code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def __init__(self, hunt_obj, runner_args=None, token=None):
self.token = token or hunt_obj.token
self.queue_manager = queue_manager.QueueManager(token=self.token)
self.outbound_lock = threading.Lock()
self.hunt_obj = hunt_obj
if runner_args is not None:
self.runner_args = runner_args
self.session_id = self.GetNewSessionID()
self.hunt_obj.urn = self.session_id
self.context = self.InitializeContext(runner_args)
self.hunt_obj.context = self.context
self.context.session_id = self.session_id
else:
self.context = self.hunt_obj.context
self.runner_args = self.hunt_obj.runner_args
self.hunt_obj.urn = self.session_id = self.context.session_id
|
Constructor for the Hunt Runner.
Args:
hunt_obj: The hunt object this runner will run states for.
runner_args: A HuntRunnerArgs() instance containing initial values. If not
specified, we use the runner_args from the hunt_obj.
token: An instance of access_control.ACLToken security token.
|
juraj-google-style
|
def compute(i, tas):
elems_value_batchable = [ta.read(i) for ta in elems_batchable_ta]
elems_value_flat = _elems_value_batchable_to_flat(elems_value_batchable, elems_flat_signature)
elems_value = elems_unflatten(elems_value_flat)
ag_ctx = autograph_ctx.control_status_ctx()
autographed_fn = autograph.tf_convert(fn, ag_ctx)
result_value = autographed_fn(elems_value)
nest.assert_same_structure(fn_output_signature or elems, result_value)
result_value_flat = nest.flatten(result_value)
result_value_batchable = _result_value_flat_to_batchable(result_value_flat, result_flat_signature)
tas = [ta.write(i, value) for ta, value in zip(tas, result_value_batchable)]
return (i + 1, tas)
|
The loop body of map_fn.
Args:
i: the loop counter
tas: the flat TensorArray accumulator list
Returns:
(i + 1, tas): the updated counter + updated TensorArrays
Raises:
TypeError: if fn_output_signature and result_value structure don't match
ValueType: if fn_output_signature and result_value lengths don't match
|
github-repos
|
def loads(text):
if text.startswith('CCSDS_OEM_VERS'):
func = _read_oem
elif text.startswith('CCSDS_OPM_VERS'):
func = _read_opm
else:
raise ValueError('Unknown CCSDS type')
return func(text)
|
Read CCSDS from a string, and provide the beyond class corresponding;
Orbit or list of Orbit if it's an OPM, Ephem if it's an OEM.
Args:
text (str):
Return:
Orbit or Ephem
Raise:
ValueError: when the text is not a recognizable CCSDS format
|
codesearchnet
|
def __init__(self, fraction):
self.fraction = fraction
super().__init__('Fraction should be in (0,1] (received {})'
.format(fraction))
|
Initialization of instances:
Args:
fraction (float): the invalid fraction.
Attributes:
fraction (float): the invalid fraction.
|
juraj-google-style
|
def prompt_for_test_start(
message='Enter a DUT ID in order to start the test.', timeout_s=60*60*24,
validator=lambda sn: sn, cli_color=''):
@PhaseOptions(timeout_s=timeout_s)
@plugs.plug(prompts=UserInput)
def trigger_phase(test, prompts):
dut_id = prompts.prompt(
message, text_input=True, timeout_s=timeout_s, cli_color=cli_color)
test.test_record.dut_id = validator(dut_id)
return trigger_phase
|
Returns an OpenHTF phase for use as a prompt-based start trigger.
Args:
message: The message to display to the user.
timeout_s: Seconds to wait before raising a PromptUnansweredError.
validator: Function used to validate or modify the serial number.
cli_color: An ANSI color code, or the empty string.
|
juraj-google-style
|
def _Replacement(node):
value = node.id
if value in ('True', 'False', 'None'):
return node
return _StrNode(value)
|
Returns a node to use in place of the supplied node in the AST.
Args:
node: A node of type Name. Could be a variable, or builtin constant.
Returns:
A node to use in place of the supplied Node. Either the same node, or a
String node whose value matches the Name node's id.
|
github-repos
|
def FromStream(cls, stream):
if stream.system:
specifier = DataStreamSelector.MatchSystemOnly
else:
specifier = DataStreamSelector.MatchUserOnly
return DataStreamSelector(stream.stream_type, stream.stream_id, specifier)
|
Create a DataStreamSelector from a DataStream.
Args:
stream (DataStream): The data stream that we want to convert.
|
codesearchnet
|
def deepcopy_dict(data):
try:
return copy.deepcopy(data)
except TypeError:
copied_data = {}
for key, value in data.items():
if isinstance(value, dict):
copied_data[key] = deepcopy_dict(value)
else:
try:
copied_data[key] = copy.deepcopy(value)
except TypeError:
copied_data[key] = value
return copied_data
|
deepcopy dict data, ignore file object (_io.BufferedReader)
Args:
data (dict): dict data structure
{
'a': 1,
'b': [2, 4],
'c': lambda x: x+1,
'd': open('LICENSE'),
'f': {
'f1': {'a1': 2},
'f2': io.open('LICENSE', 'rb'),
}
}
Returns:
dict: deep copied dict data, with file object unchanged.
|
juraj-google-style
|
def flatten(inputs, name=None, data_format='channels_last'):
warnings.warn('`tf.layers.flatten` is deprecated and will be removed in a future version. Please use `tf.keras.layers.Flatten` instead.')
layer = Flatten(name=name, data_format=data_format)
return layer.apply(inputs)
|
Flattens an input tensor while preserving the batch axis (axis 0).
Args:
inputs: Tensor input.
name: The name of the layer (string).
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
Returns:
Reshaped tensor.
Examples:
```
x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, 16)`
x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, None)`
```
|
github-repos
|
def validate_word(self, word):
while word:
match = self.seg_regex.match(word)
if match:
word = word[len(match.group(0)):]
else:
return False
return True
|
Returns True if `word` consists exhaustively of valid IPA segments
Args:
word (unicode): input word as Unicode IPA string
Returns:
bool: True if `word` can be divided exhaustively into IPA segments
that exist in the database
|
codesearchnet
|
def mark_flags_as_mutual_exclusive(flag_names, required=False, flag_values=FLAGS):
def validate_mutual_exclusion(flags_dict):
flag_count = sum((1 for val in flags_dict.values() if (val is not None)))
if ((flag_count == 1) or ((not required) and (flag_count == 0))):
return True
message = ('%s one of (%s) must be specified.' % (('Exactly' if required else 'At most'), ', '.join(flag_names)))
raise ValidationError(message)
register_multi_flags_validator(flag_names, validate_mutual_exclusion, flag_values=flag_values)
|
Ensures that only one flag among flag_names is set.
Args:
flag_names: [str], a list of the flag names to be checked.
required: Boolean, if set, exactly one of the flags must be set.
Otherwise, it is also valid for none of the flags to be set.
flag_values: An optional FlagValues instance to validate against.
|
codesearchnet
|
def get_name(node):
if isinstance(node, gast.Name):
return node.id
elif isinstance(node, (gast.Subscript, gast.Attribute)):
return get_name(node.value)
else:
raise TypeError
|
Get the name of a variable.
Args:
node: A `Name`, `Subscript` or `Attribute` node.
Returns:
The name of the variable e.g. `'x'` for `x`, `x.i` and `x[i]`.
|
juraj-google-style
|
def _create_complete_graph(node_ids):
g = nx.Graph()
g.add_nodes_from(node_ids)
for (i, j) in combinations(node_ids, 2):
g.add_edge(i, j)
return g
|
Create a complete graph from the list of node ids.
Args:
node_ids: a list of node ids
Returns:
An undirected graph (as a networkx.Graph)
|
codesearchnet
|
def program(self, *, vertex_shader, fragment_shader=None, geometry_shader=None,
tess_control_shader=None, tess_evaluation_shader=None, varyings=()) -> 'Program':
if type(varyings) is str:
varyings = (varyings,)
varyings = tuple(varyings)
res = Program.__new__(Program)
res.mglo, ls1, ls2, ls3, ls4, ls5, res._subroutines, res._geom, res._glo = self.mglo.program(
vertex_shader, fragment_shader, geometry_shader, tess_control_shader, tess_evaluation_shader,
varyings
)
members = {}
for item in ls1:
obj = Attribute.__new__(Attribute)
obj.mglo, obj._location, obj._array_length, obj._dimension, obj._shape, obj._name = item
members[obj.name] = obj
for item in ls2:
obj = Varying.__new__(Varying)
obj._number, obj._array_length, obj._dimension, obj._name = item
members[obj.name] = obj
for item in ls3:
obj = Uniform.__new__(Uniform)
obj.mglo, obj._location, obj._array_length, obj._dimension, obj._name = item
members[obj.name] = obj
for item in ls4:
obj = UniformBlock.__new__(UniformBlock)
obj.mglo, obj._index, obj._size, obj._name = item
members[obj.name] = obj
for item in ls5:
obj = Subroutine.__new__(Subroutine)
obj._index, obj._name = item
members[obj.name] = obj
res._members = members
res.ctx = self
res.extra = None
return res
|
Create a :py:class:`Program` object.
Only linked programs will be returned.
A single shader in the `shaders` parameter is also accepted.
The varyings are only used when a transform program is created.
Args:
shaders (list): A list of :py:class:`Shader` objects.
varyings (list): A list of varying names.
Returns:
:py:class:`Program` object
|
juraj-google-style
|
def pb(name, data, bucket_count=None, display_name=None, description=None):
import tensorflow.compat.v1 as tf
if (bucket_count is None):
bucket_count = summary_v2.DEFAULT_BUCKET_COUNT
data = np.array(data).flatten().astype(float)
if (data.size == 0):
buckets = np.array([]).reshape((0, 3))
else:
min_ = np.min(data)
max_ = np.max(data)
range_ = (max_ - min_)
if (range_ == 0):
center = min_
buckets = np.array([[(center - 0.5), (center + 0.5), float(data.size)]])
else:
bucket_width = (range_ / bucket_count)
offsets = (data - min_)
bucket_indices = np.floor((offsets / bucket_width)).astype(int)
clamped_indices = np.minimum(bucket_indices, (bucket_count - 1))
one_hots = (np.array([clamped_indices]).transpose() == np.arange(0, bucket_count))
assert (one_hots.shape == (data.size, bucket_count)), (one_hots.shape, (data.size, bucket_count))
bucket_counts = np.sum(one_hots, axis=0)
edges = np.linspace(min_, max_, (bucket_count + 1))
left_edges = edges[:(- 1)]
right_edges = edges[1:]
buckets = np.array([left_edges, right_edges, bucket_counts]).transpose()
tensor = tf.make_tensor_proto(buckets, dtype=tf.float64)
if (display_name is None):
display_name = name
summary_metadata = metadata.create_summary_metadata(display_name=display_name, description=description)
tf_summary_metadata = tf.SummaryMetadata.FromString(summary_metadata.SerializeToString())
summary = tf.Summary()
summary.value.add(tag=('%s/histogram_summary' % name), metadata=tf_summary_metadata, tensor=tensor)
return summary
|
Create a legacy histogram summary protobuf.
Arguments:
name: A unique name for the generated summary, including any desired
name scopes.
data: A `np.array` or array-like form of any shape. Must have type
castable to `float`.
bucket_count: Optional positive `int`. The output will have this
many buckets, except in two edge cases. If there is no data, then
there are no buckets. If there is data but all points have the
same value, then there is one bucket whose left and right
endpoints are the same.
display_name: Optional name for this summary in TensorBoard, as a
`str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
`str`. Markdown is supported. Defaults to empty.
Returns:
A `tf.Summary` protobuf object.
|
codesearchnet
|
def _validate(self):
if self.tuple_shapes is not None:
for policy, shape in zip(self._sharding_policies, self._tuple_shapes):
_ = policy.get_sharded_shape(shape)
|
Checks that the configuration is self-consistent.
Raises:
ValueError: if the shapes and sharding policies don't match.
|
github-repos
|
def cut_video(in_file, out_file, start=None, end=None, vcodec=None, acodec=None, log_level='info', print_cmd=False, **kwargs):
options = {'log_level': log_level}
if (vcodec is None):
options['vcodec'] = 'copy'
if (acodec is None):
options['acodec'] = 'copy'
if start:
options['ss'] = start
else:
start = 0
if end:
options['t'] = (end - start)
convert_video(in_file, out_file, print_cmd, **options)
|
Cut a clip from a video.
Args:
in_file (str): Input video filename.
out_file (str): Output video filename.
start (None or float): Start time (in seconds).
end (None or float): End time (in seconds).
vcodec (None or str): Output video codec, None for unchanged.
acodec (None or str): Output audio codec, None for unchanged.
log_level (str): Logging level of ffmpeg.
print_cmd (bool): Whether to print the final ffmpeg command.
|
codesearchnet
|
def GetBalance(self, asset_id, watch_only=0):
total = Fixed8(0)
if type(asset_id) is NEP5Token.NEP5Token:
return self.GetTokenBalance(asset_id, watch_only)
for coin in self.GetCoins():
if coin.Output.AssetId == asset_id:
if coin.State & CoinState.Confirmed > 0 and \
coin.State & CoinState.Spent == 0 and \
coin.State & CoinState.Locked == 0 and \
coin.State & CoinState.Frozen == 0 and \
coin.State & CoinState.WatchOnly == watch_only:
total = total + coin.Output.Value
return total
|
Get the balance of a specific token by its asset id.
Args:
asset_id (NEP5Token|TransactionOutput): an instance of type neo.Wallets.NEP5Token or neo.Core.TX.Transaction.TransactionOutput to get the balance from.
watch_only (bool): True, to limit to watch only wallets.
Returns:
Fixed8: total balance.
|
juraj-google-style
|
def _WriteCacheFile(self, cache_filename, scopes):
creds = {'scopes': sorted(list(scopes)),
'svc_acct_name': self.__service_account_name}
creds_str = json.dumps(creds)
cache_file = _MultiProcessCacheFile(cache_filename)
try:
cache_file.LockedWrite(creds_str)
except KeyboardInterrupt:
raise
except:
pass
|
Writes the credential metadata to the cache file.
This does not save the credentials themselves (CredentialStore class
optionally handles that after this class is initialized).
Args:
cache_filename: Cache filename to check.
scopes: Scopes for the desired credentials.
|
juraj-google-style
|
def BuildAdGroupCriterionOperations(adgroup_operations, number_of_keywords=1):
criterion_operations = [
{
'xsi_type': 'AdGroupCriterionOperation',
'operand': {
'xsi_type': 'BiddableAdGroupCriterion',
'adGroupId': adgroup_operation['operand']['id'],
'criterion': {
'xsi_type': 'Keyword',
'text': 'mars%s%s' % (i, '!!!' if i % 2 == 0 else ''),
'matchType': 'BROAD'
}
},
'operator': 'ADD'
}
for adgroup_operation in adgroup_operations
for i in range(number_of_keywords)]
return criterion_operations
|
Builds the operations adding a Keyword Criterion to each AdGroup.
Args:
adgroup_operations: a list containing the operations that will add AdGroups.
number_of_keywords: an int defining the number of Keywords to be created.
Returns:
a list containing the operations that will create a new Keyword Criterion
associated with each provided AdGroup.
|
juraj-google-style
|
def __init__(self, AssetId=None, Value=None, script_hash=None):
super(TransactionOutput, self).__init__()
self.AssetId = AssetId
self.Value = Value
self.ScriptHash = script_hash
|
Create an instance.
Args:
AssetId (UInt256):
Value (Fixed8):
script_hash (UInt160):
|
juraj-google-style
|
def GetDecrypter(cls, encryption_method, **kwargs):
encryption_method = encryption_method.lower()
decrypter = cls._decrypters.get(encryption_method, None)
if not decrypter:
return None
return decrypter(**kwargs)
|
Retrieves the decrypter object for a specific encryption method.
Args:
encryption_method (str): encryption method identifier.
kwargs (dict): keyword arguments depending on the decrypter.
Returns:
Decrypter: decrypter or None if the encryption method does not exists.
Raises:
CredentialError: if the necessary credentials are missing.
|
juraj-google-style
|
def list_worker_processes(apppool):
ps_cmd = ['Get-ChildItem', "'IIS:\\AppPools\\{0}\\WorkerProcesses'".format(apppool)]
cmd_ret = _srvmgr(cmd=ps_cmd, return_json=True)
try:
items = salt.utils.json.loads(cmd_ret['stdout'], strict=False)
except ValueError:
raise CommandExecutionError('Unable to parse return data as Json.')
ret = dict()
for item in items:
ret[item['processId']] = item['appPoolName']
if (not ret):
log.warning('No backups found in output: %s', cmd_ret)
return ret
|
Returns a list of worker processes that correspond to the passed
application pool.
.. versionadded:: 2017.7.0
Args:
apppool (str): The application pool to query
Returns:
dict: A dictionary of worker processes with their process IDs
CLI Example:
.. code-block:: bash
salt '*' win_iis.list_worker_processes 'My App Pool'
|
codesearchnet
|
def get_min_max_value(self) -> tuple[float, float]:
if self._num_bins > 512:
logging.warning('num_bins=%d is too large. The HISTOGRAM_MSE_BRUTEFORCE method tests all histogram mid value pairs, so it may take a long time.', self._num_bins)
mse_min = (float('inf'), float('inf'), float('inf'))
for left, right in itertools.combinations(range(self._num_bins), 2):
quant_min, quant_max = (self._hist_mids[left], self._hist_mids[right])
mse_tuple = self._get_weighted_mean_squared_error(quant_min, quant_max)
mse_min = min(mse_tuple, mse_min)
min_value, max_value = (mse_min[1], mse_min[2])
return (min_value, max_value)
|
Finds the optimal quant_min and quant_max by testing all possible cases.
It guarantees optimal quant_min and quant_max for the representative
dataset, but not for the test dataset.
Returns:
(min_value, max_value): Min and max calculated using
HistogramMseBruteforce.
|
github-repos
|
def prepare_axes(axes, title, size, cmap=None):
if (axes is None):
return None
axes.set_xlim([0, size[1]])
axes.set_ylim([size[0], 0])
axes.set_aspect('equal')
axes.axis('off')
if isinstance(cmap, str):
title = '{} (cmap: {})'.format(title, cmap)
axes.set_title(title)
axes_image = image.AxesImage(axes, cmap=cmap, extent=(0, size[1], size[0], 0))
axes_image.set_data(np.random.random((size[0], size[1], 3)))
axes.add_image(axes_image)
return axes_image
|
Prepares an axes object for clean plotting.
Removes x and y axes labels and ticks, sets the aspect ratio to be
equal, uses the size to determine the drawing area and fills the image
with random colors as visual feedback.
Creates an AxesImage to be shown inside the axes object and sets the
needed properties.
Args:
axes: The axes object to modify.
title: The title.
size: The size of the expected image.
cmap: The colormap if a custom color map is needed.
(Default: None)
Returns:
The AxesImage's handle.
|
codesearchnet
|
def inject_params(self, params):
for arg, value in params.items():
cli_arg = '--{}'.format(arg)
if cli_arg in sys.argv:
self.tcex.log.debug('skipping existing arg: {}'.format(cli_arg))
continue
param_data = self.tcex.install_json_params.get(arg) or {}
if param_data.get('type', '').lower() == 'multichoice':
value = value.split('|')
elif param_data.get('type', '').lower() == 'boolean':
value = self.tcex.utils.to_bool(value)
elif arg in self.tc_bool_args:
value = self.tcex.utils.to_bool(value)
if isinstance(value, (bool)):
if value is True:
sys.argv.append(cli_arg)
elif isinstance(value, (list)):
for mcv in value:
sys.argv.append('{}={}'.format(cli_arg, mcv))
else:
sys.argv.append('{}={}'.format(cli_arg, value))
self._default_args, unknown = self.parser.parse_known_args()
self.tcex._logger()
|
Inject params into sys.argv from secureParams API, AOT, or user provided.
Args:
params (dict): A dictionary containing all parameters that need to be injected as args.
|
juraj-google-style
|
def patch_masks(patches: dict) -> None:
for patch in patches:
patch_mask(patch)
|
Wraps patch mask function for list of patches.
Modifies in place. Executes patch_mask for multiple patches.
Args:
patches: A list of patch objects to annotate.
|
github-repos
|
def _as_log_entry(self, name, now):
d = {u'http_response_code': self.response_code, u'timestamp': time.mktime(now.timetuple())}
severity = _SEVERITY.INFO
if (self.response_code >= 400):
severity = _SEVERITY.ERROR
d[u'error_cause'] = self.error_cause.name
if (self.request_size > 0):
d[u'request_size'] = self.request_size
if (self.response_size > 0):
d[u'response_size'] = self.response_size
if self.method:
d[u'http_method'] = self.method
if self.request_time:
d[u'request_latency_in_ms'] = (self.request_time.total_seconds() * 1000)
for key in self.COPYABLE_LOG_FIELDS:
value = getattr(self, key, None)
if value:
d[key] = value
return sc_messages.LogEntry(name=name, timestamp=timestamp.to_rfc3339(now), severity=severity, structPayload=_struct_payload_from(d))
|
Makes a `LogEntry` from this instance for the given log_name.
Args:
rules (:class:`ReportingRules`): determines what labels, metrics and
logs to include in the report request.
now (:class:`datetime.DateTime`): the current time
Return:
a ``LogEntry`` generated from this instance with the given name
and timestamp
Raises:
ValueError: if the fields in this instance are insufficient to
to create a valid ``ServicecontrolServicesReportRequest``
|
codesearchnet
|
def _ParseLastRunTime(self, parser_mediator, fixed_length_section):
systemtime_struct = fixed_length_section.last_run_time
system_time_tuple = (systemtime_struct.year, systemtime_struct.month, systemtime_struct.weekday, systemtime_struct.day_of_month, systemtime_struct.hours, systemtime_struct.minutes, systemtime_struct.seconds, systemtime_struct.milliseconds)
date_time = None
if (system_time_tuple != self._EMPTY_SYSTEM_TIME_TUPLE):
try:
date_time = dfdatetime_systemtime.Systemtime(system_time_tuple=system_time_tuple)
except ValueError:
parser_mediator.ProduceExtractionWarning('invalid last run time: {0!s}'.format(system_time_tuple))
return date_time
|
Parses the last run time from a fixed-length data section.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
fixed_length_section (job_fixed_length_data_section): a Windows
Scheduled Task job fixed-length data section.
Returns:
dfdatetime.DateTimeValues: last run date and time or None if not
available.
|
codesearchnet
|
def _get_default_configurable_parameter_values(fn, whitelist, blacklist):
arg_vals = _ARG_DEFAULTS_CACHE.get(fn)
if arg_vals is not None:
return arg_vals.copy()
arg_spec = _get_cached_arg_spec(fn)
if arg_spec.defaults:
default_kwarg_names = arg_spec.args[-len(arg_spec.defaults):]
arg_vals = dict(zip(default_kwarg_names, arg_spec.defaults))
else:
arg_vals = {}
if six.PY3 and arg_spec.kwonlydefaults:
arg_vals.update(arg_spec.kwonlydefaults)
for k in list(six.iterkeys(arg_vals)):
whitelist_fail = whitelist and k not in whitelist
blacklist_fail = blacklist and k in blacklist
representable = _is_literally_representable(arg_vals[k])
if whitelist_fail or blacklist_fail or not representable:
del arg_vals[k]
_ARG_DEFAULTS_CACHE[fn] = arg_vals
return arg_vals.copy()
|
Retrieve all default values for configurable parameters of a function.
Any parameters included in the supplied blacklist, or not included in the
supplied whitelist, are excluded.
Args:
fn: The function whose parameter values should be retrieved.
whitelist: The whitelist (or `None`) associated with the function.
blacklist: The blacklist (or `None`) associated with the function.
Returns:
A dictionary mapping configurable parameter names to their default values.
|
juraj-google-style
|
def _load_json_module():
first_import_error = None
for module_name in ['json', 'simplejson']:
try:
module = __import__(module_name, {}, {}, 'json')
if (not hasattr(module, 'JSONEncoder')):
message = ('json library "%s" is not compatible with ProtoRPC' % module_name)
logging.warning(message)
raise ImportError(message)
else:
return module
except ImportError as err:
if (not first_import_error):
first_import_error = err
logging.error('Must use valid json library (json or simplejson)')
raise first_import_error
|
Try to load a valid json module.
There are more than one json modules that might be installed. They are
mostly compatible with one another but some versions may be different.
This function attempts to load various json modules in a preferred order.
It does a basic check to guess if a loaded version of json is compatible.
Returns:
Compatible json module.
Raises:
ImportError if there are no json modules or the loaded json module is
not compatible with ProtoRPC.
|
codesearchnet
|
def get_logging_metric_hook(benchmark_log_dir=None, tensors_to_log=None, every_n_secs=600, **kwargs):
if (benchmark_log_dir is None):
raise ValueError('metric_log_dir should be provided to use metric logger')
if (tensors_to_log is None):
tensors_to_log = _TENSORS_TO_LOG
return metric_hook.LoggingMetricHook(tensors=tensors_to_log, log_dir=benchmark_log_dir, every_n_secs=every_n_secs)
|
Function to get LoggingMetricHook.
Args:
benchmark_log_dir: `string`, directory path to save the metric log.
tensors_to_log: List of tensor names or dictionary mapping labels to tensor
names. If not set, log _TENSORS_TO_LOG by default.
every_n_secs: `int`, the frequency for logging the metric. Default to every
10 mins.
Returns:
Returns a ProfilerHook that writes out timelines that can be loaded into
profiling tools like chrome://tracing.
|
codesearchnet
|
def is_special_unitary(matrix: np.ndarray, *, rtol: float=1e-05, atol: float=1e-08) -> bool:
return (is_unitary(matrix, rtol=rtol, atol=atol) and ((matrix.shape[0] == 0) or np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol)))
|
Determines if a matrix is approximately unitary with unit determinant.
A matrix is special-unitary if it is square and its adjoint is its inverse
and its determinant is one.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is unitary with unit determinant within the given
tolerance.
|
codesearchnet
|
def raw_state(self):
try:
return self._get_domain().state()
except libvirt.libvirtError as e:
raise vm_plugin.LagoFailedToGetVMStateError(str(e))
|
Return the state of the domain in Libvirt's terms
Retruns:
tuple of ints: The state and its reason
Raises:
:exc:`~lago.plugins.vm.LagoVMDoesNotExistError`:
If the VM of this provider doesn't exist.
:exc:`~lago.plugins.vm.LagoFailedToGetVMStateError:
If the VM exist, but the query returned an error.
|
codesearchnet
|
def get_sig(ir, name):
sig = '{}({})'
argss = convert_arguments(ir.arguments)
return [sig.format(name, ','.join(args)) for args in argss]
|
Return a list of potential signature
It is a list, as Constant variables can be converted to int256
Args:
ir (slithIR.operation)
Returns:
list(str)
|
juraj-google-style
|
def LockScanNode(self, path_spec):
scan_node = self._scan_nodes.get(path_spec, None)
if not scan_node:
raise KeyError('Scan node does not exist.')
self._locked_scan_nodes[path_spec] = scan_node
|
Marks a scan node as locked.
Args:
path_spec (PathSpec): path specification.
Raises:
KeyError: if the scan node does not exists.
|
juraj-google-style
|
def save_feature_list(self, obj, set_id, feature_list_id):
save(obj, self.features_dir + 'X_{}_{}.pickle'.format(set_id, feature_list_id))
|
Pickle the specified feature list to a file.
Example: `save_feature_list(project, X_tfidf_train, 'train', 'tfidf')`.
Args:
obj: The object to pickle (e.g., a numpy array or a Pandas dataframe)
project: An instance of pygoose project.
set_id: The id of the subset (e.g., 'train' or 'test')
feature_list_id: The name for this feature list.
|
juraj-google-style
|
def transpose(self, name=None, activate_final=None):
if name is None:
name = self.module_name + "_transpose"
if activate_final is None:
activate_final = self.activate_final
output_sizes = [lambda l=layer: l.input_shape[1] for layer in self._layers]
output_sizes.reverse()
return MLP(
name=name,
output_sizes=output_sizes,
activation=self.activation,
activate_final=activate_final,
initializers=self.initializers,
partitioners=self.partitioners,
regularizers=self.regularizers,
use_bias=self.use_bias,
use_dropout=self.use_dropout)
|
Returns transposed `MLP`.
Args:
name: Optional string specifying the name of the transposed module. The
default name is constructed by appending "_transpose"
to `self.module_name`.
activate_final: Optional boolean determining if the activation and batch
normalization, if turned on, are applied to the final layer.
Returns:
Matching transposed `MLP` module.
|
juraj-google-style
|
def _force_edge_active_move(self, state: _STATE) -> _STATE:
(seqs, edges) = state
unused_edges = edges.copy()
for seq in seqs:
for i in range(1, len(seq)):
unused_edges.remove(self._normalize_edge((seq[(i - 1)], seq[i])))
edge = self._choose_random_edge(unused_edges)
if (not edge):
return (seqs, edges)
return (self._force_edge_active(seqs, edge, (lambda : bool(self._rand.randint(2)))), edges)
|
Move which forces a random edge to appear on some sequence.
This move chooses random edge from the edges which do not belong to any
sequence and modifies state in such a way, that this chosen edge
appears on some sequence of the search state.
Args:
state: Search state, not mutated.
Returns:
New search state with one of the unused edges appearing in some
sequence.
|
codesearchnet
|
def _feedback(self, dna: DNA, reward: Union[float, Tuple[float]]) -> None:
|
Actual feedback method which should be implemented by the child class.
The default implementation is no-op.
Args:
dna: a DNA object.
reward: reward for the DNA. It is a float if `self.multi_objective`
returns False, otherwise it's a tuple of floats.
|
github-repos
|
def _get_name_filter(package, context='decorate', reparse=False):
global name_filters
pkey = (package, context)
if ((pkey in name_filters) and (not reparse)):
return name_filters[pkey]
from acorn.config import settings
spack = settings(package)
sections = {'decorate': ['tracking', 'acorn.tracking'], 'time': ['timing', 'acorn.timing'], 'analyze': ['analysis', 'acorn.analysis']}
(filters, rfilters) = (None, None)
import re
if (context in sections):
(filters, rfilters) = ([], [])
(ignores, rignores) = ([], [])
for section in sections[context]:
if spack.has_section(section):
options = spack.options(section)
if ('filter' in options):
filters.extend(re.split('\\s*\\$\\s*', spack.get(section, 'filter')))
if ('rfilter' in options):
pfilters = re.split('\\s*\\$\\s*', spack.get(section, 'rfilter'))
rfilters.extend([re.compile(p, re.I) for p in pfilters])
if ('ignore' in options):
ignores.extend(re.split('\\s*\\$\\s*', spack.get(section, 'ignore')))
if ('rignore' in options):
pignores = re.split('\\s*\\$\\s*', spack.get(section, 'rignore'))
rignores.extend([re.compile(p, re.I) for p in pfilters])
name_filters[pkey] = {'filters': filters, 'rfilters': rfilters, 'ignores': ignores, 'rignores': rignores}
else:
name_filters[pkey] = None
return name_filters[pkey]
|
Makes sure that the name filters for the specified package have been
loaded.
Args:
package (str): name of the package that this method belongs to.
context (str): one of ['decorate', 'time', 'analyze']; specifies which
section of the configuration settings to check.
|
codesearchnet
|
def _process_policy_eval_results(to_eval, eval_results, active_episodes, active_envs, off_policy_actions, policies, clip_actions):
actions_to_send = defaultdict(dict)
for env_id in active_envs:
actions_to_send[env_id] = {}
for (policy_id, eval_data) in to_eval.items():
rnn_in_cols = _to_column_format([t.rnn_state for t in eval_data])
(actions, rnn_out_cols, pi_info_cols) = eval_results[policy_id]
if (len(rnn_in_cols) != len(rnn_out_cols)):
raise ValueError('Length of RNN in did not match RNN out, got: {} vs {}'.format(rnn_in_cols, rnn_out_cols))
for (f_i, column) in enumerate(rnn_in_cols):
pi_info_cols['state_in_{}'.format(f_i)] = column
for (f_i, column) in enumerate(rnn_out_cols):
pi_info_cols['state_out_{}'.format(f_i)] = column
actions = _unbatch_tuple_actions(actions)
policy = _get_or_raise(policies, policy_id)
for (i, action) in enumerate(actions):
env_id = eval_data[i].env_id
agent_id = eval_data[i].agent_id
if clip_actions:
actions_to_send[env_id][agent_id] = clip_action(action, policy.action_space)
else:
actions_to_send[env_id][agent_id] = action
episode = active_episodes[env_id]
episode._set_rnn_state(agent_id, [c[i] for c in rnn_out_cols])
episode._set_last_pi_info(agent_id, {k: v[i] for (k, v) in pi_info_cols.items()})
if ((env_id in off_policy_actions) and (agent_id in off_policy_actions[env_id])):
episode._set_last_action(agent_id, off_policy_actions[env_id][agent_id])
else:
episode._set_last_action(agent_id, action)
return actions_to_send
|
Process the output of policy neural network evaluation.
Records policy evaluation results into the given episode objects and
returns replies to send back to agents in the env.
Returns:
actions_to_send: nested dict of env id -> agent id -> agent replies.
|
codesearchnet
|
def AddAttribute(self, attribute, value=None, age=None):
if ('w' not in self.mode):
raise IOError(('Writing attribute %s to read only object.' % attribute))
if (value is None):
value = attribute
attribute = value.attribute_instance
if ((self.mode != 'w') and attribute.lock_protected and (not self.transaction)):
raise IOError(('Object must be locked to write attribute %s.' % attribute))
self._CheckAttribute(attribute, value)
if attribute.versioned:
if attribute.creates_new_object_version:
self._new_version = True
if age:
value.age = age
else:
value.age = rdfvalue.RDFDatetime.Now()
else:
self._to_delete.add(attribute)
self.synced_attributes.pop(attribute, None)
self.new_attributes.pop(attribute, None)
value.age = 0
self._AddAttributeToCache(attribute, value, self.new_attributes)
self._dirty = True
|
Add an additional attribute to this object.
If value is None, attribute is expected to be already initialized with a
value. For example:
fd.AddAttribute(fd.Schema.CONTAINS("some data"))
Args:
attribute: The attribute name or an RDFValue derived from the attribute.
value: The value the attribute will be set to.
age: Age (timestamp) of the attribute. If None, current time is used.
Raises:
IOError: If this object is read only.
|
codesearchnet
|
def _stream_output(process):
exit_code = None
while (exit_code is None):
stdout = process.stdout.readline().decode('utf-8')
sys.stdout.write(stdout)
exit_code = process.poll()
if (exit_code != 0):
raise RuntimeError(('Process exited with code: %s' % exit_code))
return exit_code
|
Stream the output of a process to stdout
This function takes an existing process that will be polled for output. Only stdout
will be polled and sent to sys.stdout.
Args:
process(subprocess.Popen): a process that has been started with
stdout=PIPE and stderr=STDOUT
Returns (int): process exit code
|
codesearchnet
|
def getParameter(self, name):
return lock_and_call(
lambda: Parameter(self._impl.getParameter(name)),
self._lock
)
|
Get the parameter with the corresponding name.
Args:
name: Name of the parameter to be found.
Raises:
TypeError: if the specified parameter does not exist.
|
juraj-google-style
|
def json(self) -> dict:
content = {}
if self.text:
content['text'] = self.text
content['controls'] = [control.json() for control in self.content]
self.control_json['content'] = content
return self.control_json
|
Returns json compatible state of the ButtonsFrame instance.
Returns json compatible state of the ButtonsFrame instance including
all nested buttons.
Returns:
control_json: Json representation of ButtonsFrame state.
|
codesearchnet
|
def should_stop(self):
if self._check_stop():
return True
if self._sess:
return self._wrapped_is_stoppable and self._sess.should_stop()
return True
|
Return true if this session should not be used anymore.
Always return True if the session was closed.
Returns:
True if the session should stop, False otherwise.
|
github-repos
|
def get_creation_date_tags(url, domain, as_dicts=False):
creation_date_tags = [
mementoweb_api_tags(url),
get_whois_tags(domain),
]
creation_date_tags = sorted(
sum(creation_date_tags, []),
key=lambda x: x.date
)
if not as_dicts:
return creation_date_tags
return [
item._as_dict()
for item in creation_date_tags
]
|
Put together all data sources in this module and return it's output.
Args:
url (str): URL of the web. With relative paths and so on.
domain (str): Just the domain of the web.
as_dicts (bool, default False): Convert output to dictionaries
compatible with :class:`.SourceString`?
Returns:
list: Sorted list of :class:`TimeResource` objects or dicts.
|
juraj-google-style
|
def annotate_test_file(self, test_file: Iterator[str]) -> Iterator[str]:
transformed_tests, run_directives = self.for_each_test_case(test_file, self.annotate_test_case, num_outputs=2)
return itertools.chain([_BANNER_COMMENT_LINE], run_directives, ['\n'], transformed_tests)
|
Inserts FileCheck directives above each test case in an HLO test file.
Args:
test_file: An iterator over the lines of an HLO test file.
Returns:
An iterator over the lines of the transformed HLO test file. Each test
case is preceded by FileCheck directives describing the expected output
of the optimizer on that test case.
|
github-repos
|
def add_op(state, op_func, *args, **kwargs):
frameinfo = get_caller_frameinfo()
kwargs['frameinfo'] = frameinfo
for host in state.inventory:
op_func(state, host, *args, **kwargs)
|
Prepare & add an operation to ``pyinfra.state`` by executing it on all hosts.
Args:
state (``pyinfra.api.State`` obj): the deploy state to add the operation
to op_func (function): the operation function from one of the modules,
ie ``server.user``
args/kwargs: passed to the operation function
|
codesearchnet
|
def make_sharded_variable_creator(hosts: List[Text]) -> Callable[..., TPUEmbeddingVariable]:
def sharded_variable_creator(next_creator: Callable[..., tf_variables.Variable], *args, **kwargs):
kwargs['skip_mirrored_creator'] = True
num_hosts = len(hosts)
name, shape, dtype, unwrapped_initial_value = extract_variable_info(kwargs)
initial_value = kwargs['initial_value']
rows = shape[0]
cols = shape[1]
partial_partition = rows % num_hosts
full_rows_per_host = rows
partitions = [full_rows_per_host + 1] * partial_partition + [full_rows_per_host] * (num_hosts - partial_partition)
variables = []
sharding_aware = 'shard_info' in tf_inspect.getargspec(initial_value).args
offset = 0
kwargs['dtype'] = dtype
for i, p in enumerate(partitions):
if p == 0:
continue
with ops.device(hosts[i]):
kwargs['name'] = '{}_{}'.format(name, i)
kwargs['shape'] = (p, cols)
if sharding_aware:
shard_info = base.ShardInfo(kwargs['shape'], (offset, 0))
kwargs['initial_value'] = functools.partial(initial_value, shard_info=shard_info)
offset += p
else:
kwargs['initial_value'] = functools.partial(unwrapped_initial_value, kwargs['shape'], dtype=dtype)
variables.append(next_creator(*args, **kwargs))
return TPUEmbeddingVariable(variables, name=name)
return sharded_variable_creator
|
Makes a sharded variable creator given a list of hosts.
Args:
hosts: a list of tensorflow devices on which to shard the tensors.
Returns:
A variable creator function.
|
github-repos
|
def _read_protocol_line(self):
self._server_start_stdout = []
while True:
line = self._proc.stdout.readline().decode('utf-8')
if not line:
raise errors.ServerStartError(self._device, 'Unexpected EOF when waiting for server to start.')
line = line.strip()
if line.startswith('INSTRUMENTATION_RESULT:') or line.startswith('SNIPPET '):
self.log.debug('Accepted line from instrumentation output: "%s"', line)
return line
self._server_start_stdout.append(line)
self.log.debug('Discarded line from instrumentation output: "%s"', line)
|
Reads the next line of instrumentation output relevant to snippets.
This method will skip over lines that don't start with 'SNIPPET ' or
'INSTRUMENTATION_RESULT:'.
Returns:
A string for the next line of snippet-related instrumentation output,
stripped.
Raises:
errors.ServerStartError: If EOF is reached without any protocol lines
being read.
|
github-repos
|
async def get_movie(self, id_):
url = self.url_builder(
'movie/{movie_id}',
dict(movie_id=id_),
url_params=OrderedDict(append_to_response='credits'),
)
data = await self.get_data(url)
if data is None:
return
return Movie.from_json(data, self.config['data'].get('images'))
|
Retrieve movie data by ID.
Arguments:
id_ (:py:class:`int`): The movie's TMDb ID.
Returns:
:py:class:`~.Movie`: The requested movie.
|
juraj-google-style
|
def __init__(self, header, values, datetimes):
assert isinstance(header, Header), \
'header must be a Ladybug Header object. Got {}'.format(type(header))
assert isinstance(datetimes, Iterable) \
and not isinstance(datetimes, (str, dict, bytes, bytearray)), \
'datetimes should be a list or tuple. Got {}'.format(type(datetimes))
self._header = header
self._datetimes = tuple(datetimes)
self.values = values
self._validated_a_period = False
|
Initialize base collection.
Args:
header: A Ladybug Header object.
values: A list of values.
datetimes: A list of Ladybug DateTime objects that aligns with
the list of values.
|
juraj-google-style
|
def get_qa_logit_layer(self) -> nn.Module:
if hasattr(self, 'answer_head'):
return self.answer_head.logit_fc[-1]
|
Returns the linear layer that produces question answering logits
Returns:
`nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType
object if Lxmert does not have the visual answering head.
|
github-repos
|
def from_dict(cls, parameters):
instance = cls()
instance.fitted = parameters['fitted']
instance.constant_value = parameters['constant_value']
if instance.fitted and instance.constant_value is None:
instance.model = scipy.stats.truncnorm(parameters['a'], parameters['b'])
return instance
|
Set attributes with provided values.
Args:
parameters(dict): Dictionary containing instance parameters.
Returns:
Truncnorm: Instance populated with given parameters.
|
juraj-google-style
|
def make_single_array(ds, batch_size=8*1024):
if isinstance(ds.output_types, tuple) or isinstance(ds.output_shapes, tuple):
raise ValueError('Dataset must have a single type and shape')
nshapes = len(ds.output_shapes)
if nshapes > 0:
raise ValueError('Dataset must be comprised of scalars (TensorShape=[])')
batches = []
with tf.Session() as sess:
ds = ds.batch(batch_size)
iterator = ds.make_initializable_iterator()
sess.run(iterator.initializer)
get_next = iterator.get_next()
with tqdm(desc='Elements', unit_scale=1) as pbar:
try:
while True:
batches.append(sess.run(get_next))
pbar.update(len(batches[-1]))
except tf.errors.OutOfRangeError:
pass
if batches:
return np.concatenate(batches)
return np.array([], dtype=ds.output_types.as_numpy_dtype)
|
Create a single numpy array from a dataset.
The dataset must have only one dimension, that is,
the length of its `output_shapes` and `output_types`
is 1, and its output shape must be `[]`, that is,
every tensor in the dataset must be a scalar.
Args:
ds: a TF Dataset.
batch_size: how many elements to read per pass
Returns:
a single numpy array.
|
juraj-google-style
|
def __init__(self, bytes_per_pack=0, timeout_seconds=None):
pass
|
Creates a CollectiveHints.
Args:
bytes_per_pack: a non-negative integer. Breaks collective operations into
packs of certain size. If it's zero, the value is determined
automatically. This only applies to all-reduce with
`MultiWorkerMirroredStrategy` currently.
timeout_seconds: a float or None, timeout in seconds. If not None, the
collective raises `tf.errors.DeadlineExceededError` if it takes longer
than this timeout. This can be useful when debugging hanging issues.
This should only be used for debugging since it creates a new thread for
each collective, i.e. an overhead of `timeout_seconds *
num_collectives_per_second` more threads. This only works for
`tf.distribute.experimental.MultiWorkerMirroredStrategy`.
Raises:
ValueError: When arguments have invalid value.
|
github-repos
|
def status(self, job_ids):
logging.debug("Checking status of : {0}".format(job_ids))
for job_id in self.resources:
poll_code = self.resources[job_id]['proc'].poll()
if self.resources[job_id]['status'] in ['COMPLETED', 'FAILED']:
continue
if poll_code is None:
self.resources[job_id]['status'] = 'RUNNING'
elif poll_code == 0 and self.resources[job_id]['status'] != 'RUNNING':
self.resources[job_id]['status'] = 'COMPLETED'
elif poll_code < 0 and self.resources[job_id]['status'] != 'RUNNING':
self.resources[job_id]['status'] = 'FAILED'
return [self.resources[jid]['status'] for jid in job_ids]
|
Get the status of a list of jobs identified by their ids.
Args:
- job_ids (List of ids) : List of identifiers for the jobs
Returns:
- List of status codes.
|
juraj-google-style
|
def validate_probability(p: float, p_str: str) -> float:
if p < 0:
raise ValueError('{} was less than 0.'.format(p_str))
elif p > 1:
raise ValueError('{} was greater than 1.'.format(p_str))
return p
|
Validates that a probability is between 0 and 1 inclusively.
Args:
p: The value to validate.
p_str: What to call the probability in error messages.
Returns:
The probability p if the probability if valid.
Raises:
ValueError if the probability is invalid.
|
juraj-google-style
|
def __init__(self, mediator=None):
super(WindowsVolumeScanner, self).__init__(mediator=mediator)
self._file_system = None
self._path_resolver = None
self._windows_directory = None
|
Initializes a Windows volume scanner.
Args:
mediator (VolumeScannerMediator): a volume scanner mediator.
|
juraj-google-style
|
def broadcast_shapes(shape1, shape2):
shape1 = list(shape1)
shape2 = list(shape2)
origin_shape1 = shape1
origin_shape2 = shape2
if len(shape1) > len(shape2):
shape2 = [1] * (len(shape1) - len(shape2)) + shape2
if len(shape1) < len(shape2):
shape1 = [1] * (len(shape2) - len(shape1)) + shape1
output_shape = list(shape1)
for i in range(len(shape1)):
if shape1[i] == 1:
output_shape[i] = shape2[i]
elif shape1[i] is None:
output_shape[i] = None if shape2[i] == 1 else shape2[i]
elif shape2[i] == 1 or shape2[i] is None or shape2[i] == shape1[i]:
output_shape[i] = shape1[i]
else:
raise ValueError(f'Cannot broadcast shape, the failure dim has value {shape1[i]}, which cannot be broadcasted to {shape2[i]}. Input shapes are: {origin_shape1} and {origin_shape2}.')
return output_shape
|
Broadcast input shapes to a unified shape.
Convert to list for mutability.
Args:
shape1: A tuple or list of integers.
shape2: A tuple or list of integers.
Returns:
output_shape (list of integers or `None`): The broadcasted shape.
Example:
>>> broadcast_shapes((5, 3), (1, 3))
[5, 3]
|
github-repos
|
def probabilistic_collocation(order, dist, subset=0.1):
(abscissas, weights) = chaospy.quad.collection.golub_welsch(order, dist)
likelihood = dist.pdf(abscissas)
alpha = numpy.random.random(len(weights))
alpha = (likelihood > ((alpha * subset) * numpy.max(likelihood)))
abscissas = abscissas.T[alpha].T
weights = weights[alpha]
return (abscissas, weights)
|
Probabilistic collocation method.
Args:
order (int, numpy.ndarray) : Quadrature order along each axis.
dist (Dist) : Distribution to generate samples from.
subset (float) : Rate of which to removed samples.
|
codesearchnet
|
def ProcessGlobalSuppresions(lines):
for line in lines:
if _SEARCH_C_FILE.search(line):
for category in _DEFAULT_C_SUPPRESSED_CATEGORIES:
_global_error_suppressions[category] = True
if _SEARCH_KERNEL_FILE.search(line):
for category in _DEFAULT_KERNEL_SUPPRESSED_CATEGORIES:
_global_error_suppressions[category] = True
|
Updates the list of global error suppressions.
Parses any lint directives in the file that have global effect.
Args:
lines: An array of strings, each representing a line of the file, with the
last element being empty if the file is terminated with a newline.
|
codesearchnet
|
def _try_refresh_access_token(self) -> None:
if self.refresh_token:
if ((not self.access_token) or self._is_access_token_expired()):
(self.access_token, self.access_expiration) = self._get_access_from_refresh()
self.access_expiration = (time.time() + self.access_expiration)
|
Attempts to get a new access token using the refresh token, if needed.
If the access token is expired and this instance has a stored refresh token,
then the refresh token is in the API call to get a new access token. If
successful, this instance is modified in-place with that new access token.
Args:
None
Returns:
None
|
codesearchnet
|
def Match(self, artifact=None, os_name=None, cpe=None, label=None):
return [
c for c in self.conditions if c.Match(artifact, os_name, cpe, label)
]
|
Test if host data should trigger a check.
Args:
artifact: An artifact name.
os_name: An OS string.
cpe: A CPE string.
label: A label string.
Returns:
A list of conditions that match.
|
juraj-google-style
|
def _build_hash_string(self):
if ((self.site_name in SITE_LIST) or self.hash_string):
if (self.username and self.password):
try:
hash_string = self.hash_string.format(self.password)
except TypeError:
raise PybooruError("Pybooru can't add 'password' to 'hash_string'")
self.password_hash = hashlib.sha1(hash_string.encode('utf-8')).hexdigest()
else:
raise PybooruError("Specify the 'username' and 'password' parameters of the Pybooru object, for setting 'password_hash' attribute.")
else:
raise PybooruError("Specify the 'hash_string' parameter of the Pybooru object, for the functions that requires login.")
|
Function for build password hash string.
Raises:
PybooruError: When isn't provide hash string.
PybooruError: When aren't provide username or password.
PybooruError: When Pybooru can't add password to hash strring.
|
codesearchnet
|
def load_validation_plugin(name=None):
if (not name):
return BaseValidationRules
plugin = None
for entry_point in iter_entry_points('bigchaindb.validation', name):
plugin = entry_point.load()
if (not plugin):
raise ResolutionError('No plugin found in group `bigchaindb.validation` with name `{}`'.format(name))
if (not issubclass(plugin, (BaseValidationRules,))):
raise TypeError('object of type "{}" does not implement `bigchaindb.validation.BaseValidationRules`'.format(type(plugin)))
return plugin
|
Find and load the chosen validation plugin.
Args:
name (string): the name of the entry_point, as advertised in the
setup.py of the providing package.
Returns:
an uninstantiated subclass of ``bigchaindb.validation.AbstractValidationRules``
|
codesearchnet
|
def VerifyStructure(self, parser_mediator, line):
self._last_month = 0
self._year_use = parser_mediator.GetEstimatedYear()
try:
structure = self.SECURITYD_LINE.parseString(line)
except pyparsing.ParseException:
logger.debug('Not a MacOS securityd log file')
return False
time_elements_tuple = self._GetTimeElementsTuple(structure)
try:
dfdatetime_time_elements.TimeElements(time_elements_tuple=time_elements_tuple)
except ValueError:
logger.debug('Not a MacOS securityd log file, invalid date and time: {0!s}'.format(structure.date_time))
return False
self._last_month = time_elements_tuple[1]
return True
|
Verify that this file is a securityd log file.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
line (str): line from a text file.
Returns:
bool: True if the line is in the expected format, False if not.
|
codesearchnet
|
def get_palette(num_colors=256):
pallete = [0]*(num_colors*3)
for j in range(0, num_colors):
lab = j
pallete[j*3+0] = 0
pallete[j*3+1] = 0
pallete[j*3+2] = 0
i = 0
while (lab > 0):
pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i))
pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i))
pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i))
i = i + 1
lab >>= 3
return pallete
|
generates the colormap for visualizing the segmentation mask
Args:
num_colors (int): the number of colors to generate in the output palette
Returns:
string: the supplied extension, if assertion is successful.
|
juraj-google-style
|
def check_requirements_file(req_file, skip_packages):
reqs = read_requirements(req_file)
if (skip_packages is not None):
reqs = [req for req in reqs if (req.name not in skip_packages)]
outdated_reqs = filter(None, [check_req(req) for req in reqs])
return outdated_reqs
|
Return list of outdated requirements.
Args:
req_file (str): Filename of requirements file
skip_packages (list): List of package names to ignore.
|
codesearchnet
|
def _get_filename_from_url(url):
parse = urlparse(url)
return os.path.basename(parse.path)
|
Return a filename from a URL
Args:
url (str): URL to extract filename from
Returns:
(str): Filename in URL
|
juraj-google-style
|
def _get_dominant_angle(lines, domination_type=MEDIAN):
if (domination_type == MEDIAN):
return _get_median_angle(lines)
elif (domination_type == MEAN):
return _get_mean_angle(lines)
else:
raise ValueError(('Unknown domination type provided: %s' % domination_type))
|
Picks dominant angle of a set of lines.
Args:
lines: iterable of (x1, y1, x2, y2) tuples that define lines.
domination_type: either MEDIAN or MEAN.
Returns:
Dominant angle value in radians.
Raises:
ValueError: on unknown domination_type.
|
codesearchnet
|
def _reduce_output(self, outputs, seq_lengths):
batch_size = outputs.shape[0]
reduced = []
for i in range(batch_size):
if (self.lstm_reduction == 'mean'):
reduced.append(outputs[(i, :seq_lengths[i], :)].mean(dim=0))
elif (self.lstm_reduction == 'max'):
reduced.append(outputs[(i, :seq_lengths[i], :)].max(dim=0)[0])
elif (self.lstm_reduction == 'last'):
reduced.append(outputs[(i, (seq_lengths[i] - 1), :)])
elif (self.lstm_reduction == 'attention'):
reduced.append(self._attention(outputs[(i, :seq_lengths[i], :)]))
else:
msg = f"Did not recognize lstm kwarg 'lstm_reduction' == {self.lstm_reduction}"
raise ValueError(msg)
return torch.stack(reduced, dim=0)
|
Reduces the output of an LSTM step
Args:
outputs: (torch.FloatTensor) the hidden state outputs from the
lstm, with shape [batch_size, max_seq_length, hidden_size]
|
codesearchnet
|
def get(self, key, default=None, cast=True):
tablename, _, key = key.rpartition(':')
if tablename and tablename not in self.fields.name.split('+'):
raise ItsdbError('column requested from wrong table: {}'
.format(tablename))
try:
index = self.fields.index(key)
value = list.__getitem__(self, index)
except (KeyError, IndexError):
value = default
else:
if cast:
field = self.fields[index]
value = _cast_to_datatype(value, field)
return value
|
Return the field data given by field name *key*.
Args:
key: the field name of the data to return
default: the value to return if *key* is not in the row
|
juraj-google-style
|
def UpdateIncludeState(filename, include_dict, io=codecs):
headerfile = None
try:
headerfile = io.open(filename, 'r', 'utf8', 'replace')
except IOError:
return False
linenum = 0
for line in headerfile:
linenum += 1
clean_line = CleanseComments(line)
match = _RE_PATTERN_INCLUDE.search(clean_line)
if match:
include = match.group(2)
include_dict.setdefault(include, linenum)
return True
|
Fill up the include_dict with new includes found from the file.
Args:
filename: the name of the header to read.
include_dict: a dictionary in which the headers are inserted.
io: The io factory to use to read the file. Provided for testability.
Returns:
True if a header was successfully added. False otherwise.
|
juraj-google-style
|
def get_frame(self, index):
frame_num = self.frame_index[index]
onset = float(frame_num) / self.fps
if index < self.n_frames - 1:
next_frame_num = self.frame_index[index + 1]
end = float(next_frame_num) / self.fps
else:
end = float(self.duration)
duration = end - onset if end > onset else 0.0
return VideoFrameStim(self, frame_num,
data=self.clip.get_frame(onset),
duration=duration)
|
Get video frame at the specified index.
Args:
index (int): Positional index of the desired frame.
|
juraj-google-style
|
def add_member_to_list(self, username, listname, member_type='USER'):
return self.client.service.addMemberToList(listname, username, member_type, self.proxy_id)
|
Add a member to an existing list.
Args:
username (str): The username of the user to add
listname (str): The name of the list to add the user to
member_type (str): Normally, this should be "USER".
If you are adding a list as a member of another list,
set this to "LIST", instead.
|
codesearchnet
|
def pull(self, platform=None):
repository, _ = parse_repository_tag(self.image_name)
return self.collection.pull(repository, tag=self.id, platform=platform)
|
Pull the image digest.
Args:
platform (str): The platform to pull the image for.
Default: ``None``
Returns:
(:py:class:`Image`): A reference to the pulled image.
|
juraj-google-style
|
def render_template_inplace(template_path, info, dry_run=False, extra_filters=None, resolver=None):
filters = {}
if (resolver is not None):
filters['find_product'] = _create_resolver_filter(resolver)
if (extra_filters is not None):
filters.update(extra_filters)
basedir = os.path.dirname(template_path)
template_name = os.path.basename(template_path)
if (not template_name.endswith('.tpl')):
raise ArgumentError('You must specify a filename that ends in .tpl', filepath=template_path)
out_path = os.path.join(basedir, template_name[:(- 4)])
if (basedir == ''):
basedir = '.'
env = Environment(loader=FileSystemLoader(basedir), trim_blocks=True, lstrip_blocks=True)
for (name, func) in filters.items():
env.filters[name] = func
template = env.get_template(template_name)
result = template.render(info)
if (not dry_run):
with open(out_path, 'wb') as outfile:
outfile.write(result.encode('utf-8'))
return out_path
|
Render a template file in place.
This function expects template path to be a path to a file
that ends in .tpl. It will be rendered to a file in the
same directory with the .tpl suffix removed.
Args:
template_path (str): The path to the template file
that we want to render in place.
info (dict): A dictionary of variables passed into the template to
perform substitutions.
dry_run (bool): Whether to actually render the output file or just return
the file path that would be generated.
extra_filters (dict of str -> callable): An optional group of filters that
will be made available to the template. The dict key will be the
name at which callable is made available.
resolver (ProductResolver): The specific ProductResolver class to use in the
find_product filter.
Returns:
str: The path to the output file generated.
|
codesearchnet
|
def print_start_command(self, command):
size = len(command)
if size > 20:
raise RuntimeError('Command too long')
n1 = size/10
n2 = size%10
self.send('^PS'+chr(n1)+chr(n2)+command)
|
Set print command
Args:
command: the type of command you desire.
Returns:
None
Raises:
RuntimeError: Command too long.
|
juraj-google-style
|
def db(self, entity, query_filters='size=10'):
if (self.entity_api_key == ''):
return {'status': 'failure', 'response': 'No API key found in request'}
historic_url = ((self.base_url + 'api/0.1.0/historicData?') + query_filters)
historic_headers = {'apikey': self.entity_api_key, 'Content-Type': 'application/json'}
historic_query_data = json.dumps({'query': {'match': {'key': entity}}})
with self.no_ssl_verification():
r = requests.get(historic_url, data=historic_query_data, headers=historic_headers)
response = dict()
if ('No API key' in str(r.content.decode('utf-8'))):
response['status'] = 'failure'
else:
r = r.content.decode('utf-8')
response = r
return response
|
This function allows an entity to access the historic data.
Args:
entity (string): Name of the device to listen to
query_filters (string): Elastic search response format string
example, "pretty=true&size=10"
|
codesearchnet
|
def decorate_set_on_listener(prototype):
def add_annotation(method):
method._event_info = {}
method._event_info['name'] = method.__name__
method._event_info['prototype'] = prototype
return method
return add_annotation
|
Private decorator for use in the editor.
Allows the Editor to create listener methods.
Args:
params (str): The list of parameters for the listener
method (es. "(self, new_value)")
|
codesearchnet
|
def __call__(self, **kwargs):
if len(kwargs) != len(self._inputs):
raise ValueError('Invalid number of inputs provided for running a SignatureDef, expected %s vs provided %s' % (len(self._inputs), len(kwargs)))
for input_name, value in kwargs.items():
if input_name not in self._inputs:
raise ValueError('Invalid Input name (%s) for SignatureDef' % input_name)
self._interpreter_wrapper.ResizeInputTensor(self._inputs[input_name], np.array(value.shape, dtype=np.int32), False, self._subgraph_index)
self._interpreter_wrapper.AllocateTensors(self._subgraph_index)
for input_name, value in kwargs.items():
self._interpreter_wrapper.SetTensor(self._inputs[input_name], value, self._subgraph_index)
self._interpreter_wrapper.Invoke(self._subgraph_index)
result = {}
for output_name, output_index in self._outputs:
result[output_name] = self._interpreter_wrapper.GetTensor(output_index, self._subgraph_index)
return result
|
Runs the SignatureDef given the provided inputs in arguments.
Args:
**kwargs: key,value for inputs to the model. Key is the SignatureDef input
name. Value is numpy array with the value.
Returns:
dictionary of the results from the model invoke.
Key in the dictionary is SignatureDef output name.
Value is the result Tensor.
|
github-repos
|
def getContext(self, context_name = 'default'):
if context_name == 'default' and 'default' not in self.contexts:
self('default')
return self.contexts[context_name]
|
Get a context by name, create the default context if it does not exist
Params:
context_name (string):
Context name
Raises:
KeyError:
If the context name does not exist
Returns:
bubbler.Bubbler:
Named context
|
juraj-google-style
|
def added_tokens_decoder(self) -> dict[int, AddedToken]:
return dict(sorted(self._added_tokens_decoder.items(), key=lambda item: item[0]))
|
Returns the added tokens in the vocabulary as a dictionary of index to AddedToken.
Returns:
`Dict[str, int]`: The added tokens.
|
github-repos
|
def _ssl_context_factory(parameters):
client_cert = None
ca_cert = None
key = config.conf['tls']['keyfile']
cert = config.conf['tls']['certfile']
ca_file = config.conf['tls']['ca_cert']
if ca_file:
with open(ca_file, 'rb') as fd:
ca_cert = ssl.Certificate.loadPEM(fd.read())
if (key and cert):
with open(key) as fd:
client_keypair = fd.read()
with open(cert) as fd:
client_keypair += fd.read()
client_cert = ssl.PrivateCertificate.loadPEM(client_keypair)
hostname = parameters.host
if (not isinstance(hostname, six.text_type)):
hostname = hostname.decode(locale.getdefaultlocale()[1])
try:
context_factory = ssl.optionsForClientTLS(hostname, trustRoot=(ca_cert or ssl.platformTrust()), clientCertificate=client_cert, extraCertificateOptions={'raiseMinimumTo': ssl.TLSVersion.TLSv1_2})
except AttributeError:
context_factory = ssl.CertificateOptions(certificate=client_cert.original, privateKey=client_cert.privateKey.original, caCerts=([ca_cert.original] or ssl.platformTrust()), verify=True, requireCertificate=True, verifyOnce=False, enableSessions=False)
return context_factory
|
Produce a Twisted SSL context object from a pika connection parameter object.
This is necessary as Twisted manages the connection, not Pika.
Args:
parameters (pika.ConnectionParameters): The connection parameters built
from the fedora_messaging configuration.
|
codesearchnet
|
def register_mbr_plugin(self, fs_id, plugin):
self.logger.debug('MBR: {}, FS ID: {}'
.format(self.__get_plugin_name(plugin), fs_id))
self.__mbr_plugins[fs_id].append(plugin)
|
Used in plugin's registration routine,
to associate it's detection method with given filesystem id
Args:
fs_id: filesystem id that is read from MBR partition entry
plugin: plugin that supports this filesystem
|
juraj-google-style
|
def __init__(self, configuration, provider=None):
self._configuration = configuration
self._provider = provider
|
Base class for backends.
This method should initialize the module and its configuration, and
raise an exception if a component of the module is
not available.
Args:
configuration (BackendConfiguration): backend configuration
provider (BaseProvider): provider responsible for this backend
Raises:
FileNotFoundError if backend executable is not available.
QiskitError: if there is no name in the configuration
|
juraj-google-style
|
def plot_ax(self, ax=None, fontsize=12, **kwargs):
ax, fig, plt = get_ax_fig_plt(ax=ax)
color = kwargs.get("color", "r")
label = kwargs.get("label", "{} fit".format(self.__class__.__name__))
lines = ["Equation of State: %s" % self.__class__.__name__,
"Minimum energy = %1.2f eV" % self.e0,
"Minimum or reference volume = %1.2f Ang^3" % self.v0,
"Bulk modulus = %1.2f eV/Ang^3 = %1.2f GPa" %
(self.b0, self.b0_GPa),
"Derivative of bulk modulus wrt pressure = %1.2f" % self.b1]
text = "\n".join(lines)
text = kwargs.get("text", text)
ax.plot(self.volumes, self.energies, linestyle="None", marker="o", color=color)
vmin, vmax = min(self.volumes), max(self.volumes)
vmin, vmax = (vmin - 0.01 * abs(vmin), vmax + 0.01 * abs(vmax))
vfit = np.linspace(vmin, vmax, 100)
ax.plot(vfit, self.func(vfit), linestyle="dashed", color=color, label=label)
ax.grid(True)
ax.set_xlabel("Volume $\\AA^3$")
ax.set_ylabel("Energy (eV)")
ax.legend(loc="best", shadow=True)
ax.text(0.5, 0.5, text, fontsize=fontsize, horizontalalignment='center',
verticalalignment='center', transform=ax.transAxes)
return fig
|
Plot the equation of state on axis `ax`
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
fontsize: Legend fontsize.
color (str): plot color.
label (str): Plot label
text (str): Legend text (options)
Returns:
Matplotlib figure object.
|
juraj-google-style
|
def _get_backend_instance(self, backend_cls):
try:
backend_instance = backend_cls(provider=self)
except Exception as err:
raise QiskitError(('Backend %s could not be instantiated: %s' % (backend_cls, err)))
return backend_instance
|
Return an instance of a backend from its class.
Args:
backend_cls (class): Backend class.
Returns:
BaseBackend: a backend instance.
Raises:
QiskitError: if the backend could not be instantiated.
|
codesearchnet
|
def write(self, offset, data):
if (not isinstance(offset, (int, long))):
raise TypeError('Invalid offset type, should be integer.')
if (not isinstance(data, (bytes, bytearray, list))):
raise TypeError('Invalid data type, expected bytes, bytearray, or list.')
offset = self._adjust_offset(offset)
self._validate_offset(offset, len(data))
data = bytes(bytearray(data))
self.mapping[offset:(offset + len(data))] = data
|
Write a string of bytes to the specified `offset` in bytes, relative
to the base physical address of the MMIO region.
Args:
offset (int, long): offset from base physical address, in bytes.
data (bytes, bytearray, list): a byte array or list of 8-bit
integers to write.
Raises:
TypeError: if `offset` or `data` type are invalid.
ValueError: if `offset` is out of bounds, or if data is not valid bytes.
|
codesearchnet
|
def _compress_json(self, j):
compressed_json = copy.copy(j)
compressed_json.pop('users', None)
compressed_data = zlib.compress(
json.dumps(j['users']).encode('utf-8'),
self.zlib_compression_strength
)
b64_data = base64.b64encode(compressed_data).decode('utf-8')
compressed_json['blob'] = b64_data
return compressed_json
|
Compress the BLOB data portion of the usernotes.
Arguments:
j: the JSON in Schema v5 format (dict)
Returns a dict with the 'users' key removed and 'blob' key added
|
juraj-google-style
|
def get_first_model_with_rest_name(cls, rest_name):
models = cls.get_models_with_rest_name(rest_name)
if len(models) > 0:
return models[0]
return None
|
Get the first model corresponding to a rest_name
Args:
rest_name: the rest name
|
juraj-google-style
|
def RemoveEventAttribute(self, attribute_name):
if (attribute_name not in self._extra_event_attributes):
raise KeyError('Event attribute: {0:s} not set'.format(attribute_name))
del self._extra_event_attributes[attribute_name]
|
Removes an attribute from being set on all events produced.
Args:
attribute_name (str): name of the attribute to remove.
Raises:
KeyError: if the event attribute is not set.
|
codesearchnet
|
def GetEntries(
self, parser_mediator, cookie_data=None, url=None, **kwargs):
fields = cookie_data.split('.')
number_of_fields = len(fields)
if number_of_fields not in (1, 4):
parser_mediator.ProduceExtractionWarning(
'unsupported number of fields: {0:d} in cookie: {1:s}'.format(
number_of_fields, self.COOKIE_NAME))
return
if number_of_fields == 1:
domain_hash = None
try:
last_visit_posix_time = int(fields[0], 10) / 10000000
except ValueError:
last_visit_posix_time = None
number_of_pages_viewed = None
elif number_of_fields == 4:
domain_hash = fields[0]
try:
number_of_pages_viewed = int(fields[1], 10)
except ValueError:
number_of_pages_viewed = None
try:
if fields[2] in ('8', '9'):
last_visit_posix_time = int(fields[3], 10) / 1000
else:
last_visit_posix_time = int(fields[3], 10)
except ValueError:
last_visit_posix_time = None
if last_visit_posix_time is not None:
date_time = dfdatetime_posix_time.PosixTime(
timestamp=last_visit_posix_time)
timestamp_description = definitions.TIME_DESCRIPTION_LAST_VISITED
else:
date_time = dfdatetime_semantic_time.SemanticTime('Not set')
timestamp_description = definitions.TIME_DESCRIPTION_NOT_A_TIME
event_data = GoogleAnalyticsEventData('utmb')
event_data.cookie_name = self.COOKIE_NAME
event_data.domain_hash = domain_hash
event_data.pages_viewed = number_of_pages_viewed
event_data.url = url
event = time_events.DateTimeValuesEvent(date_time, timestamp_description)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extracts event objects from the cookie.
Args:
parser_mediator (ParserMediator): parser mediator.
cookie_data (bytes): cookie data.
url (str): URL or path where the cookie got set.
|
juraj-google-style
|
def __init__(self, name, aliases=None, description=None, urls=None):
super(UUIDDefinition, self).__init__(
name, aliases=aliases, description=description, urls=urls)
self.size = 16
|
Initializes an UUID data type definition.
Args:
name (str): name.
aliases (Optional[list[str]]): aliases.
description (Optional[str]): description.
urls (Optional[list[str]]): URLs.
|
juraj-google-style
|
def read_raw(self, key):
data = None
if (key is not None):
data = self.db.read(key.strip())
else:
self.tcex.log.warning(u'The key field was None.')
return data
|
Read method of CRUD operation for raw data.
Args:
key (string): The variable to read from the DB.
Returns:
(any): Results retrieved from DB.
|
codesearchnet
|
def console_from_file(filename: str) -> tcod.console.Console:
return tcod.console.Console._from_cdata(lib.TCOD_console_from_file(filename.encode('utf-8')))
|
Return a new console object from a filename.
The file format is automactially determined. This can load REXPaint `.xp`,
ASCII Paint `.apf`, or Non-delimited ASCII `.asc` files.
Args:
filename (Text): The path to the file, as a string.
Returns: A new :any`Console` instance.
|
codesearchnet
|
def create_endpoint(self, endpoint_name, config_name, tags=None, wait=True):
LOGGER.info('Creating endpoint with name {}'.format(endpoint_name))
tags = (tags or [])
self.sagemaker_client.create_endpoint(EndpointName=endpoint_name, EndpointConfigName=config_name, Tags=tags)
if wait:
self.wait_for_endpoint(endpoint_name)
return endpoint_name
|
Create an Amazon SageMaker ``Endpoint`` according to the endpoint configuration specified in the request.
Once the ``Endpoint`` is created, client applications can send requests to obtain inferences.
The endpoint configuration is created using the ``CreateEndpointConfig`` API.
Args:
endpoint_name (str): Name of the Amazon SageMaker ``Endpoint`` being created.
config_name (str): Name of the Amazon SageMaker endpoint configuration to deploy.
wait (bool): Whether to wait for the endpoint deployment to complete before returning (default: True).
Returns:
str: Name of the Amazon SageMaker ``Endpoint`` created.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.