exception if there is an error performing the operation.
codesearchnet
def filter(self, versions, key=lambda x: x): return [x for x in versions if self.check(key(x))]
Filter all of the versions in an iterable that match this version range Args: versions (iterable): An iterable of SemanticVersion objects Returns: list: A list of the SemanticVersion objects that matched this range
juraj-google-style
def make_tar_stream(build_context, buffer): tf = tarfile.TarFile(fileobj=buffer, mode='w') for context_path, fileobj in build_context.items(): if getattr(fileobj, 'localpath', None) is not None: tf.add(fileobj.localpath, arcname=context_path) else: tar_add_bytes(tf, context_path, fileobj.read('rb')) tf.close()
Write a tar stream of the build context to the provided buffer Args: build_context (Mapping[str, pyccc.FileReferenceBase]): dict mapping filenames to file references buffer (io.BytesIO): writable binary mode buffer
juraj-google-style
def remove_interceptor(self, name): for (index, interceptor) in enumerate(self.interceptors): matches = ((type(interceptor).__name__ == name) or (getattr(interceptor, 'name') == name)) if matches: self.interceptors.pop(index) return True return False
Removes a specific interceptor by name. Arguments: name (str): interceptor name to disable. Returns: bool: `True` if the interceptor was disabled, otherwise `False`.
codesearchnet
def deep_update(d, u): for k, v in u.items(): if isinstance(v, Mapping): d[k] = deep_update(d.get(k, {}), v) elif isinstance(v, list): existing_elements = d.get(k, []) d[k] = existing_elements + [ele for ele in v if ele not in existing_elements] else: d[k] = v return d
Deeply updates a dictionary. List values are concatenated. Args: d (dict): First dictionary which will be updated u (dict): Second dictionary use to extend the first one Returns: dict: The merge dictionary
juraj-google-style
def reset_score(student_id, course_id, item_id, clear_state=False, emit_signal=True): try: student_item = StudentItem.objects.get(student_id=student_id, course_id=course_id, item_id=item_id) except StudentItem.DoesNotExist: return try: score = Score.create_reset_score(student_item) if emit_signal: score_reset.send(sender=None, anonymous_user_id=student_id, course_id=course_id, item_id=item_id, created_at=score.created_at) if clear_state: for sub in student_item.submission_set.all(): sub.status = Submission.DELETED sub.save(update_fields=['status']) cache_key = Submission.get_cache_key(sub.uuid) cache.delete(cache_key) except DatabaseError: msg = u'Error occurred while reseting scores for item {item_id} in course {course_id} for student {student_id}'.format(item_id=item_id, course_id=course_id, student_id=student_id) logger.exception(msg) raise SubmissionInternalError(msg) else: msg = u'Score reset for item {item_id} in course {course_id} for student {student_id}'.format(item_id=item_id, course_id=course_id, student_id=student_id) logger.info(msg)
Reset scores for a specific student on a specific problem. Note: this does *not* delete `Score` models from the database, since these are immutable. It simply creates a new score with the "reset" flag set to True. Args: student_id (unicode): The ID of the student for whom to reset scores. course_id (unicode): The ID of the course containing the item to reset. item_id (unicode): The ID of the item for which to reset scores. clear_state (bool): If True, will appear to delete any submissions associated with the specified StudentItem Returns: None Raises: SubmissionInternalError: An unexpected error occurred while resetting scores.
codesearchnet
def _get_default_help_message(func, args, description=None, args_help=None): if description is None: description = "Argument parsing for %s" % func.__name__ args_help = args_help or {} for argument in [arg_name for arg_name in args if arg_name not in args_help]: args_help[argument] = "Help message for %s" % argument return (description, args_help)
Create a default description for the parser and help message for the agurments if they are missing. Args: func: the method we are creating a parser for args: the argument names of the method description: a potentially existing description created from the function docstring args_help: a dict {arg_name: help} with potentially missing arguments Returns: a tuple (arg_parse_description, complete_args_help)
juraj-google-style
def _force_close(self, file_length=None): if file_length is None: file_length = self._get_offset_from_gcs() + 1 self._send_data('', 0, file_length)
Close this buffer on file_length. Finalize this upload immediately on file_length. Contents that are still in memory will not be uploaded. This is a utility method that does not modify self. Args: file_length: file length. Must match what has been uploaded. If None, it will be queried from GCS.
juraj-google-style
def compress(d, output, fmt='gz', logger=None): if not logger: logger = log.get_logger('s3') if type(d) not in [list, tuple]: d = [d, ] d = [os.path.expanduser(_d) for _d in d] print_compress_info(d, output, compress, logger) if fmt.lower() == 'none': fmt = '' elif fmt.lower() not in ['gz', 'bz2']: logger.info('Compression option ("{}") is invalid.\nFalling back to uncompressed.'.format(fmt)) fmt = '' output = os.path.expanduser(output) tar = tarfile.open(output, 'w:{}'.format(fmt)) for obj in d: tar.add(obj) tar.close() return output
Creates a compressed/uncompressed tar file. Args: d: Can be one of three things: 1. the path to a single file, as a string 2. the path to a single directory, as a string 3. an iterable of file or directory paths output (str): Output file path. fmt: Compression method. Options are ``'gz'`` (gzip), ``'bz2'`` (bzip2) and ``'none'`` (uncompressed). Default is ``'gz'``.
juraj-google-style
def show(self, progress, msg=None): if (self.whole_tag.style.display == 'none'): self.whole_tag.style.display = 'block' if (isinstance(progress, int) or isinstance(progress, float)): percentage = progress else: percentage = self.__class__._compute_percentage(progress) self.tag.class_name = 'progress-bar' if (percentage < 100): self.tag.class_name += ' progress-bar-striped active' else: msg = 'Hotovo' self.tag.aria_valuemin = percentage self.tag.style.width = '{}%'.format(percentage) if msg: self.tag.text = msg
Show the progress bar and set it to `progress` tuple or value. Args: progress (tuple / int / float): Tuple ``(done / len(all))`` or the direct percentage value as int / float. msg (str, default None): Alternative background description.
codesearchnet
def related(self, *, exclude_self=False): manager = type(self)._default_manager queryset = manager.related_to(self) if exclude_self: queryset = queryset.exclude(id=self.id) return queryset
Get a QuerySet for all trigger log objects for the same connected model. Args: exclude_self (bool): Whether to exclude this log object from the result list
codesearchnet
def __init__(self, message, callback, color=''): super(ConsolePrompt, self).__init__() self.daemon = True self._message = message self._callback = callback self._color = color self._stop_event = threading.Event() self._answered = False
Initializes a ConsolePrompt. Args: message: A string to be presented to the user. callback: A function to be called with the response string. color: An ANSI color code, or the empty string.
juraj-google-style
def CreateSignatureScanner(cls, specification_store): scanner_object = pysigscan.scanner() for format_specification in specification_store.specifications: for signature in format_specification.signatures: pattern_offset = signature.offset if pattern_offset is None: signature_flags = pysigscan.signature_flags.NO_OFFSET elif pattern_offset < 0: pattern_offset *= -1 signature_flags = pysigscan.signature_flags.RELATIVE_FROM_END else: signature_flags = pysigscan.signature_flags.RELATIVE_FROM_START scanner_object.add_signature( signature.identifier, pattern_offset, signature.pattern, signature_flags) return scanner_object
Creates a signature scanner for format specifications with signatures. Args: specification_store (FormatSpecificationStore): format specifications with signatures. Returns: pysigscan.scanner: signature scanner.
juraj-google-style
def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs): return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model configuration. Returns: [`AlignConfig`]: An instance of a configuration object
github-repos
def str2dict_values(str_in): tmp_dict = str2dict(str_in) if (tmp_dict is None): return None return [tmp_dict[key] for key in sorted((k for k in tmp_dict))]
Extracts the values from a string that represents a dict and returns them sorted by key. Args: str_in (string) that contains python dict Returns: (list) with values or None if no valid dict was found Raises: -
codesearchnet
def to_zmat(self, buf=None, upper_triangle=True, implicit_index=True, float_format='{:.6f}'.format, overwrite=True, header=False): out = self.copy() if implicit_index: out = out.change_numbering(new_index=range(1, (len(self) + 1))) if (not upper_triangle): out = out._remove_upper_triangle() output = out.to_string(index=(not implicit_index), float_format=float_format, header=header) if (buf is not None): if overwrite: with open(buf, mode='w') as f: f.write(output) else: with open(buf, mode='x') as f: f.write(output) else: return output
Write zmat-file Args: buf (str): StringIO-like, optional buffer to write to implicit_index (bool): If implicit_index is set, the zmat indexing is changed to ``range(1, len(self) + 1)``. Using :meth:`~chemcoord.Zmat.change_numbering` Besides the index is omitted while writing which means, that the index is given implicitly by the row number. float_format (one-parameter function): Formatter function to apply to column’s elements if they are floats. The result of this function must be a unicode string. overwrite (bool): May overwrite existing files. Returns: formatted : string (or unicode, depending on data and options)
codesearchnet
def create_iam_role(self, account): try: iam = self.session.client('iam') trust = get_template('vpc_flow_logs_iam_role_trust.json').render() policy = get_template('vpc_flow_logs_role_policy.json').render() newrole = iam.create_role(Path='/', RoleName=self.role_name, AssumeRolePolicyDocument=trust)['Role']['Arn'] iam.put_role_policy(RoleName=self.role_name, PolicyName='VpcFlowPolicy', PolicyDocument=policy) self.log.debug('Created VPC Flow Logs role & policy for {}'.format(account.account_name)) auditlog(event='vpc_flow_logs.create_iam_role', actor=self.ns, data={'account': account.account_name, 'roleName': self.role_name, 'trustRelationship': trust, 'inlinePolicy': policy}) return newrole except Exception: self.log.exception('Failed creating the VPC Flow Logs role for {}.'.format(account))
Create a new IAM role. Returns the ARN of the newly created role Args: account (:obj:`Account`): Account where to create the IAM role Returns: `str`
codesearchnet
def load_obj(fn): position = [np.zeros(3, dtype=np.float32)] normal = [np.zeros(3, dtype=np.float32)] uv = [np.zeros(2, dtype=np.float32)] tuple2idx = OrderedDict() trinagle_indices = [] input_file = open(fn) if isinstance(fn, str) else fn for line in input_file: line = line.strip() if not line or line[0] == ' continue line = line.split(' ', 1) tag = line[0] if len(line) > 1: line = line[1] else: line = '' if tag == 'v': position.append(np.fromstring(line, sep=' ')) elif tag == 'vt': uv.append(np.fromstring(line, sep=' ')) elif tag == 'vn': normal.append(np.fromstring(line, sep=' ')) elif tag == 'f': output_face_indices = [] for chunk in line.split(): vt = _parse_vertex_tuple(chunk) if vt not in tuple2idx: tuple2idx[vt] = len(tuple2idx) output_face_indices.append(tuple2idx[vt]) for i in range(1, len(output_face_indices)-1): for vi in [0, i, i+1]: trinagle_indices.append(output_face_indices[vi]) outputs = {} outputs['face'] = np.int32(trinagle_indices) pos_idx, uv_idx, normal_idx = np.int32(list(tuple2idx)).T if np.any(pos_idx): outputs['position'] = _unify_rows(position)[pos_idx] if np.any(uv_idx): outputs['uv'] = _unify_rows(uv)[uv_idx] if np.any(normal_idx): outputs['normal'] = _unify_rows(normal)[normal_idx] return outputs
Load 3d mesh form .obj' file. Args: fn: Input file name or file-like object. Returns: dictionary with the following keys (some of which may be missing): position: np.float32, (n, 3) array, vertex positions uv: np.float32, (n, 2) array, vertex uv coordinates normal: np.float32, (n, 3) array, vertex uv normals face: np.int32, (k*3,) traingular face indices
juraj-google-style
def comparator(objective): if isinstance(objective, Minimum): return lambda l, r: l < r else: return lambda l, r: l > r
Higher order function creating a compare function for objectives. Args: objective (cipy.algorithms.core.Objective): The objective to create a compare for. Returns: callable: Function accepting two objectives to compare. Examples: >>> a = Minimum(0.1) >>> b = Minimum(0.2) >>> compare = comparator(a) >>> comparison = compare(a, b) # False
juraj-google-style
def highway_core_with_recurrent_dropout( hidden_size, num_layers, keep_prob=0.5, **kwargs): core = HighwayCore(hidden_size, num_layers, **kwargs) return RecurrentDropoutWrapper(core, keep_prob), core
Highway core with recurrent dropout. Args: hidden_size: (int) Hidden size dimensionality. num_layers: (int) Number of highway layers. keep_prob: the probability to keep an entry when applying dropout. **kwargs: Extra keyword arguments to pass to the highway core. Returns: A tuple (train_core, test_core) where train_core is a higway core with recurrent dropout enabled to be used for training and test_core is the same highway core without recurrent dropout.
juraj-google-style
def make_one_shot_iterator(self) -> Union[iterator_ops.Iterator, iterator_ops.OwnedIterator]: return self._make_one_shot_iterator()
Creates an iterator for elements of this dataset. Note: The returned iterator will be initialized automatically. A "one-shot" iterator does not currently support re-initialization. For that see `make_initializable_iterator`. Example: ```python # Building graph ... dataset = ... next_value = dataset.make_one_shot_iterator().get_next() # ... from within a session ... try: while True: value = sess.run(next_value) ... except tf.errors.OutOfRangeError: pass ``` Returns: An `tf.data.Iterator` for elements of this dataset.
github-repos
def compute_attr_metadata(self, own_attrs: list[Attribute], decorator: str) -> Sequence[Attribute]: assert decorator in _METADATA_KEYS, f'No metadata key for {decorator}' key = _METADATA_KEYS[decorator] attrs = self._get_attrs_from_mro(own_attrs, key) self.metadata[key] = attrs return attrs
Sets combined metadata based on inherited and own attrs. Args: own_attrs: The attrs defined explicitly in this class decorator: The fully qualified decorator name Returns: The list of combined attrs.
github-repos
def list_keyvaults(access_token, subscription_id, rgname): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourcegroups/', rgname, '/providers/Microsoft.KeyVault/vaults', '?api-version=', KEYVAULT_API]) return do_get_next(endpoint, access_token)
Lists key vaults in the named resource group. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. rgname (str): Azure resource group name. Returns: HTTP response. 200 OK.
codesearchnet
def dummy_inputs(self): if self.config.use_lang_emb and self.config.n_langs > 1: return {'input_ids': tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), 'langs': tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)} else: return {'input_ids': tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)}
Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs
github-repos
def shape_list(tensor: Union[tf.Tensor, np.ndarray]) -> list[int]: if isinstance(tensor, np.ndarray): return list(tensor.shape) dynamic = tf.shape(tensor) if tensor.shape == tf.TensorShape(None): return dynamic static = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(static)]
Deal with dynamic shape in tensorflow cleanly. Args: tensor (`tf.Tensor` or `np.ndarray`): The tensor we want the shape of. Returns: `List[int]`: The shape of the tensor as a list.
github-repos
def live(self): session = self._session url = '{}/live'.format(self._base_url) supported_params = frozenset(['filter[port]']) params = {k: v for (k, v) in iteritems(self._params) if (k in supported_params)} return session.live(url, self._datapoint_class, {'is_aggregate': self._is_aggregate}, params=params)
Get a live stream of timeseries readings. This returns an Iterable over a live stream of readings. Note that the result will need to be closed since the system can not tell when you'll be done with it. You can either call ``close`` on the endpoint when you're or use the context management facilities of the endpoint. .. code-block:: python # Fetch a sensor timeseries = sensor.timeseries() # ensure live endpoint closed with timeseries.live() as live: # Wait for 10 readings first10 = list(islice(live, 10)) Returns:
codesearchnet
def record_request_completion(self, created_time: float, request_id: str) -> None: if not _has_opentelemetry: return latency_ms = (time.time() - created_time) * 1000.0 try: self.request_latency_histogram.record(latency_ms) logger.debug(f'Recorded request completion for {request_id}: {latency_ms:.2f}ms') except Exception as e: logger.warning(f'Failed to record request completion metric: {e}')
Record metrics about a completed request. Args: created_time: The time the request was created request_id: The ID of the request
github-repos
def disqualified(self, num, natural=True, **kwargs): search_type = ('natural' if natural else 'corporate') baseuri = (self._BASE_URI + 'disqualified-officers/{}/{}'.format(search_type, num)) res = self.session.get(baseuri, params=kwargs) self.handle_http_error(res) return res
Search for disqualified officers by officer ID. Searches for natural disqualifications by default. Specify natural=False to search for corporate disqualifications. Args: num (str): Company number to search on. natural (Optional[bool]): Natural or corporate search kwargs (dict): additional keywords passed into requests.session.get *params* keyword.
codesearchnet
def _read_addr_resolve(self, length, htype): if (htype == 1): _byte = self._read_fileng(6) _addr = '-'.join(textwrap.wrap(_byte.hex(), 2)) else: _addr = self._read_fileng(length) return _addr
Resolve MAC address according to protocol. Positional arguments: * length -- int, hardware address length * htype -- int, hardware type Returns: * str -- MAC address
codesearchnet
def _has_extras(ctx): if (not ctx.index.entries): return False return ((ctx.data_offset > 8) and (ctx.data_offset > (ctx.signatures.offset_end + 8)))
Determine if a MAR file has an additional section block or not. It does this by looking at where file data starts in the file. If this starts immediately after the signature data, then no additional sections are present. Args: ctx (context): construct parsing context Returns: True if the MAR file has an additional section block False otherwise
codesearchnet
def resize(self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling=PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray: size = get_size_dict(size, default_to_square=False) if 'height' in size and 'width' in size: output_size = (size['height'], size['width']) elif 'longest_edge' in size: output_size = get_resize_output_image_size(image, size['longest_edge'], input_data_format) else: raise ValueError(f"Size must have 'height' and 'width' or 'longest_edge' as keys. Got {size.keys()}") return resize(image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs)
Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will have the size `(h, w)`. If `size` is of the form `{"longest_edge": s}`, the output image will have its longest edge of length `s` while keeping the aspect ratio of the original image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred.
github-repos
def with_wget(url_dict=None, target_file=None): def wget_decorator(cls): def download_impl(self): 'Download the selected version from the url_dict value.' t_file = (target_file if target_file else self.SRC_FILE) t_version = url_dict[self.version] Wget(t_version, t_file) @staticmethod def versions_impl(): 'Return a list of versions from the url_dict keys.' return list(url_dict.keys()) cls.versions = versions_impl cls.download = download_impl return cls return wget_decorator
Decorate a project class with wget-based version information. This adds two attributes to a project class: - A `versions` method that returns a list of available versions for this project. - A `repository` attribute that provides a repository string to download from later. We use the `git rev-list` subcommand to list available versions. Args: url_dict (dict): A dictionary that assigns a version to a download URL. target_file (str): An optional path where we should put the clone. If unspecified, we will use the `SRC_FILE` attribute of the decorated class.
codesearchnet
def _remove_hdxobject(self, objlist, obj, matchon='id', delete=False): if (objlist is None): return False if isinstance(obj, six.string_types): obj_id = obj elif (isinstance(obj, dict) or isinstance(obj, HDXObject)): obj_id = obj.get(matchon) else: raise HDXError('Type of object not a string, dict or T<=HDXObject') if (not obj_id): return False for (i, objdata) in enumerate(objlist): objid = objdata.get(matchon) if (objid and (objid == obj_id)): if delete: objlist[i].delete_from_hdx() del objlist[i] return True return False
Remove an HDX object from a list within the parent HDX object Args: objlist (List[Union[T <= HDXObject,Dict]]): list of HDX objects obj (Union[T <= HDXObject,Dict,str]): Either an id or hdx object metadata either from an HDX object or a dictionary matchon (str): Field to match on. Defaults to id. delete (bool): Whether to delete HDX object. Defaults to False. Returns: bool: True if object removed, False if not
codesearchnet
def put(self): return self.manager.put(id=self.id, name=self.name, description=self.description, whitelisted_container_task_types=self.whitelisted_container_task_types, whitelisted_executable_task_types=self.whitelisted_executable_task_types)
Updates this task whitelist on the saltant server. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated.
codesearchnet
def port_create_vlan(br, port, id, internal=False): interfaces = __salt__['network.interfaces']() if (not (0 <= id <= 4095)): return False elif (not bridge_exists(br)): return False elif ((not internal) and (port not in interfaces)): return False elif (port in port_list(br)): cmd = 'ovs-vsctl set port {0} tag={1}'.format(port, id) if internal: cmd += ' -- set interface {0} type=internal'.format(port) result = __salt__['cmd.run_all'](cmd) return _retcode_to_bool(result['retcode']) else: cmd = 'ovs-vsctl add-port {0} {1} tag={2}'.format(br, port, id) if internal: cmd += ' -- set interface {0} type=internal'.format(port) result = __salt__['cmd.run_all'](cmd) return _retcode_to_bool(result['retcode'])
Isolate VM traffic using VLANs. Args: br: A string - bridge name. port: A string - port name. id: An integer in the valid range 0 to 4095 (inclusive), name of VLAN. internal: A boolean to create an internal interface if one does not exist. Returns: True on success, else False. .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' openvswitch.port_create_vlan br0 tap0 100
codesearchnet
def configs(self, filters=None): url = self._url('/configs') params = {} if filters: params['filters'] = utils.convert_filters(filters) return self._result(self._get(url, params=params), True)
List configs Args: filters (dict): A map of filters to process on the configs list. Available filters: ``names`` Returns (list): A list of configs
juraj-google-style
def _GenerateNotices(self): items = [] for e in self._notices: d = e.GetDictToFormat() if ('url' in d.keys()): d['url'] = ('<a href="%(url)s">%(url)s</a>' % d) items.append(('<li class="notice">%s</li>' % e.FormatProblem(d).replace('\n', '<br>'))) if items: return ('<h2>Notices:</h2>\n<ul>%s</ul>\n' % '\n'.join(items)) else: return ''
Generate a summary of any notices. Returns: The generated HTML as a string.
codesearchnet
def __getDecision(self, result, multiple=False, **values): values = self.__toString(values) __valueKeyWithHeaderIndex = self.__valueKeyWithHeaderIndex(values) errors = self.__checkDecisionParameters(result, **values) if errors: view.Tli.showErrors('ParametersError', errors) machingData = {} for line in self.decisions: match = True for index in __valueKeyWithHeaderIndex: if line[index] != __valueKeyWithHeaderIndex[index]: if line[index] != self.__wildcardSymbol: match = False break if match: if multiple: for header in result: if header not in machingData: machingData[header] = [line[self.header.index(header)]] else: machingData[header].append(line[self.header.index(header)]) else: for header in result: machingData[header] = line[self.header.index(header)] return machingData if multiple: if machingData: return machingData return dict((key, None) for key in result)
The main method for decision picking. Args: result (array of str): What values you want to get in return array. multiple (bolean, optional): Do you want multiple result if it finds many maching decisions. **values (dict): What should finder look for, (headerString : value). Returns: Maped result values with finded elements in row/row.
juraj-google-style
def __init__(self, speaker, audio_format, key, lang="ru-RU", **kwargs): self.__params = { "speaker": speaker, "format": audio_format, "key": key, "lang": lang, } self.__params.update(kwargs) self._data = None
Class for generate of speech. Args: speaker: Speaker. audio_format: Audio file format. key: API-key for Yandex speech kit. lang (optional): Language. Defaults to "ru-RU". emotion (optional): The color of the voice. Defaults to "normal". speed (optional): Speech tempo. Defaults to 1.0.
juraj-google-style
def get_registered_object(name, custom_objects=None, module_objects=None): custom_objects_scope_dict = global_state.get_global_attribute('custom_objects_scope_dict', {}) if name in custom_objects_scope_dict: return custom_objects_scope_dict[name] elif name in GLOBAL_CUSTOM_OBJECTS: return GLOBAL_CUSTOM_OBJECTS[name] elif custom_objects and name in custom_objects: return custom_objects[name] elif module_objects and name in module_objects: return module_objects[name] return None
Returns the class associated with `name` if it is registered with Keras. This function is part of the Keras serialization and deserialization framework. It maps strings to the objects associated with them for serialization/deserialization. Example: ```python def from_config(cls, config, custom_objects=None): if 'my_custom_object_name' in config: config['hidden_cls'] = tf.keras.saving.get_registered_object( config['my_custom_object_name'], custom_objects=custom_objects) ``` Args: name: The name to look up. custom_objects: A dictionary of custom objects to look the name up in. Generally, custom_objects is provided by the user. module_objects: A dictionary of custom objects to look the name up in. Generally, module_objects is provided by midlevel library implementers. Returns: An instantiable class associated with `name`, or `None` if no such class exists.
github-repos
def _grouper(iterable, n, fillvalue=0): args = [iter(iterable)] * n return zip_longest(fillvalue=fillvalue, *args)
Collect data into fixed-length chunks or blocks. Args: n (int): The size of the chunk. fillvalue (int): The fill value. Returns: iterator: An iterator over the chunks.
juraj-google-style
def nsarg_completions( completion_text: str, entity_types: list, bel_spec: BELSpec, namespace: str, species_id: str, bel_fmt: str, size: int, ): minimal_nsarg_completion_len = 1 species = [species_id] namespaces = [namespace] replace_list = [] if len(completion_text) >= minimal_nsarg_completion_len: url = f'{config["bel_api"]["servers"]["api_url"]}/terms/completions/{url_path_param_quoting(completion_text)}' params = { "size": size, "entity_types": entity_types, "namespaces": namespaces, "species": species, } r = get_url(url, params=params) if r.status_code == 200: ns_completions = r.json() else: log.error(f"Status code of {r.status_code} for {url}") ns_completions = {} for complete in ns_completions.get("completions", []): replace_list.append( { "replacement": complete["id"], "label": f"{complete['id']} ({complete['label']})", "highlight": complete["highlight"][-1], "type": "NSArg", } ) for entity_type in entity_types: default_namespace = bel_spec["namespaces"].get(entity_type, []) if default_namespace: for obj in default_namespace["info"]: replacement = None if bel_fmt == "long" and re.match( completion_text, obj["name"], re.IGNORECASE ): replacement = obj["name"] elif bel_fmt in ["short", "medium"] and re.match( completion_text, obj["abbreviation"], re.IGNORECASE ): replacement = obj["abbreviation"] if replacement: highlight = replacement.replace( completion_text, f"<em>{completion_text}</em>" ) replace_list.insert( 0, { "replacement": replacement, "label": replacement, "highlight": highlight, "type": "NSArg", }, ) return replace_list[:size]
Namespace completions Args: completion_text entity_types: used to filter namespace search results bel_spec: used to search default namespaces namespace: used to filter namespace search results species_id: used to filter namespace search results bel_fmt: used to select full name or abbrev for default namespaces size: how many completions to return Results: list of replacement text objects
juraj-google-style
def setHolidayDates(self, cmd_dict=None, password="00000000"): result = False self.setContext("setHolidayDates") if not cmd_dict: cmd_dict = self.m_holiday_date_params try: if not self.request(False): self.writeCmdMsg("Bad read CRC on setting") else: if not self.serialCmdPwdAuth(password): self.writeCmdMsg("Password failure") else: req_table = "" req_table += binascii.hexlify(str(cmd_dict["Holiday_1_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_1_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_2_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_2_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_3_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_3_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_4_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_4_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_5_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_5_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_6_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_6_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_7_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_7_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_8_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_8_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_9_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_9_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_10_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_10_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_11_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_11_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_12_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_12_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_13_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_13_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_14_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_14_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_15_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_15_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_16_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_16_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_17_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_17_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_18_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_18_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_19_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_19_Day"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_20_Month"]).zfill(2)) req_table += binascii.hexlify(str(cmd_dict["Holiday_20_Day"]).zfill(2)) req_str = "015731023030423028" + req_table + "2903" req_str += self.calc_crc16(req_str[2:].decode("hex")) self.m_serial_port.write(req_str.decode("hex")) if self.m_serial_port.getResponse(self.getContext()).encode("hex") == "06": self.writeCmdMsg("Success(setHolidayDates: 06 returned.") result = True self.serialPostEnd() except: ekm_log(traceback.format_exc(sys.exc_info())) self.setContext("") return result
Serial call to set holiday list. If a buffer dictionary is not supplied, the method will use the class object buffer populated with assignHolidayDate. Args: cmd_dict (dict): Optional dictionary of holidays. password (str): Optional password. Returns: bool: True on completion.
juraj-google-style
def compare(expr, value, regex_expr=False): if expr == value: return True negate = False if isinstance(expr, str): negate = expr.startswith(NEGATE) expr = strip_negate(expr) if negate else expr try: test(expr, value, regex_expr=regex_expr) except Exception as err: if negate: return True else: raise err return True
Compares an string or regular expression againast a given value. Arguments: expr (str|regex): string or regular expression value to compare. value (str): value to compare against to. regex_expr (bool, optional): enables string based regex matching. Raises: AssertionError: in case of assertion error. Returns: bool
juraj-google-style
def get_db_row(db, start, size): type_ = snap7.snap7types.wordlen_to_ctypes[snap7.snap7types.S7WLByte] data = client.db_read(db, start, type_, size) return data
Here you see and example of readying out a part of a DB Args: db (int): The db to use start (int): The index of where to start in db data size (int): The size of the db data to read
codesearchnet
def _InternalUnpackAny(msg): type_url = msg.type_url db = symbol_database.Default() if not type_url: return None type_name = type_url.split("/")[-1] descriptor = db.pool.FindMessageTypeByName(type_name) if descriptor is None: return None message_class = db.GetPrototype(descriptor) message = message_class() message.ParseFromString(msg.value) return message
Unpacks Any message and returns the unpacked message. This internal method is differnt from public Any Unpack method which takes the target message as argument. _InternalUnpackAny method does not have target message type and need to find the message type in descriptor pool. Args: msg: An Any message to be unpacked. Returns: The unpacked message.
juraj-google-style
def load_morfessor_model(lang="en", version="2"): src_dir = "morph{}".format(version) p = locate_resource(src_dir, lang) file_handler = _open(p) tmp_file_ = NamedTemporaryFile(delete=False) tmp_file_.write(file_handler.read()) tmp_file_.close() io = morfessor.MorfessorIO() model = io.read_any_model(tmp_file_.name) os.remove(tmp_file_.name) return model
Return a morfessor model for `lang` and of version `version` Args: lang (string): language code. version (string): version of the parameters to be used.
juraj-google-style
def write_file(self, file_name, vasp4_compatible=False): def _print_fortran_float(f): '\n Fortran codes print floats with a leading zero in scientific\n notation. When writing CHGCAR files, we adopt this convention\n to ensure written CHGCAR files are byte-to-byte identical to\n their input files as far as possible.\n :param f: float\n :return: str\n ' s = '{:.10E}'.format(f) if (f >= 0): return (((('0.' + s[0]) + s[2:12]) + 'E') + '{:+03}'.format((int(s[13:]) + 1))) else: return (((('-.' + s[1]) + s[3:13]) + 'E') + '{:+03}'.format((int(s[14:]) + 1))) with zopen(file_name, 'wt') as f: p = Poscar(self.structure) comment = getattr(self, 'name', p.comment) lines = (comment + '\n') lines += ' 1.00000000000000\n' latt = self.structure.lattice.matrix lines += (' %12.6f%12.6f%12.6f\n' % tuple(latt[(0, :)])) lines += (' %12.6f%12.6f%12.6f\n' % tuple(latt[(1, :)])) lines += (' %12.6f%12.6f%12.6f\n' % tuple(latt[(2, :)])) if (not vasp4_compatible): lines += (''.join([('%5s' % s) for s in p.site_symbols]) + '\n') lines += (''.join([('%6d' % x) for x in p.natoms]) + '\n') lines += 'Direct\n' for site in self.structure: lines += ('%10.6f%10.6f%10.6f\n' % tuple(site.frac_coords)) lines += ' \n' f.write(lines) a = self.dim def write_spin(data_type): lines = [] count = 0 f.write(' {} {} {}\n'.format(a[0], a[1], a[2])) for (k, j, i) in itertools.product(list(range(a[2])), list(range(a[1])), list(range(a[0]))): lines.append(_print_fortran_float(self.data[data_type][(i, j, k)])) count += 1 if ((count % 5) == 0): f.write(((' ' + ''.join(lines)) + '\n')) lines = [] else: lines.append(' ') f.write(((' ' + ''.join(lines)) + ' \n')) f.write(''.join(self.data_aug.get(data_type, []))) write_spin('total') if (self.is_spin_polarized and self.is_soc): write_spin('diff_x') write_spin('diff_y') write_spin('diff_z') elif self.is_spin_polarized: write_spin('diff')
Write the VolumetricData object to a vasp compatible file. Args: file_name (str): Path to a file vasp4_compatible (bool): True if the format is vasp4 compatible
codesearchnet
def substitute_symbol_table(table, version, max_id): if (not table.table_type.is_shared): raise ValueError('Symbol table to substitute from must be a shared table') if (version <= 0): raise ValueError(('Version must be grater than or equal to 1: %s' % version)) if (max_id < 0): raise ValueError(('Max ID must be zero or positive: %s' % max_id)) if (max_id <= table.max_id): symbols = (token.text for token in islice(table, max_id)) else: symbols = chain((token.text for token in table), repeat(None, (max_id - table.max_id))) return SymbolTable(table_type=SHARED_TABLE_TYPE, symbols=symbols, name=table.name, version=version, is_substitute=True)
Substitutes a given shared symbol table for another version. * If the given table has **more** symbols than the requested substitute, then the generated symbol table will be a subset of the given table. * If the given table has **less** symbols than the requested substitute, then the generated symbol table will have symbols with unknown text generated for the difference. Args: table (SymbolTable): The shared table to derive from. version (int): The version to target. max_id (int): The maximum ID allocated by the substitute, must be ``>= 0``. Returns: SymbolTable: The synthesized table.
codesearchnet
def add_entry(self, path_object): if ((not is_root()) and (not (self.st_mode & PERM_WRITE)) and (not self.filesystem.is_windows_fs)): exception = (IOError if IS_PY2 else OSError) raise exception(errno.EACCES, 'Permission Denied', self.path) if (path_object.name in self.contents): self.filesystem.raise_os_error(errno.EEXIST, self.path) self.contents[path_object.name] = path_object path_object.parent_dir = self self.st_nlink += 1 path_object.st_nlink += 1 path_object.st_dev = self.st_dev if (path_object.st_nlink == 1): self.filesystem.change_disk_usage(path_object.size, path_object.name, self.st_dev)
Adds a child FakeFile to this directory. Args: path_object: FakeFile instance to add as a child of this directory. Raises: OSError: if the directory has no write permission (Posix only) OSError: if the file or directory to be added already exists
codesearchnet
def nested_update(d, u): for (k, v) in list(u.items()): if isinstance(v, collections.Mapping): r = nested_update(d.get(k, {}), v) d[k] = r else: d[k] = u[k] return d
Merge two nested dicts. Nested dicts are sometimes used for representing various recursive structures. When updating such a structure, it may be convenient to present the updated data as a corresponding recursive structure. This function will then apply the update. Args: d: dict dict that will be updated in-place. May or may not contain nested dicts. u: dict dict with contents that will be merged into ``d``. May or may not contain nested dicts.
codesearchnet
def __init__( self, cipher_mode=None, initialization_vector=None, key=None, **kwargs): if not key: raise ValueError('Missing key.') cipher_mode = self.ENCRYPTION_MODES.get(cipher_mode, None) if cipher_mode is None: raise ValueError('Unsupported cipher mode: {0!s}'.format(cipher_mode)) if cipher_mode != AES.MODE_ECB and not initialization_vector: raise ValueError('Missing initialization vector.') super(AESDecrypter, self).__init__() if cipher_mode == AES.MODE_ECB: self._aes_cipher = AES.new(key, mode=cipher_mode) else: self._aes_cipher = AES.new( key, IV=initialization_vector, mode=cipher_mode)
Initializes a decrypter. Args: cipher_mode (Optional[str]): cipher mode. initialization_vector (Optional[bytes]): initialization vector. key (Optional[bytes]): key. kwargs (dict): keyword arguments depending on the decrypter. Raises: ValueError: when key is not set, block cipher mode is not supported, or initialization_vector is required and not set.
juraj-google-style
def _format_ase2clusgeo(obj, all_atomtypes=None): totalAN = len(obj) if (all_atomtypes is not None): atomtype_set = set(all_atomtypes) else: atomtype_set = set(obj.get_atomic_numbers()) atomtype_lst = np.sort(list(atomtype_set)) n_atoms_per_type_lst = [] pos_lst = [] for atomtype in atomtype_lst: condition = (obj.get_atomic_numbers() == atomtype) pos_onetype = obj.get_positions()[condition] n_onetype = pos_onetype.shape[0] pos_lst.append(pos_onetype) n_atoms_per_type_lst.append(n_onetype) typeNs = n_atoms_per_type_lst Ntypes = len(n_atoms_per_type_lst) atomtype_lst Apos = np.concatenate(pos_lst).ravel() return (Apos, typeNs, Ntypes, atomtype_lst, totalAN)
Takes an ase Atoms object and returns numpy arrays and integers which are read by the internal clusgeo. Apos is currently a flattened out numpy array Args: obj(): all_atomtypes(): sort():
codesearchnet
def __init__(self, *others): selectors = list() heads = collections.defaultdict(set) for other in others: if isinstance(other, MultiFieldSelector): for head, tail in other.heads.iteritems(): heads[head].add(tail) elif isinstance(other, FieldSelector): selectors.append(other) else: selectors.append(self.FieldSelector(other)) for selector in selectors: chain = selector.selectors if chain: head = chain[0] tail = self.FieldSelector(chain[1:]) if len(chain) > 1 else all heads[head].add(tail) else: heads[None].add(all) self.heads = dict( (head, all if all in tail else MultiFieldSelector(*tail)) for head, tail in heads.iteritems() ) if None not in heads or heads[None] is not all else {None: all} head_types = set(type(x) for x in self.heads) self.has_int = int in head_types or long in head_types self.has_string = any(issubclass(x, basestring) for x in head_types) self.has_none = types.NoneType in head_types self.complete = self.has_none and self.heads[None] is all if self.has_none and (self.has_int or self.has_string): raise ValueError( "MultiFieldSelector cannot yet specify a list and a hash/" "object at the same level: %r" % self.heads.keys() )
Returns a MultiFieldSelector based on combining the passed-in FieldSelector and MultiFieldSelector objects. args: ``*others=``\ *FieldSelector*\ \|\ *iterable* Each argument is interpreted as either a FieldSelector, or a FieldSelector constructor.
juraj-google-style
def modify_module(channel, module_name, module_state): gui = ui_embed.UI(channel, '{} updated'.format(module_name), '{} is now {}'.format(module_name, ('activated' if module_state else 'deactivated')), modulename=modulename) return gui
Creates an embed UI containing the module modified message Args: channel (discord.Channel): The Discord channel to bind the embed to module_name (str): The name of the module that was updated module_state (bool): The current state of the module Returns: embed: The created embed
codesearchnet
def to_sigproc_keyword(keyword, value=None): keyword = bytes(keyword) if value is None: return np.int32(len(keyword)).tostring() + keyword else: dtype = header_keyword_types[keyword] dtype_to_type = {b'<l' : np.int32, b'str' : str, b'<d' : np.float64, b'angle' : to_sigproc_angle} value_dtype = dtype_to_type[dtype] if value_dtype is str: return np.int32(len(keyword)).tostring() + keyword + np.int32(len(value)).tostring() + value else: return np.int32(len(keyword)).tostring() + keyword + value_dtype(value).tostring()
Generate a serialized string for a sigproc keyword:value pair If value=None, just the keyword will be written with no payload. Data type is inferred by keyword name (via a lookup table) Args: keyword (str): Keyword to write value (None, float, str, double or angle): value to write to file Returns: value_str (str): serialized string to write to file.
juraj-google-style
def run(self, blocking: bool=True): if not self._run_control_loop: err = ("`run` called, but not using the internal control loop. Use" " `start` instead") raise RuntimeError(err) self._setup() self._heartbeat_reciever.start() if blocking: return self.loop.start() else: self._run_thread = _threading.Thread(target=self.loop.start, daemon=True) self._thread.run()
Run the internal control loop. Args: blocking (bool): Defaults to `True`. If set to `False`, will intialize a thread to run the control loop. Raises: RuntimeError: If called and not using the internal control loop via `self._run_control_loop`, set in the intializer of the class
juraj-google-style
def has_cwd(state, dir, incorrect_msg='Your current working directory should be `{{dir}}`. Use `cd {{dir}}` to navigate there.'): expr = "[[ $PWD == '{}' ]]".format(dir) _msg = state.build_message(incorrect_msg, fmt_kwargs={'dir': dir}) has_expr_exit_code(state, expr, output='0', incorrect_msg=_msg) return state
Check whether the student is in the expected directory. This check is typically used before using ``has_expr_output()`` to make sure the student didn't navigate somewhere else. Args: state: State instance describing student and solution code. Can be omitted if used with ``Ex()``. dir: Directory that the student should be in. Always use the absolute path. incorrect_msg: If specified, this overrides the automatically generated message in case the student is not in the expected directory. :Example: If you want to be sure that the student is in ``/home/repl/my_dir``: :: Ex().has_cwd('/home/repl/my_dir')
codesearchnet
def call_for_each_replica(self, fn, args=(), kwargs=None): distribute_lib._require_cross_replica_or_default_context_extended(self) if kwargs is None: kwargs = {} map_fn = functools.partial(dtensor_util.convert_inputs_to_dtensor, mesh=self._mesh) d_args = nest.map_structure(map_fn, args) d_kwargs = nest.map_structure(map_fn, kwargs) with self._container_strategy().scope(): with dtensor_util.DTensorReplicaContext(self._container_strategy()): dtensor_result = fn(*d_args, **d_kwargs) return nest.map_structure(dtensor_util.DTensorDistributedValue, dtensor_result)
Run `fn` once per replica. This is a method that expected by the strategy base class in its `run()`. Args: fn: function to run (will be run once per replica). args: Tuple or list with positional arguments for `fn`. kwargs: Dict with keyword arguments for `fn`. Returns: Merged return value of `fn` across all replicas.
github-repos
def torque_on(self): data = [] data.append(10) data.append(self.servoid) data.append(RAM_WRITE_REQ) data.append(TORQUE_CONTROL_RAM) data.append(1) data.append(96) send_data(data)
Enable the torques of Herkulex In this mode, position control and velocity control will work. Args: none
codesearchnet
def dump_session_params(path): var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) var.extend(tf.get_collection(tf.GraphKeys.MODEL_VARIABLES)) assert len(set(var)) == len(var), "TRAINABLE and MODEL variables have duplication!" gvars = set([k.name for k in tf.global_variables()]) var = [v for v in var if v.name in gvars] result = {} for v in var: result[v.name] = v.eval() save_chkpt_vars(result, path)
Dump value of all TRAINABLE + MODEL variables to a dict, and save as npz format (loadable by :func:`sessinit.get_model_loader`). Args: path(str): the file name to save the parameters. Must ends with npz.
juraj-google-style
def create(self, resource): return self.service.create( resource, self.url_prefix, self.auth, self.session, self.session_send_opts)
Create the given resource. Args: resource (intern.resource.boss.BossResource): Create a data model object with attributes matching those of the resource. Returns: (intern.resource.boss.BossResource): Returns resource of type requested on success. Raises: requests.HTTPError on failure.
juraj-google-style
def print_info(self, buf=None, format_=FileFormat.yaml, skip_attributes=None, include_release=False): data = self.validated_data().copy() data.pop("config", None) if self.config: if isinstance(self, Package): config_dict = self.data.get("config") else: config_dict = self.parent.data.get("config") data["config"] = config_dict if not include_release: skip_attributes = list(skip_attributes or []) + list(package_release_keys) buf = buf or sys.stdout dump_package_data(data, buf=buf, format_=format_, skip_attributes=skip_attributes)
Print the contents of the package. Args: buf (file-like object): Stream to write to. format_ (`FileFormat`): Format to write in. skip_attributes (list of str): List of attributes to not print. include_release (bool): If True, include release-related attributes, such as 'timestamp' and 'changelog'
juraj-google-style
def testBasic(self, count, batch_size, drop_remainder, num_parallel_calls): components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) def _map_fn(x, y, z): return (math_ops.square(x), math_ops.square(y), math_ops.square(z)) dataset = dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn).repeat(count).batch(batch_size, drop_remainder, num_parallel_calls) get_next = self.getNext(dataset) if drop_remainder: dim0 = batch_size else: dim0 = None self.assertEqual([ts.as_list() for ts in nest.flatten(dataset_ops.get_legacy_output_shapes(dataset))], [[dim0] + list(c.shape[1:]) for c in components]) num_full_batches = count * 7 for i in range(num_full_batches): result = self.evaluate(get_next()) for component, result_component in zip(components, result): for j in range(batch_size): self.assertAllEqual(component[(i * batch_size + j) % 7] ** 2, result_component[j]) if not drop_remainder and count * 7 % batch_size > 0: result = self.evaluate(get_next()) for component, result_component in zip(components, result): for j in range(count * 7 % batch_size): self.assertAllEqual(component[(num_full_batches * batch_size + j) % 7] ** 2, result_component[j]) with self.assertRaises(errors.OutOfRangeError): result = self.evaluate(get_next())
Tests the batch dataset logic for various input configurations. Args: count: the number of input elements batch_size: the batch size drop_remainder: whether a smaller batch size should be produced if batch size does not divide number of inputs evenly num_parallel_calls: the number batches to process asynchronously in parallel
github-repos
def process_openxml_file(filename: str, print_good: bool, delete_if_bad: bool) -> None: print_bad = not print_good try: file_good = is_openxml_good(filename) file_bad = not file_good if (print_good and file_good) or (print_bad and file_bad): print(filename) if delete_if_bad and file_bad: log.warning("Deleting: {}", filename) os.remove(filename) except Exception as e: log.critical("Uncaught error in subprocess: {!r}\n{}", e, traceback.format_exc()) raise
Prints the filename of, or deletes, an OpenXML file depending on whether it is corrupt or not. Args: filename: filename to check print_good: if ``True``, then prints the filename if the file appears good. delete_if_bad: if ``True``, then deletes the file if the file appears corrupt.
juraj-google-style
def ensure_tensor_on_device(self, **inputs): return self._ensure_tensor_on_device(inputs, self.device)
Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored): The tensors to place on `self.device`. Recursive on lists **only**. Return: `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device.
github-repos
def insert(self, **fields): if self.conflict_target or self.conflict_action: compiler = self._build_insert_compiler([fields]) rows = compiler.execute_sql(return_id=True) pk_field_name = self.model._meta.pk.name return rows[0][pk_field_name] return super().create(**fields).pk
Creates a new record in the database. This allows specifying custom conflict behavior using .on_conflict(). If no special behavior was specified, this uses the normal Django create(..) Arguments: fields: The fields of the row to create. Returns: The primary key of the record that was created.
juraj-google-style
def find_next(self, *strings, **kwargs): start = kwargs.pop('start', None) keys_only = kwargs.pop('keys_only', False) staht = (start if (start is not None) else self.cursor) for (start, stop) in [(staht, len(self)), (0, staht)]: for i in range(start, stop): for string in strings: if (string in self[i]): tup = (i, self[i]) self.cursor = (i + 1) if keys_only: return i return tup
From the editor's current cursor position find the next instance of the given string. Args: strings (iterable): String or strings to search for Returns: tup (tuple): Tuple of cursor position and line or None if not found Note: This function cycles the entire editor (i.e. cursor to length of editor to zero and back to cursor position).
codesearchnet
def get_qubit_los(self, user_lo_config): try: _q_los = self.default_qubit_los.copy() except KeyError: raise PulseError('Qubit default frequencies not exist.') for channel, lo_freq in user_lo_config.qubit_lo_dict().items(): _q_los[channel.index] = lo_freq if _q_los == self.default_qubit_los: return None return _q_los
Embed default qubit LO frequencies from backend and format them to list object. If configured lo frequency is the same as default, this method returns `None`. Args: user_lo_config (LoConfig): A dictionary of LOs to format. Returns: list: A list of qubit LOs. Raises: PulseError: when LO frequencies are missing.
juraj-google-style
def GetSysFeeAmountByHeight(self, height): hash = self.GetBlockHash(height) return self.GetSysFeeAmount(hash)
Get the system fee for the specified block. Args: height (int): block height. Returns: int:
codesearchnet
def __init__(self, orig_image, dpi, save_image): self._shreds = None self.orig_img = orig_image self.save_image = save_image self._fg_mask = None self._shreds = None if dpi is None: self.res_x, self.res_y = self._guess_dpi() else: self.res_x, self.res_y = dpi
Initializes a Sheet instance. Args: orig_image: cv.Mat instance with the original sheet image. dpi: optional (x resolution, y resolution) tuple or None. If set to None, will try to guess dpi. save_image: A callback to save debug images with args (name, img)
juraj-google-style
def getindex(self, child, recursive=True, ignore=True): for (i, c) in enumerate(self.data): if (c is child): return i if recursive: for (i, c) in enumerate(self.data): if (ignore is True): try: if (not c.auth): continue except AttributeError: pass elif ignore: doignore = False for e in ignore: if (e is True): try: if (not c.auth): doignore = True break except AttributeError: pass elif ((e == c.__class__) or issubclass(c.__class__, e)): doignore = True break if doignore: continue if isinstance(c, AbstractElement): j = c.getindex(child, recursive) if (j != (- 1)): return i return (- 1)
Get the index at which an element occurs, recursive by default! Returns: int
codesearchnet
def ParseContactRow(self, parser_mediator, query, row, **unused_kwargs): query_hash = hash(query) event_data = TangoAndroidContactEventData() first_name = self._GetRowValue(query_hash, row, 'first_name') try: decoded_text = base64_decode(first_name) event_data.first_name = codecs.decode(decoded_text, 'utf-8') except ValueError: event_data.first_name = first_name parser_mediator.ProduceExtractionWarning( 'unable to parse first name: {0:s}'.format(first_name)) last_name = self._GetRowValue(query_hash, row, 'last_name') try: decoded_text = base64_decode(last_name) event_data.last_name = codecs.decode(decoded_text, 'utf-8') except ValueError: event_data.last_name = last_name parser_mediator.ProduceExtractionWarning( 'unable to parse last name: {0:s}'.format(last_name)) event_data.birthday = self._GetRowValue(query_hash, row, 'birthday') event_data.gender = self._GetRowValue(query_hash, row, 'gender') status = self._GetRowValue(query_hash, row, 'status') try: decoded_text = base64_decode(status) event_data.status = codecs.decode(decoded_text, 'utf-8') except ValueError: event_data.status = status parser_mediator.ProduceExtractionWarning( 'unable to parse status: {0:s}'.format(status)) event_data.distance = self._GetRowValue(query_hash, row, 'distance') is_friend = self._GetRowValue(query_hash, row, 'friend') event_data.is_friend = False if is_friend: event_data.is_friend = True event_data.friend_request_type = self._GetRowValue( query_hash, row, 'friend_request_type') friend_request_message = self._GetRowValue( query_hash, row, 'friend_request_message') try: decoded_text = base64_decode(friend_request_message) event_data.friend_request_message = codecs.decode(decoded_text, 'utf-8') except ValueError: event_data.friend_request_message = friend_request_message parser_mediator.ProduceExtractionWarning( 'unable to parse status: {0:s}'.format(friend_request_message)) timestamp = self._GetRowValue(query_hash, row, 'last_active_time') if timestamp: date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_ACTIVE) parser_mediator.ProduceEventWithEventData(event, event_data) timestamp = self._GetRowValue(query_hash, row, 'last_access_time') if timestamp: date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_ACCESS) parser_mediator.ProduceEventWithEventData(event, event_data) timestamp = self._GetRowValue(query_hash, row, 'friend_request_time') if timestamp: date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_SENT) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a contact row from the database. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row resulting from query.
juraj-google-style
def _SetupValuesForDevice(self, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, dtype, use_gpu, op_name): x1 = self._CreateNumpyTensor(tensor_in_sizes) x2 = self._CreateNumpyTensor(filter_in_sizes) with test_util.device(use_gpu): t1 = constant_op.constant(x1, shape=tensor_in_sizes, dtype=dtype) t2 = constant_op.constant(x2, shape=filter_in_sizes, dtype=dtype) strides = [1] + strides + [1] dilations = [1] + dilations + [1] if isinstance(padding, (list, tuple)): padding = [(0, 0)] + padding + [(0, 0)] if data_format == 'NCHW': t1 = test_util.NHWCToNCHW(t1) strides = test_util.NHWCToNCHW(strides) dilations = test_util.NHWCToNCHW(dilations) if isinstance(padding, (list, tuple)): padding = test_util.NHWCToNCHW(padding) if op_name == 'Conv2D': conv = nn_ops.conv2d(t1, t2, dilations=dilations, strides=strides, padding=padding, data_format=data_format) elif op_name == 'Conv': conv_format = 'CHANNELS_LAST' if data_format == 'NHWC' else 'CHANNELS_FIRST' conv_padding, explicit_paddings = nn_ops.convert_padding(padding) conv = gen_nn_ops.conv(t1, t2, strides=strides, padding=conv_padding, explicit_paddings=explicit_paddings, data_format=conv_format, dilations=dilations) else: raise ValueError('Invalid op name: %s' % op_name) self.assertEqual(conv.dtype, dtype) if data_format == 'NCHW': conv = test_util.NCHWToNHWC(conv) return conv
Verifies the output values of the convolution function. Args: tensor_in_sizes: Input tensor dimensions in [batch, input_rows, input_cols, input_depth]. filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols, input_depth, output_depth]. dilations: Dilated rate: [col_dilation, row_dilation] strides: Stride: [col_stride, row_stride] padding: Padding type. data_format: Format of the data tensors. dtype: Data type for inputs and outputs. use_gpu: True if the operations should be run on GPU op_name: Name of the op to be tested Returns: Symbolic tensor value that can be used to execute the computation
github-repos
def run_inference(self, batch: Sequence[ExampleT], model: ModelT, inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionT]: while self.throttler.throttle_request(time.time() * _MILLISECOND_TO_SECOND): self.logger.info('Delaying request for %d seconds due to previous failures', self.throttle_delay_secs) time.sleep(self.throttle_delay_secs) self.throttled_secs.inc(self.throttle_delay_secs) try: req_time = time.time() predictions = self.request(batch, model, inference_args) self.throttler.successful_request(req_time * _MILLISECOND_TO_SECOND) return predictions except Exception as e: self.logger.error('exception raised as part of request, got %s', e) raise
Runs inferences on a batch of examples. Calls a remote model for predictions and will retry if a retryable exception is raised. Args: batch: A sequence of examples or features. model: The model used to make inferences. inference_args: Extra arguments for models whose inference call requires extra parameters. Returns: An Iterable of Predictions.
github-repos
def version(msg): tc = typecode(msg) if tc != 31: raise RuntimeError("%s: Not a status operation message, expecting TC = 31" % msg) msgbin = common.hex2bin(msg) version = common.bin2int(msgbin[72:75]) return version
ADS-B Version Args: msg (string): 28 bytes hexadecimal message string, TC = 31 Returns: int: version number
juraj-google-style
def ConfigureLogging( debug_output=False, filename=None, mode='w', quiet_mode=False): for handler in logging.root.handlers: logging.root.removeHandler(handler) logger = logging.getLogger() if filename and filename.endswith('.gz'): handler = CompressedFileHandler(filename, mode=mode) elif filename: handler = logging.FileHandler(filename, mode=mode) else: handler = logging.StreamHandler() format_string = ( '%(asctime)s [%(levelname)s] (%(processName)-10s) PID:%(process)d ' '<%(module)s> %(message)s') formatter = logging.Formatter(format_string) handler.setFormatter(formatter) if debug_output: level = logging.DEBUG elif quiet_mode: level = logging.WARNING else: level = logging.INFO logger.setLevel(level) handler.setLevel(level) logger.addHandler(handler)
Configures the logging root logger. Args: debug_output (Optional[bool]): True if the logging should include debug output. filename (Optional[str]): log filename. mode (Optional[str]): log file access mode. quiet_mode (Optional[bool]): True if the logging should not include information output. Note that debug_output takes precedence over quiet_mode.
juraj-google-style
def mask_from_embedding(emb): return weights_nonzero(tf.reduce_sum(tf.abs(emb), axis=3, keepdims=True))
Input embeddings -> padding mask. We have hacked symbol_modality to return all-zero embeddings for padding. Returns a mask with 0.0 in the padding positions and 1.0 elsewhere. Args: emb: a Tensor with shape [batch, width, height, depth]. Returns: a 0.0/1.0 Tensor with shape [batch, width, height, 1].
juraj-google-style
def grab_data(self, f_start=None, f_stop=None,t_start=None, t_stop=None, if_id=0): self.freqs = self.populate_freqs() self.timestamps = self.populate_timestamps() if f_start is None: f_start = self.freqs[0] if f_stop is None: f_stop = self.freqs[-1] i0 = np.argmin(np.abs(self.freqs - f_start)) i1 = np.argmin(np.abs(self.freqs - f_stop)) if i0 < i1: plot_f = self.freqs[i0:i1 + 1] plot_data = np.squeeze(self.data[t_start:t_stop, ..., i0:i1 + 1]) else: plot_f = self.freqs[i1:i0 + 1] plot_data = np.squeeze(self.data[t_start:t_stop, ..., i1:i0 + 1]) return plot_f, plot_data
Extract a portion of data by frequency range. Args: f_start (float): start frequency in MHz f_stop (float): stop frequency in MHz if_id (int): IF input identification (req. when multiple IFs in file) Returns: (freqs, data) (np.arrays): frequency axis in MHz and data subset
juraj-google-style
def get_svg_layers(svg_sources): layers = [] width, height = None, None def extract_length(attr): 'Extract length in pixels.' match = CRE_MM_LENGTH.match(attr) if match: return INKSCAPE_PPmm.magnitude * float(match.group('length')) else: return float(attr) for svg_source_i in svg_sources: xml_root = etree.parse(svg_source_i) svg_root = xml_root.xpath('/svg:svg', namespaces=INKSCAPE_NSMAP)[0] width = max(extract_length(svg_root.attrib['width']), width) height = max(extract_length(svg_root.attrib['height']), height) layers += svg_root.xpath(' namespaces=INKSCAPE_NSMAP) for i, layer_i in enumerate(layers): layer_i.attrib['id'] = 'layer%d' % (i + 1) return (width, height), layers
Collect layers from input svg sources. Args: svg_sources (list) : A list of file-like objects, each containing one or more XML layers. Returns ------- (width, height), layers : (int, int), list The first item in the tuple is the shape of the largest layer, and the second item is a list of ``Element`` objects (from :mod:`lxml.etree` module), one per SVG layer.
juraj-google-style
def generate_sb(date: datetime.datetime, project: str, programme_block: str) -> dict: date = date.strftime('%Y%m%d') instance_id = randint(0, 9999) sb_id = 'SB-{}-{}-{:04d}'.format(date, project, instance_id) return dict(id=sb_id, project=project, programme_block=programme_block)
Generate a Scheduling Block data object. Args: date (datetime.datetime): UTC date of the SBI project (str): Project Name programme_block (str): Programme Returns: str, Scheduling Block Instance (SBI) ID.
codesearchnet
def eventFilter(self, object, event): if (object is self.tree_scripts): if (event.type() == QtCore.QEvent.ChildAdded): item = self.tree_scripts.selectedItems()[0] if not isinstance(item.value, Script): print('ONLY SCRIPTS CAN BE DRAGGED') return False print(('XXX ChildAdded', self.tree_scripts.selectedItems()[0].name)) if (event.type() == QtCore.QEvent.ChildRemoved): print(('XXX ChildRemoved', self.tree_scripts.selectedItems()[0].name)) if (event.type() == QtCore.QEvent.Drop): print('XXX Drop') return False return False
TEMPORARY / UNDER DEVELOPMENT THIS IS TO ALLOW COPYING OF PARAMETERS VIA DRAP AND DROP Args: object: event: Returns:
juraj-google-style
def _AddToTree(self, x, prevx): self.s.add(x) self.prev[x] = prevx for y in self.right: slack = self._CalcSlack(x, y) if slack < self.slack[y]: self.slack[y] = slack self.slackx[y] = x
Adds |x| to the current augmenting tree. x is a node which has already been matched to a node y in Right (which is itself connected to prevx via a non-matching edge in the equality subgraph). We indicate prevx comes before x in the tree so we can trace the path later. Args: x: Node which has already been matched to a node y in right prevx: Previous node in Left along the path.
github-repos
def get_all_without_ethernet(self, start=0, count=(- 1), filter='', sort=''): without_ethernet_client = ResourceClient(self._connection, '/rest/logical-downlinks/withoutEthernet') return without_ethernet_client.get_all(start, count, filter=filter, sort=sort)
Gets a paginated collection of logical downlinks without ethernet. The collection is based on optional sorting and filtering and is constrained by start and count parameters. Args: start: The first item to return, using 0-based indexing. If not specified, the default is 0 - start with the first available item. count: The number of resources to return. A count of -1 requests all items. The actual number of items in the response might differ from the requested count if the sum of start and count exceeds the total number of items. filter (list or str): A general filter/query string to narrow the list of items returned. The default is no filter; all resources are returned. sort: The sort order of the returned data set. By default, the sort order is based on create time with the oldest entry first. Returns: dict
codesearchnet
def plot_path(line, lattice=None, coords_are_cartesian=False, ax=None, **kwargs): (ax, fig, plt) = get_ax3d_fig_plt(ax) if ('color' not in kwargs): kwargs['color'] = 'r' if ('linewidth' not in kwargs): kwargs['linewidth'] = 3 for k in range(1, len(line)): vertex1 = line[(k - 1)] vertex2 = line[k] if (not coords_are_cartesian): if (lattice is None): raise ValueError('coords_are_cartesian False requires the lattice') vertex1 = lattice.get_cartesian_coords(vertex1) vertex2 = lattice.get_cartesian_coords(vertex2) ax.plot(*zip(vertex1, vertex2), **kwargs) return (fig, ax)
Adds a line passing through the coordinates listed in 'line' to a matplotlib Axes Args: line: list of coordinates. lattice: Lattice object used to convert from reciprocal to cartesian coordinates coords_are_cartesian: Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. Requires lattice if False. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to red and linewidth to 3. Returns: matplotlib figure and matplotlib ax
codesearchnet
def _maybe_init_run(self, experiment_name, run_name): experiment_id = self._maybe_init_experiment(experiment_name) cursor = self._db.cursor() cursor.execute( , (experiment_id, run_name)) row = cursor.fetchone() if row: return row[0] run_id = self._create_id() started_time = 0 cursor.execute( , (experiment_id, run_id, run_name, time.time(), started_time)) return run_id
Returns the ID for the given run, creating the row if needed. Args: experiment_name: name of experiment containing this run. run_name: name of run.
juraj-google-style
def format(self, exclude_class=False): if exclude_class: msg = self.msg else: msg = ('%s: %s' % (self.__class__.__name__, self.msg)) if (len(self.params) != 0): paramstring = '\n'.join([((str(key) + ': ') + str(val)) for (key, val) in self.params.items()]) msg += ('\nAdditional Information:\n' + paramstring) return msg
Format this exception as a string including class name. Args: exclude_class (bool): Whether to exclude the exception class name when formatting this exception Returns: string: a multiline string with the message, class name and key value parameters passed to create the exception.
codesearchnet
def _process_image_files(name, filenames, texts, labels, num_shards): assert (len(filenames) == len(texts)) assert (len(filenames) == len(labels)) spacing = np.linspace(0, len(filenames), (FLAGS.num_threads + 1)).astype(np.int) ranges = [] for i in range((len(spacing) - 1)): ranges.append([spacing[i], spacing[(i + 1)]]) print(('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))) sys.stdout.flush() coord = tf.train.Coordinator() coder = ImageCoder() threads = [] for thread_index in range(len(ranges)): args = (coder, thread_index, ranges, name, filenames, texts, labels, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) coord.join(threads) print(('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames)))) sys.stdout.flush()
Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file texts: list of strings; each string is human readable, e.g. 'dog' labels: list of integer; each integer identifies the ground truth num_shards: integer number of shards for this data set.
codesearchnet
def delete_permissions(self, grp_name, resource): self.project_service.set_auth(self._token_project) self.project_service.delete_permissions(grp_name, resource)
Removes permissions from the group for the given resource. Args: grp_name (string): Name of group. resource (intern.resource.boss.Resource): Identifies which data model object to operate on. Raises: requests.HTTPError on failure.
juraj-google-style
def get_range(self, name_prefix, vlan_id_range): filter = '"\'name\' matches \'{}\\_%\'"'.format(name_prefix) ethernet_networks = self.get_all(filter=filter, sort='vlanId:ascending') vlan_ids = self.dissociate_values_or_ranges(vlan_id_range) for net in ethernet_networks[:]: if (int(net['vlanId']) not in vlan_ids): ethernet_networks.remove(net) return ethernet_networks
Gets a list of Ethernet Networks that match the 'given name_prefix' and the 'vlan_id_range'. Examples: >>> enet.get_range('Enet_name', '1-2,5') # The result contains the ethernet network with names: ['Enet_name_1', 'Enet_name_2', 'Enet_name_5'] >>> enet.get_range('Enet_name', '2') # The result contains the ethernet network with names: ['Enet_name_1', 'Enet_name_2'] Args: name_prefix: The Ethernet Network prefix vlan_id_range: A combination of values or ranges to be retrieved. For example, '1-10,50,51,500-700'. Returns: list: A list of Ethernet Networks.
codesearchnet
def _get_element_attr_or_none(document, selector, attribute): element = document.cssselect(selector) if element: return element[0].get(attribute) return None
Using a CSS selector, get the element and return the given attribute value, or None if no element. Args: document (HTMLElement) - HTMLElement document selector (str) - CSS selector attribute (str) - The attribute to get from the element
codesearchnet
def _set_bearer_user_vars_local(token, allowed_client_ids, scopes): result = urlfetch.fetch( '%s?%s' % (_TOKENINFO_URL, urllib.urlencode({'access_token': token}))) if result.status_code != 200: try: error_description = json.loads(result.content)['error_description'] except (ValueError, KeyError): error_description = '' _logger.error('Token info endpoint returned status %s: %s', result.status_code, error_description) return token_info = json.loads(result.content) if 'email' not in token_info: _logger.warning('Oauth token doesn\'t include an email address.') return if token_info.get('email_verified') != 'true': _logger.warning('Oauth token email isn\'t verified.') return client_id = token_info.get('azp') if (list(allowed_client_ids) != SKIP_CLIENT_ID_CHECK and client_id not in allowed_client_ids): _logger.warning('Client ID is not allowed: %s', client_id) return _, sufficient_scopes = _process_scopes(scopes) authorized_scopes = token_info.get('scope', '').split(' ') if not _are_scopes_sufficient(authorized_scopes, sufficient_scopes): _logger.warning('Oauth token scopes don\'t match any acceptable scopes.') return os.environ[_ENV_AUTH_EMAIL] = token_info['email'] os.environ[_ENV_AUTH_DOMAIN] = '' _logger.debug('Local dev returning user from token.')
Validate the oauth bearer token on the dev server. Since the functions in the oauth module return only example results in local development, this hits the tokeninfo endpoint and attempts to validate the token. If it's valid, we'll set _ENV_AUTH_EMAIL and _ENV_AUTH_DOMAIN so we can get the user from the token. Args: token: String with the oauth token to validate. allowed_client_ids: List of client IDs that are acceptable. scopes: List of acceptable scopes.
juraj-google-style
def search(self, scope, search, **kwargs): data = {'scope': scope, 'search': search} return self.http_list('/search', query_data=data, **kwargs)
Search GitLab resources matching the provided string.' Args: scope (str): Scope of the search search (str): Search string **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabSearchError: If the server failed to perform the request Returns: GitlabList: A list of dicts describing the resources found.
codesearchnet
def monkhorst(cls, ngkpt, shiftk=(0.5, 0.5, 0.5), chksymbreak=None, use_symmetries=True, use_time_reversal=True, comment=None): return cls(kpts=[ngkpt], kpt_shifts=shiftk, use_symmetries=use_symmetries, use_time_reversal=use_time_reversal, chksymbreak=chksymbreak, comment=(comment if comment else 'Monkhorst-Pack scheme with user-specified shiftk'))
Convenient static constructor for a Monkhorst-Pack mesh. Args: ngkpt: Subdivisions N_1, N_2 and N_3 along reciprocal lattice vectors. shiftk: Shift to be applied to the kpoints. use_symmetries: Use spatial symmetries to reduce the number of k-points. use_time_reversal: Use time-reversal symmetry to reduce the number of k-points. Returns: :class:`KSampling` object.
codesearchnet
def save_args(conditions, out_path): if isinstance(conditions, argparse.Namespace): args = vars(conditions) else: args = conditions try: os.makedirs(out_path) except OSError: pass with tempdir(prefix='args', dir=out_path) as tempd: path = os.path.join(tempd, 'args.json') with open(path, 'w') as f: json.dump(args, f, indent=4) new_path = os.path.join(out_path, 'args') shutil.move(path, new_path)
A util function to save experiment condition for job table. Args: conditions (:class:`argparse.Namespace` or dict): Experiment conditions to show on a job table. Keys are show as table header and values are show at a job row. out_path (str): Output directory name to save conditions.
codesearchnet
def _optimize_tf_model(self, graph_def, input_tensors, output_tensors, quant_mode): if self.saved_model_dir or quant_mode.is_quantization_aware_trained_model(): return graph_def try: graph = _convert_to_constants.disable_lower_using_switch_merge(graph_def) optimized_graph = _run_graph_optimizations(graph, input_tensors, output_tensors, config=self._grappler_config(['function'])) return optimized_graph except Exception: return graph_def
Run a Grappler pass to optimize the TensorFlow graph. Args: graph_def: Frozen GraphDef to be optimized. input_tensors: List of input tensors. output_tensors: List of output tensors. quant_mode: the quantization mode. Returns: The optimized TensorFlow graph.
github-repos
def __init__(self, message, raises=False): super(CustodianError, self).__init__(message) self.raises = raises self.message = message
Initializes the error with a message. Args: message (str): Message passed to Exception raises (bool): Whether this should be raised outside custodian
juraj-google-style
def __init__(self, dfk, *args, threshold=20, interval=5): self.dfk = dfk self.threshold = threshold self.interval = interval self.cb_args = args self.strategy = Strategy(dfk) self.callback = self.strategy.strategize self._handle = None self._event_count = 0 self._event_buffer = [] self._wake_up_time = time.time() + 1 self._kill_event = threading.Event() self._thread = threading.Thread(target=self._wake_up_timer, args=(self._kill_event,)) self._thread.daemon = True self._thread.start()
Initialize the flowcontrol object. We start the timer thread here Args: - dfk (DataFlowKernel) : DFK object to track parsl progress KWargs: - threshold (int) : Tasks after which the callback is triggered - interval (int) : seconds after which timer expires
juraj-google-style
def send_to_prv_exchange(self, user_id, message=None): exchange = ('prv_%s' % user_id.lower()) msg = json.dumps(message, cls=ZEngineJSONEncoder) log.debug(('Sending following users "%s" exchange:\n%s ' % (exchange, msg))) self.get_channel().publish(exchange=exchange, routing_key='', body=msg)
Send messages through logged in users private exchange. Args: user_id string: User key message dict: Message object
codesearchnet
def __init__(self, graph, name=None): if not isinstance(graph, BipartiteGraph): raise ValueError( "Given graph is not instance of Bipartite:", graph) self._graph = graph if name: self.name = name else: self.name = super(_Node, self).__str__() self._hash = None
Construct a new node. Args: name: Specifying the name of this node. If not given, use strings returned from __str__ method.
juraj-google-style