Dataset Viewer
Auto-converted to Parquet
code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def CreateRetryTask(self): with self._lock: abandoned_task = self._GetTaskPendingRetry() if (not abandoned_task): return None retry_task = abandoned_task.CreateRetryTask() logger.debug('Retrying task {0:s} as {1:s}.'.format(abandoned_task.identifier, retry_task.identifier)) self._tasks_queued[retry_task.identifier] = retry_task self._total_number_of_tasks += 1 self.SampleTaskStatus(retry_task, 'created_retry') return retry_task
Creates a task that to retry a previously abandoned task. Returns: Task: a task that was abandoned but should be retried or None if there are no abandoned tasks that should be retried.
codesearchnet
def hr_dp010(self, value=None): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `hr_dp010`'.format(value)) self._hr_dp010 = value
Corresponds to IDD Field `hr_dp010` humidity ratio corresponding to Dew-point temperature corresponding to 1.0,% annual cumulative frequency of occurrence calculated at the standard atmospheric pressure at elevation of station Args: value (float): value for IDD Field `hr_dp010` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def upload_entities_tsv(namespace, workspace, entities_tsv): if isinstance(entities_tsv, string_types): with open(entities_tsv, 'r') as tsv: entity_data = tsv.read() elif isinstance(entities_tsv, io.StringIO): entity_data = entities_tsv.getvalue() else: raise ValueError('Unsupported input type.') return upload_entities(namespace, workspace, entity_data)
Upload entities from a tsv loadfile. File-based wrapper for api.upload_entities(). A loadfile is a tab-separated text file with a header row describing entity type and attribute names, followed by rows of entities and their attribute values. Ex: entity:participant_id age alive participant_23 25 Y participant_27 35 N Args: namespace (str): project to which workspace belongs workspace (str): Workspace name entities_tsv (file): FireCloud loadfile, see format above
codesearchnet
def _MaybeDeleteOldCheckpoints(self, meta_graph_suffix='meta'): if self._checkpoints_to_be_deleted: p = self._checkpoints_to_be_deleted.pop(0) should_keep = p[1] > self._next_checkpoint_time if should_keep: self._next_checkpoint_time += self.saver_def.keep_checkpoint_every_n_hours * 3600 return try: checkpoint_management.remove_checkpoint(self._CheckpointFilename(p), self.saver_def.version, meta_graph_suffix) except Exception as e: logging.warning('Ignoring: %s', str(e))
Deletes old checkpoints if necessary. `self._checkpoints_to_be_deleted` is going to contain checkpoints that are over `max_to_keep`. They are going to be deleted. If `keep_checkpoint_every_n_hours` was specified, keep an additional checkpoint every `N` hours. For example, if `N` is 0.5, an additional checkpoint is kept for every 0.5 hours of training; if `N` is 10, an additional checkpoint is kept for every 10 hours of training. Args: meta_graph_suffix: Suffix for `MetaGraphDef` file. Defaults to 'meta'.
github-repos
def set_margin(self, top=40, bottom=30, left=50, right=10, buffer_size=8): self.set_integer("top", top) self.set_integer("bottom", bottom) self.set_integer("left", left) self.set_integer("right", right) self.set_integer("buffer", buffer_size)
Set margin of the chart. Args: top (int): size of top margin in pixels. bottom (int): size of bottom margin in pixels. left (int): size of left margin in pixels. right (int): size of right margin in pixels. buffer_size (int): buffer size in pixels between the chart and margins.
juraj-google-style
def setRightsHolder(self, pid, userId, serialVersion, vendorSpecific=None): response = self.setRightsHolderResponse( pid, userId, serialVersion, vendorSpecific ) return self._read_boolean_response(response)
See Also: setRightsHolderResponse() Args: pid: userId: serialVersion: vendorSpecific: Returns:
juraj-google-style
def get_subport_statistics(self, id_or_uri, port_name, subport_number): uri = self._client.build_uri(id_or_uri) + "/statistics/{0}/subport/{1}".format(port_name, subport_number) return self._client.get(uri)
Gets the subport statistics on an interconnect. Args: id_or_uri: Can be either the interconnect id or the interconnect uri. port_name (str): A specific port name of an interconnect. subport_number (int): The subport. Returns: dict: The statistics for the interconnect that matches id, port_name, and subport_number.
juraj-google-style
def Decrypt(self, encrypted_data): decrypted_data = self._rc4_cipher.decrypt(encrypted_data) return decrypted_data, b''
Decrypts the encrypted data. Args: encrypted_data (bytes): encrypted data. Returns: tuple[bytes,bytes]: decrypted data and remaining encrypted data.
juraj-google-style
def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls): if len(fuse_module_names) == 0: return if hasattr(module, fuse_module_names[0]): gate_proj = getattr(module, fuse_module_names[0]) up_proj = getattr(module, fuse_module_names[1]) down_proj = getattr(module, fuse_module_names[2]) previous_device = gate_proj.qweight.device config = model.config.get_text_config(decoder=True) hidden_act = config.hidden_act activation_fn = ACT2FN[hidden_act] new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn) parent_name, child_name = current_module_name.rsplit('.', 1) parent = model.get_submodule(parent_name) setattr(parent, child_name, new_module.to(previous_device)) del gate_proj, up_proj, down_proj
Fuse the MLP layers into a target class using autoawq Args: model (`~PreTrainedModel`): The input pretrained model current_module_name (`str`): The current submodule name fuse_module_names (`List[str]`): The list of module names to fuse. For the MLP layers it has to be an array of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers) module (`nn.Module`): The pytorch parent module that has layernorm modules to fuse target_cls (`~autoawq.QuantFusedMLP`): The `QuantFusedMLP` class as it only supports that class for now.
github-repos
def parse_test_files(filepattern): for path in glob.glob(filepattern): with open(path) as fin: suite_name = os.path.splitext(os.path.basename(path))[0].title().replace('-', '') + 'Test' print(path, suite_name) methods = dict(create_test_methods(yaml.load(fin, Loader=yaml_transform.SafeLineLoader))) globals()[suite_name] = type(suite_name, (unittest.TestCase,), methods)
Parses YAML test files and dynamically creates test cases. This function iterates through all files matching the given glob pattern. For each YAML file found, it: 1. Reads the file content. 2. Determines a test suite name based on the file name. 3. Calls `create_test_methods` to generate test methods from the YAML specification. 4. Dynamically creates a new TestCase class (inheriting from `unittest.TestCase`) and populates it with the generated test methods. 5. Adds this newly created TestCase class to the global scope, making it discoverable by the unittest framework. Args: filepattern (str): A glob pattern specifying the YAML test files to parse. For example, 'path/to/tests/*.yaml'.
github-repos
def __init__(self, assign_defaults=(), method_name=None): super(self.__class__, self).__init__(assign_defaults=assign_defaults, method_name=method_name)
Assigns arguments to the decorator. Args: assign_defaults: A sequence of strings for the default values that should be provided. Defaults are shared across methods. method_name: If provided, use this as the method_name instead of the wrapped function's name.
juraj-google-style
def grow(script, iterations=1): filter_xml = ' <filter name="Dilate Selection"/>\n' for _ in range(iterations): util.write_filter(script, filter_xml) return None
Grow (dilate, expand) the current set of selected faces Args: script: the FilterScript object or script filename to write the filter to. iterations (int): the number of times to grow the selection. Layer stack: No impacts MeshLab versions: 2016.12 1.3.4BETA
juraj-google-style
def __init__(self, channel): self.ListKnowledgeBases = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.KnowledgeBases/ListKnowledgeBases', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.ListKnowledgeBasesRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.ListKnowledgeBasesResponse.FromString, ) self.GetKnowledgeBase = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.KnowledgeBases/GetKnowledgeBase', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.GetKnowledgeBaseRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.KnowledgeBase.FromString, ) self.CreateKnowledgeBase = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.KnowledgeBases/CreateKnowledgeBase', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.CreateKnowledgeBaseRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.KnowledgeBase.FromString, ) self.DeleteKnowledgeBase = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.KnowledgeBases/DeleteKnowledgeBase', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_knowledge__base__pb2.DeleteKnowledgeBaseRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, )
Constructor. Args: channel: A grpc.Channel.
juraj-google-style
def SetLines(self, lines): (self._cli_lines, self._cli_cols) = TerminalSize() if lines: self._cli_lines = int(lines)
Set number of screen lines. Args: lines: An int, number of lines. If None, use terminal dimensions. Raises: ValueError, TypeError: Not a valid integer representation.
codesearchnet
def delete_value(hive, key, vname=None, use_32bit_registry=False): return __utils__['reg.delete_value'](hive=hive, key=key, vname=vname, use_32bit_registry=use_32bit_registry)
r''' Delete a registry value entry or the default value for a key. Args: hive (str): The name of the hive. Can be one of the following - HKEY_LOCAL_MACHINE or HKLM - HKEY_CURRENT_USER or HKCU - HKEY_USER or HKU - HKEY_CLASSES_ROOT or HKCR - HKEY_CURRENT_CONFIG or HKCC key (str): The key (looks like a path) to the value name. vname (str): The value name. These are the individual name/data pairs under the key. If not passed, the key (Default) value will be deleted. use_32bit_registry (bool): Deletes the 32bit portion of the registry on 64bit installations. On 32bit machines this is ignored. Returns: bool: True if successful, otherwise False CLI Example: .. code-block:: bash salt '*' reg.delete_value HKEY_CURRENT_USER 'SOFTWARE\\Salt' 'version'
codesearchnet
def set_topic(self, topic): if not topic: topic = '' result = self._connection.put("room/%s" % self.id, {"room": {"topic": topic}}) if result["success"]: self._load() return result["success"]
Set the room topic. Args: topic (str): Topic Returns: bool. Success
juraj-google-style
def lu_factor(x): if any_symbolic_tensors((x,)): return LuFactor().symbolic_call(x) return _lu_factor(x)
Computes the lower-upper decomposition of a square matrix. Args: x: A tensor of shape `(..., M, M)`. Returns: A tuple of two tensors: a tensor of shape `(..., M, M)` containing the lower and upper triangular matrices and a tensor of shape `(..., M)` containing the pivots.
github-repos
def remove(self, dic): for kw in dic: removePair = Pair(kw, dic[kw]) self._remove([removePair])
remove the pair by passing a identical dict Args: dic (dict): key and value
codesearchnet
def CreateServiceProto(job): service = rdf_client.OSXServiceInformation( label=job.get("Label"), program=job.get("Program"), sessiontype=job.get("LimitLoadToSessionType"), lastexitstatus=int(job["LastExitStatus"]), timeout=int(job["TimeOut"]), ondemand=bool(job["OnDemand"])) for arg in job.get("ProgramArguments", "", stringify=False): service.args.Append(str(arg)) mach_dict = job.get("MachServices", {}, stringify=False) for key, value in iteritems(mach_dict): service.machservice.Append("%s:%s" % (key, value)) job_mach_dict = job.get("PerJobMachServices", {}, stringify=False) for key, value in iteritems(job_mach_dict): service.perjobmachservice.Append("%s:%s" % (key, value)) if "PID" in job: service.pid = job["PID"].value return service
Create the Service protobuf. Args: job: Launchdjobdict from servicemanagement framework. Returns: sysinfo_pb2.OSXServiceInformation proto
juraj-google-style
def read_file(path): gen = textfile.read_separated_lines_generator(path, max_columns=6, ignore_lines_starting_with=[';;']) utterances = collections.defaultdict(list) for record in gen: values = record[1:len(record)] for i in range(len(values)): if i == 1 or i == 2 or i == 4: values[i] = float(values[i]) utterances[record[0]].append(values) return utterances
Reads a ctm file. Args: path (str): Path to the file Returns: (dict): Dictionary with entries. Example:: >>> read_file('/path/to/file.txt') { 'wave-ab': [ ['1', 0.00, 0.07, 'HI', 1], ['1', 0.09, 0.08, 'AH', 1] ], 'wave-xy': [ ['1', 0.00, 0.07, 'HI', 1], ['1', 0.09, 0.08, 'AH', 1] ] }
juraj-google-style
def __init__(self, table_name, dataset, schema, project): beam.PTransform.__init__(self) self.table_name = table_name self.dataset = dataset self.schema = schema self.project = project
Initializes the transform. Args: table_name: Name of the BigQuery table to use. dataset: Name of the dataset to use. schema: Dictionary in the format {'column_name': 'bigquery_type'} project: Name of the Cloud project containing BigQuery table.
github-repos
def fit(self, *args): data = list(zip(*args)) self.save() if self._fit_batch_size is None: raise ConfigError("in order to use fit() method" " set `fit_batch_size` parameter") bs = int(self._fit_batch_size) data_len = len(data) num_batches = self._fit_max_batches or ((data_len - 1) avg_loss = 0. best_loss = float('inf') lrs, losses = [], [] _lr_find_schedule = DecayScheduler(start_val=self._fit_learning_rate[0], end_val=self._fit_learning_rate[1], dec_type="exponential", num_it=num_batches) self._lr = _lr_find_schedule.start_val self._mom = 0. self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) best_lr = _lr_find_schedule.start_val for i in range(num_batches): batch_start = (i * bs) % data_len batch_end = batch_start + bs report = self.train_on_batch(*zip(*data[batch_start:batch_end])) if not isinstance(report, dict): report = {'loss': report} avg_loss = self._fit_beta*avg_loss + (1 - self._fit_beta)*report['loss'] smoothed_loss = avg_loss / (1 - self._fit_beta**(i + 1)) lrs.append(self._lr) losses.append(smoothed_loss) log.info(f"Batch {i}/{num_batches}: smooth_loss = {smoothed_loss}" f", lr = {self._lr}, best_lr = {best_lr}") if math.isnan(smoothed_loss) or (smoothed_loss > 4 * best_loss): break if (smoothed_loss < best_loss) and (i >= self._fit_min_batches): best_loss = smoothed_loss best_lr = self._lr self._lr = _lr_find_schedule.next_val() self._update_graph_variables(learning_rate=self._lr) if i >= num_batches: break end_val = self._get_best(lrs, losses) start_val = end_val if self._lr_schedule.dec_type in (DecayType.ONECYCLE, DecayType.TRAPEZOID): start_val = end_val / self._fit_learning_rate_div elif self._lr_schedule.dec_type in (DecayType.POLYNOMIAL, DecayType.EXPONENTIAL, DecayType.LINEAR, DecayType.COSINE): start_val = end_val end_val = end_val / self._fit_learning_rate_div self._lr_schedule = DecayScheduler(start_val=start_val, end_val=end_val, num_it=self._lr_schedule.nb, dec_type=self._lr_schedule.dec_type, extra=self._lr_schedule.extra) log.info(f"Found best learning rate value = {best_lr}" f", setting new learning rate schedule with {self._lr_schedule}.") self.load() self._lr = self._lr_schedule.start_val self._mom = self._mom_schedule.start_val self._update_graph_variables(learning_rate=self._lr, momentum=self._mom) return {'smoothed_loss': losses, 'learning_rate': lrs}
Find the best learning rate schedule, and set obtained values of learning rate and momentum for further model training. Best learning rate will be divided by `fit_learning_rate_div` for further training model. Args: *args: arguments Returns:
juraj-google-style
def distance_to_angle(distance, units='metric'): if (units in ('km', 'metric')): pass elif (units in ('sm', 'imperial', 'US customary')): distance *= STATUTE_MILE elif (units in ('nm', 'nautical')): distance *= NAUTICAL_MILE else: raise ValueError(('Unknown units type %r' % units)) return math.degrees((distance / BODY_RADIUS))
Convert a distance in to an angle along a great circle. Args: distance (float): Distance to convert to degrees units (str): Unit type to be used for distances Returns: float: Angle in degrees Raises: ValueError: Unknown value for ``units``
codesearchnet
def __call__(self, inputs, state, scope=None): return self._call_wrapped_cell(inputs, state, cell_call_fn=self.cell.__call__, scope=scope)
Runs the RNN cell step computation. We assume that the wrapped RNNCell is being built within its `__call__` method. We directly use the wrapped cell's `__call__` in the overridden wrapper `__call__` method. This allows to use the wrapped cell and the non-wrapped cell equivalently when using `__call__`. Args: inputs: A tensor with wrapped cell's input. state: A tensor or tuple of tensors with wrapped cell's state. scope: VariableScope for the subgraph created in the wrapped cells' `__call__`. Returns: A pair containing: - Output: A tensor with cell's output. - New state: A tensor or tuple of tensors with new wrapped cell's state.
github-repos
def get_yield_stress(self, n): comp = root(self.get_stability_criteria, (- 1), args=n) tens = root(self.get_stability_criteria, 1, args=n) return (comp.x, tens.x)
Gets the yield stress for a given direction Args: n (3x1 array-like): direction for which to find the yield stress
codesearchnet
def from_json(cls, name, spec): if "run" not in spec: raise TuneError("No trainable specified!") if "env" in spec: spec["config"] = spec.get("config", {}) spec["config"]["env"] = spec["env"] del spec["env"] spec = copy.deepcopy(spec) run_value = spec.pop("run") try: exp = cls(name, run_value, **spec) except TypeError: raise TuneError("Improper argument from JSON: {}.".format(spec)) return exp
Generates an Experiment object from JSON. Args: name (str): Name of Experiment. spec (dict): JSON configuration of experiment.
juraj-google-style
def ContainsAddressStr(self, address): for key, contract in self._contracts.items(): if contract.Address == address: return True return False
Determine if the wallet contains the address. Args: address (str): a string representing the public key. Returns: bool: True, if the address is present in the wallet. False otherwise.
juraj-google-style
def min(self): if self.is_quantized or self.base_dtype in (bool, string, complex64, complex128): raise TypeError(f'Cannot find minimum value of {self} with {('quantized type' if self.is_quantized else 'type')} {self.base_dtype}.') try: return ml_dtypes.finfo(self.as_numpy_dtype).min except: try: return ml_dtypes.iinfo(self.as_numpy_dtype).min except: raise TypeError(f'Cannot find minimum value of {self}.')
Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type.
github-repos
def case_to_clinVars(self, case_id): query = dict(case_id=case_id, csv_type='variant') clinvar_objs = list(self.clinvar_collection.find(query)) submitted_vars = {} for clinvar in clinvar_objs: submitted_vars[clinvar.get('local_id')] = clinvar return submitted_vars
Get all variants included in clinvar submissions for a case Args: case_id(str): a case _id Returns: submission_variants(dict): keys are variant ids and values are variant submission objects
juraj-google-style
def build(self): return copy.deepcopy(self._options)
Build a profiling option. Returns: A dict of profiling options.
github-repos
def user_ban(channel, user): username = user.name if isinstance(user, discord.Member): if user.nick is not None: username = user.nick gui = ui_embed.UI( channel, "Banned {}".format(username), "{} has been banned from this server".format(username), modulename=modulename ) return gui
Creates an embed UI containing an user warning message Args: channel (discord.Channel): The Discord channel to bind the embed to user (discord.User): The user to ban Returns: ui (ui_embed.UI): The embed UI object
juraj-google-style
def get_all_distributions_by_type(dist, metric_id): submit_timestamp = time.time() dist_types = ['count', 'max', 'min', 'sum', 'mean'] distribution_dicts = [] for dist_type in dist_types: try: distribution_dicts.append(get_distribution_dict(dist_type, submit_timestamp, dist, metric_id)) except ValueError: continue return distribution_dicts
Creates new list of objects with type of each distribution metric value. Args: dist(object): DistributionMetric object to be parsed metric_id(uuid): id of the current test run Returns: list of :class:`DistributionMetric` objects
github-repos
def get_specification(version: str) -> Mapping[(str, Any)]: spec_dir = config['bel']['lang']['specifications'] spec_dict = {} bel_versions = get_bel_versions() if (version not in bel_versions): log.error('Cannot get unknown version BEL specification') return {'error': 'unknown version of BEL'} version_underscored = version.replace('.', '_') json_fn = f'{spec_dir}/bel_v{version_underscored}.json' with open(json_fn, 'r') as f: spec_dict = json.load(f) return spec_dict
Get BEL Specification The json file this depends on is generated by belspec_yaml2json as part of the update_specifications function Args: version: e.g. 2.0.0 where the filename
codesearchnet
def to_diff_dict(self) -> Dict[str, Any]: config_dict = self.to_dict() default_config_dict = BitsAndBytesConfig().to_dict() serializable_config_dict = {} for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict
Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
github-repos
def combine(specs): new_specs = {} for spec in specs: if (new_specs.get(spec, None) is None): new_specs[spec] = spec else: new_specs[spec].add(spec) return list(new_specs.values())
Combine package specifications' limitations. Args: specs (list of PackageSpec): the package specifications. Returns: list of PackageSpec: the new, merged list of PackageSpec.
codesearchnet
def dbclass(self, value): if not is_valid_dbclass(value): raise AttributeError("'{}' is not a valid database type".format(value)) self._class = value self._connectionXML.set('class', value)
Set the connection's dbclass property. Args: value: New dbclass value. String. Returns: Nothing.
juraj-google-style
def is_periodically_contiguous(self): edges = self.sites_at_edges() is_contiguous = [False, False, False] along_x = any([(s2 in s1.p_neighbours) for s1 in edges[0] for s2 in edges[1]]) along_y = any([(s2 in s1.p_neighbours) for s1 in edges[2] for s2 in edges[3]]) along_z = any([(s2 in s1.p_neighbours) for s1 in edges[4] for s2 in edges[5]]) return (along_x, along_y, along_z)
logical check whether a cluster connects with itself across the simulation periodic boundary conditions. Args: none Returns ( Bool, Bool, Bool ): Contiguity along the x, y, and z coordinate axes
codesearchnet
def get_element(source, path, separator=r'[/.]'): return _get_element_by_names(source, re.split(separator, path))
Given a dict and path '/' or '.' separated. Digs into de dict to retrieve the specified element. Args: source (dict): set of nested objects in which the data will be searched path (string): '/' or '.' string with attribute names
juraj-google-style
def get_cot_artifacts(context): artifacts = {} filepaths = filepaths_in_dir(context.config['artifact_dir']) hash_alg = context.config['chain_of_trust_hash_algorithm'] for filepath in sorted(filepaths): path = os.path.join(context.config['artifact_dir'], filepath) sha = get_hash(path, hash_alg=hash_alg) artifacts[filepath] = {hash_alg: sha} return artifacts
Generate the artifact relative paths and shas for the chain of trust. Args: context (scriptworker.context.Context): the scriptworker context. Returns: dict: a dictionary of {"path/to/artifact": {"hash_alg": "..."}, ...}
codesearchnet
def filter_(predicate, *structures, **kwargs): flatten = kwargs.pop('flatten', False) assert (not kwargs), 'filter() got unexpected keyword arguments.' def impl(predicate, *structures): if (len(structures) == 0): return structures if all((isinstance(s, (tuple, list)) for s in structures)): if (len(set((len(x) for x in structures))) > 1): raise ValueError('Cannot merge tuples or lists of different length.') if (len(structures) > 1): filtered = (impl(predicate, *x) for x in _builtin_zip(*structures)) else: filtered = (impl(predicate, x) for x in structures[0]) if hasattr(structures[0], '_fields'): filtered = ((x if (x != ()) else None) for x in filtered) return type(structures[0])(*filtered) else: filtered = (x for x in filtered if ((not isinstance(x, (tuple, list, dict))) or x)) return type(structures[0])(filtered) if all((isinstance(s, dict) for s in structures)): if (len(set((frozenset(x.keys()) for x in structures))) > 1): raise ValueError('Cannot merge dicts with different keys.') if (len(structures) > 1): filtered = {k: impl(predicate, *(s[k] for s in structures)) for k in structures[0]} else: filtered = {k: impl(predicate, v) for (k, v) in structures[0].items()} filtered = {k: v for (k, v) in filtered.items() if ((not isinstance(v, (tuple, list, dict))) or v)} return type(structures[0])(filtered) if (len(structures) > 1): return (structures if predicate(*structures) else ()) else: return (structures[0] if predicate(structures[0]) else ()) result = impl(predicate, *structures) if flatten: result = flatten_(result) return result
Select elements of a nested structure based on a predicate function. If multiple structures are provided as input, their structure must match and the function will be applied to corresponding groups of elements. The nested structure can consist of any combination of lists, tuples, and dicts. Args: predicate: The function to determine whether an element should be kept. Receives one argument for every structure that is provided. *structures: One of more nested structures. flatten: Whether to flatten the resulting structure into a tuple. Keys of dictionaries will be discarded. Returns: Nested structure.
codesearchnet
def init(self, force_deploy=False): machines = self.provider_conf.machines networks = self.provider_conf.networks _networks = [] for network in networks: ipnet = IPNetwork(network.cidr) _networks.append({'netpool': list(ipnet)[10:(- 10)], 'cidr': network.cidr, 'roles': network.roles, 'gateway': ipnet.ip}) vagrant_machines = [] vagrant_roles = {} j = 0 for machine in machines: for _ in range(machine.number): vagrant_machine = {'name': ('enos-%s' % j), 'cpu': machine.flavour_desc['core'], 'mem': machine.flavour_desc['mem'], 'ips': [n['netpool'].pop() for n in _networks]} vagrant_machines.append(vagrant_machine) for role in machine.roles: vagrant_roles.setdefault(role, []).append(vagrant_machine) j = (j + 1) logger.debug(vagrant_roles) loader = FileSystemLoader(searchpath=TEMPLATE_DIR) env = Environment(loader=loader, autoescape=True) template = env.get_template('Vagrantfile.j2') vagrantfile = template.render(machines=vagrant_machines, provider_conf=self.provider_conf) vagrantfile_path = os.path.join(os.getcwd(), 'Vagrantfile') with open(vagrantfile_path, 'w') as f: f.write(vagrantfile) v_env = dict(os.environ) v_env['VAGRANT_DEFAULT_PROVIDER'] = self.provider_conf.backend v = vagrant.Vagrant(root=os.getcwd(), quiet_stdout=False, quiet_stderr=False, env=v_env) if force_deploy: v.destroy() v.up() v.provision() roles = {} for (role, machines) in vagrant_roles.items(): for machine in machines: keyfile = v.keyfile(vm_name=machine['name']) port = v.port(vm_name=machine['name']) address = v.hostname(vm_name=machine['name']) roles.setdefault(role, []).append(Host(address, alias=machine['name'], user=self.provider_conf.user, port=port, keyfile=keyfile)) networks = [{'cidr': str(n['cidr']), 'start': str(n['netpool'][0]), 'end': str(n['netpool'][(- 1)]), 'dns': '8.8.8.8', 'gateway': str(n['gateway']), 'roles': n['roles']} for n in _networks] logger.debug(roles) logger.debug(networks) return (roles, networks)
Reserve and deploys the vagrant boxes. Args: force_deploy (bool): True iff new machines should be started
codesearchnet
def __init__(self, root, case_sensitive=True): root = os.path.normpath(root) if not root: errstr = 'root path must not be empty (\'.\' for current directory)' raise ValueError(errstr) ensure_directory_exists(root) self.root_path = root self.case_sensitive = bool(case_sensitive)
Initialize the datastore with given root directory `root`. Args: root: A path at which to mount this filesystem datastore.
juraj-google-style
def matches(self, regex: str) -> 'Builder': param_nodes = self._function_args_to_nodes(self.node, [regex]) return self._to_builder(_evaluation.MatchesFunction(self.node.context, self.node, param_nodes))
The FHIRPath matches() function. Args: regex: a regular expression to match against the parent element. Returns: An expression that evaluates to True if the parent matches the given regular expression.
github-repos
def fetch(self, customer_id, token_id, data={}, **kwargs): url = "{}/{}/tokens/{}".format(self.base_url, customer_id, token_id) return self.get_url(url, data, **kwargs)
Fetch Token for given Id and given customer Id Args: customer_id : Customer Id for which tokens have to be fetched token_id : Id for which TOken object has to be fetched Returns: Token dict for given token Id
juraj-google-style
def realpath(path): if (path == '~'): return userdir if (path == '/'): return sysroot if path.startswith('/'): return os.path.abspath(path) if path.startswith('~/'): return os.path.expanduser(path) if path.startswith('./'): return os.path.abspath(os.path.join(os.path.curdir, path[2:])) return os.path.abspath(path)
Create the real absolute path for the given path. Add supports for userdir & / supports. Args: * path: pathname to use for realpath. Returns: Platform independent real absolute path.
codesearchnet
def sample_dynamic_prior(self, samples, batch_size, length, fixed=False): if fixed: sample_batch_size = 1 else: sample_batch_size = batch_size (sample, state) = self.dynamic_prior.zero_state([samples, sample_batch_size]) locs = [] scale_diags = [] sample_list = [] for _ in range(length): (dist, state) = self.dynamic_prior(sample, state) sample = dist.sample() locs.append(dist.parameters['loc']) scale_diags.append(dist.parameters['scale_diag']) sample_list.append(sample) sample = tf.stack(sample_list, axis=2) loc = tf.stack(locs, axis=2) scale_diag = tf.stack(scale_diags, axis=2) if fixed: sample = (sample + tf.zeros([batch_size, 1, 1])) return (sample, tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale_diag))
Sample the dynamic latent prior. Args: samples: Number of samples to draw from the latent distribution. batch_size: Number of sequences to sample. length: Number of timesteps to sample for each sequence. fixed: Boolean for whether or not to share the same random sample across all sequences. Returns: A tuple of a sample tensor of shape [samples, batch_size, length latent_size], and a MultivariateNormalDiag distribution from which the tensor was sampled, with event shape [latent_size], and batch shape [samples, 1, length] if fixed or [samples, batch_size, length] otherwise.
codesearchnet
def colorize(text, messageType=None): formattedText = str(text) if ('ERROR' in messageType): formattedText = (colorama.Fore.RED + formattedText) elif ('WARNING' in messageType): formattedText = (colorama.Fore.YELLOW + formattedText) elif ('SUCCESS' in messageType): formattedText = (colorama.Fore.GREEN + formattedText) elif ('INFO' in messageType): formattedText = (colorama.Fore.BLUE + formattedText) if ('BOLD' in messageType): formattedText = (colorama.Style.BRIGHT + formattedText) return (formattedText + colorama.Style.RESET_ALL)
Function that colorizes a message. Args: ----- text: The string to be colorized. messageType: Possible options include "ERROR", "WARNING", "SUCCESS", "INFO" or "BOLD". Returns: -------- string: Colorized if the option is correct, including a tag at the end to reset the formatting.
codesearchnet
def _change_precision(self, val, base=0): if not isinstance(val, int): raise TypeError('The first argument must be an integer.') val = round(abs(val)) val = (lambda num: base if is_num(num) else num)(val) return val
Check and normalise the value of precision (must be positive integer). Args: val (INT): must be positive integer base (INT): Description Returns: VAL (INT): Description
juraj-google-style
def validate_args(func: Method, *args: Any, **kwargs: Any) -> Method: signature(func).bind(*args, **kwargs) return func
Check if the request's arguments match a function's signature. Raises TypeError exception if arguments cannot be passed to a function. Args: func: The function to check. args: Positional arguments. kwargs: Keyword arguments. Raises: TypeError: If the arguments cannot be passed to the function.
codesearchnet
def mark_checked(tensors): def _mark_checked(tensor): tensor._keras_history_checked = True nest.map_structure(_mark_checked, tensors)
Marks that these Tensors should not be tracked. This prevents Layers from attempting to create TensorFlowOpLayers for these Tensors. Args: tensors: An arbitrary structure of Tensors.
github-repos
def filter_tests(output_file: str, filters: List[str]): if not os.path.isfile(output_file): print('No test file found.') return with open(output_file, 'r', encoding='utf-8') as f: test_files = f.read().split(' ') if len(test_files) == 0 or test_files == ['']: print('No tests to filter.') return if test_files == ['tests']: test_files = [os.path.join('tests', f) for f in os.listdir('tests') if f not in ['__init__.py'] + filters] else: test_files = [f for f in test_files if f.split(os.path.sep)[1] not in filters] with open(output_file, 'w', encoding='utf-8') as f: f.write(' '.join(test_files))
Reads the content of the output file and filters out all the tests in a list of given folders. Args: output_file (`str` or `os.PathLike`): The path to the output file of the tests fetcher. filters (`List[str]`): A list of folders to filter.
github-repos
def parse_structure(self, store_in_memory=False): if not self.structure_file: log.error('{}: no structure file, unable to parse'.format(self.id)) return None else: structure = StructureIO(self.structure_path, self.file_type) structure_chains = [x.id for x in structure.first_model.child_list] self.add_chain_ids(structure_chains) self.get_structure_seqs(structure.first_model) if not self.mapped_chains: self.add_mapped_chain_ids(structure_chains) if store_in_memory: self.parsed = True self.structure = structure return structure
Read the 3D coordinates of a structure file and return it as a Biopython Structure object. Also create ChainProp objects in the chains attribute for each chain in the first model. Args: store_in_memory (bool): If the Biopython Structure object should be stored in the attribute ``structure``. Returns: Structure: Biopython Structure object
juraj-google-style
def forward(self, hidden_states: torch.Tensor): hidden_states = self.w_in(hidden_states) if self.dropout is not None: hidden_states = self.dropout(hidden_states) hidden_states = self.w_out(hidden_states) return hidden_states
Args: hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
github-repos
def system(self) -> 'EFBChat': self.chat_name = 'System' self.chat_alias = None self.chat_uid = EFBChat.SYSTEM_ID self.chat_type = ChatType.System return self
Set the chat as a system chat. Only set for channel-level and group-level system chats. Returns: EFBChat: This object.
codesearchnet
def add_authorization_policy(access_token, ck_id, oid): path = '/ContentKeys' body = (('{"AuthorizationPolicyId":"' + oid) + '"}') return helper_add(access_token, ck_id, path, body)
Add Media Service Authorization Policy. Args: access_token (str): A valid Azure authentication token. ck_id (str): A Media Service Asset Content Key ID. options_id (str): A Media Service OID. Returns: HTTP response. JSON body.
codesearchnet
def attention_bias_local(length, max_backward, max_forward): band = common_layers.ones_matrix_band_part( length, length, max_backward, max_forward, out_shape=[1, 1, length, length]) return -1e9 * (1.0 - band)
Create an bias tensor to be added to attention logits. A position may attend to positions at most max_distance from it, forward and backwards. This does not actually save any computation. Args: length: int max_backward: int, maximum distance backward to attend. Negative values indicate unlimited. max_forward: int, maximum distance forward to attend. Negative values indicate unlimited. Returns: a `Tensor` with shape [1, 1, length, length].
juraj-google-style
def loss_l2(self, l2=0): if isinstance(l2, (int, float)): D = l2 * torch.eye(self.d) else: D = torch.diag(torch.from_numpy(l2)) return torch.norm(D @ (self.mu - self.mu_init)) ** 2
L2 loss centered around mu_init, scaled optionally per-source. In other words, diagonal Tikhonov regularization, ||D(\mu-\mu_{init})||_2^2 where D is diagonal. Args: - l2: A float or np.array representing the per-source regularization strengths to use
juraj-google-style
def _SimpleEncoder(wire_type, encode_value, compute_value_size): def SpecificEncoder(field_number, is_repeated, is_packed): if is_packed: tag_bytes = TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED) local_EncodeVarint = _EncodeVarint def EncodePackedField(write, value): write(tag_bytes) size = 0 for element in value: size += compute_value_size(element) local_EncodeVarint(write, size) for element in value: encode_value(write, element) return EncodePackedField elif is_repeated: tag_bytes = TagBytes(field_number, wire_type) def EncodeRepeatedField(write, value): for element in value: write(tag_bytes) encode_value(write, element) return EncodeRepeatedField else: tag_bytes = TagBytes(field_number, wire_type) def EncodeField(write, value): write(tag_bytes) return encode_value(write, value) return EncodeField return SpecificEncoder
Return a constructor for an encoder for fields of a particular type. Args: wire_type: The field's wire type, for encoding tags. encode_value: A function which encodes an individual value, e.g. _EncodeVarint(). compute_value_size: A function which computes the size of an individual value, e.g. _VarintSize().
codesearchnet
def event_date(self, event_date): if (not self.can_update()): self._tcex.handle_error(910, [self.type]) event_date = self._utils.format_datetime(event_date, date_format='%Y-%m-%dT%H:%M:%SZ') self._data['eventDate'] = event_date request = {'eventDate': event_date} return self.tc_requests.update(self.api_type, self.api_sub_type, self.unique_id, request)
Updates the event_date. Args: event_date: Converted to %Y-%m-%dT%H:%M:%SZ date format. Returns:
codesearchnet
def _flip(image, flip_index, scope_name): with ops.name_scope(None, scope_name, [image]): image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) shape = image.get_shape() def f_rank3(): return fix_image_flip_shape(image, array_ops.reverse(image, [flip_index])) def f_rank4(): return array_ops.reverse(image, [flip_index + 1]) if shape.ndims is None: rank = array_ops.rank(image) return tf_cond.cond(math_ops.equal(rank, 3), f_rank3, f_rank4) elif shape.ndims == 3: return f_rank3() elif shape.ndims == 4: return f_rank4() else: raise ValueError("'image' (shape %s)must have either 3 or 4 dimensions." % shape)
Flip an image either horizontally or vertically. Outputs the contents of `image` flipped along the dimension `flip_index`. See also `reverse()`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. flip_index: 0 For vertical, 1 for horizontal. scope_name: string, scope name. Returns: A `Tensor` of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported.
github-repos
def _GetMemberDataTypeMaps(self, data_type_definition, data_type_map_cache): if not data_type_definition: raise errors.FormatError('Missing data type definition') members = getattr(data_type_definition, 'members', None) if not members: raise errors.FormatError('Invalid data type definition missing members') data_type_maps = [] members_data_size = 0 for member_definition in members: if isinstance(member_definition, data_types.MemberDataTypeDefinition): member_definition = member_definition.member_data_type_definition if (data_type_definition.byte_order != definitions.BYTE_ORDER_NATIVE and member_definition.byte_order == definitions.BYTE_ORDER_NATIVE): member_definition = copy.copy(member_definition) member_definition.name = '_{0:s}_{1:s}'.format( data_type_definition.name, member_definition.name) member_definition.byte_order = data_type_definition.byte_order if member_definition.name not in data_type_map_cache: data_type_map = DataTypeMapFactory.CreateDataTypeMapByType( member_definition) data_type_map_cache[member_definition.name] = data_type_map data_type_map = data_type_map_cache[member_definition.name] if members_data_size is not None: if not isinstance(member_definition, data_types.PaddingDefinition): byte_size = member_definition.GetByteSize() else: _, byte_size = divmod( members_data_size, member_definition.alignment_size) if byte_size > 0: byte_size = member_definition.alignment_size - byte_size data_type_map.byte_size = byte_size if byte_size is None: members_data_size = None else: members_data_size += byte_size data_type_maps.append(data_type_map) return data_type_maps
Retrieves the member data type maps. Args: data_type_definition (DataTypeDefinition): data type definition. data_type_map_cache (dict[str, DataTypeMap]): cached data type maps. Returns: list[DataTypeMap]: member data type maps. Raises: FormatError: if the data type maps cannot be determined from the data type definition.
juraj-google-style
def check_error_output(tst, out, command_prefix, args): tst.assertGreater(len(out.lines), 2) tst.assertStartsWith(out.lines[0], 'Error occurred during handling of command: %s %s' % (command_prefix, ' '.join(args)))
Check RichTextLines output from invalid/erroneous commands. Args: tst: A test_util.TensorFlowTestCase instance. out: The RichTextLines object to be checked. command_prefix: The command prefix of the command that caused the error. args: The arguments (excluding prefix) of the command that caused the error.
github-repos
def GetRealValue(self, value): assert value.op.type not in ['Variable', 'VariableV2'] real_value = self._history_map.get(value.name) if real_value is None: cur_value = value cur_grad_state = self while True: enter_op = util.GetLoopConstantEnter(cur_value) if enter_op: cur_value = enter_op.inputs[0] cur_grad_state = cur_grad_state.outer_grad_state if cur_grad_state is None: real_value = self._grad_context.AddValue(cur_value) break elif constant_op.is_constant(cur_value): real_value = constant_op.constant(tensor_util.constant_value(cur_value), dtype=cur_value.dtype) break else: self._grad_context.Exit() history_value = cur_grad_state.AddForwardAccumulator(cur_value) self._grad_context.Enter() break if real_value is None: real_value = cur_grad_state.AddBackpropAccumulatedValue(history_value, cur_value) if cur_grad_state != self: real_value = self._grad_context.AddValue(real_value) self._history_map[value.name] = real_value return real_value
Get the real value of `value`. If backprop "uses" a value produced by forward inference, an accumulator is added in the forward loop to accumulate its values. We use the accumulated value. This method must be called in the grad loop context. `value` must be in forward and needed for backprop. Args: value: A tensor to be captured. Returns: The same tensor obtained from the saved history.
github-repos
def GenerateTableHtml(items, keys_to_print, display_index=True): html = '' html += '<table><tr>\n' html += '<tr>\n' if display_index: html += '<th>index</th>' for h, mapper in keys_to_print: html += '<th>%s</th>' % h html += '</tr>\n' for idx, tensor in enumerate(items): html += '<tr>\n' if display_index: html += '<td>%d</td>' % idx for h, mapper in keys_to_print: val = tensor[h] if h in tensor else None val = val if mapper is None else mapper(val) html += '<td>%s</td>\n' % val html += '</tr>\n' html += '</table>\n' return html
Given a list of object values and keys to print, make an HTML table. Args: items: Items to print an array of dicts. keys_to_print: (key, display_fn). `key` is a key in the object. i.e. items[0][key] should exist. display_fn is the mapping function on display. i.e. the displayed html cell will have the string returned by `mapping_fn(items[0][key])`. display_index: add a column which is the index of each row in `items`. Returns: An html table.
github-repos
def get_dim_label(js_dict, dim, input='dataset'): if (input == 'dataset'): input = js_dict['dimension'][dim] label_col = 'label' elif (input == 'dimension'): label_col = js_dict['label'] input = js_dict else: raise ValueError try: dim_label = input['category']['label'] except KeyError: dim_index = get_dim_index(js_dict, dim) dim_label = pd.concat([dim_index['id'], dim_index['id']], axis=1) dim_label.columns = ['id', 'label'] else: dim_label = pd.DataFrame(list(zip(dim_label.keys(), dim_label.values())), index=dim_label.keys(), columns=['id', label_col]) try: dim_index = input['category']['index'] except KeyError: dim_index = pd.DataFrame(list(zip([dim_label['id'][0]], [0])), index=[0], columns=['id', 'index']) else: if (type(dim_index) is list): dim_index = pd.DataFrame(list(zip(dim_index, range(0, len(dim_index)))), index=dim_index, columns=['id', 'index']) else: dim_index = pd.DataFrame(list(zip(dim_index.keys(), dim_index.values())), index=dim_index.keys(), columns=['id', 'index']) dim_label = pd.merge(dim_label, dim_index, on='id').sort_index(by='index') return dim_label
Get label from a given dimension. Args: js_dict (dict): dictionary containing dataset data and metadata. dim (string): dimension name obtained from JSON file. Returns: dim_label(pandas.DataFrame): DataFrame with label-based dimension data.
codesearchnet
def iterate_sequences(consumer_fn, output_template, sequences, length, chunk_length=None, batch_size=None, num_epochs=1, padding_value=0): if (not length.shape[0].value): raise ValueError('Batch size of length tensor must be set.') num_sequences = length.shape[0].value sequences = dict(sequence=sequences, length=length) dataset = tf.data.Dataset.from_tensor_slices(sequences) dataset = dataset.repeat(num_epochs) if chunk_length: dataset = dataset.map(remove_padding).flat_map((lambda x: tf.data.Dataset.from_tensor_slices(chunk_sequence(x, chunk_length, padding_value)))) num_chunks = tf.reduce_sum((((length - 1) else: num_chunks = num_sequences if batch_size: dataset = dataset.shuffle((num_sequences dataset = dataset.batch((batch_size or num_sequences)) dataset = dataset.prefetch(num_epochs) iterator = dataset.make_initializable_iterator() with tf.control_dependencies([iterator.initializer]): num_batches = ((num_epochs * num_chunks) return tf.scan((lambda _1, index: consumer_fn(iterator.get_next())), tf.range(num_batches), output_template, parallel_iterations=1)
Iterate over batches of chunks of sequences for multiple epochs. The batch dimension of the length tensor must be set because it is used to infer buffer sizes. Args: consumer_fn: Function creating the operation to process the data. output_template: Nested tensors of same shape and dtype as outputs. sequences: Nested collection of tensors with batch and time dimension. length: Tensor containing the length for each sequence. chunk_length: Split sequences into chunks of this size; optional. batch_size: Split epochs into batches of this size; optional. num_epochs: How many times to repeat over the data. padding_value: Value used for padding the last chunk after the sequence. Raises: ValueError: Unknown batch size of the length tensor. Returns: Concatenated nested tensors returned by the consumer.
codesearchnet
def update_ref(profile, ref, sha): resource = ('/refs/' + ref) payload = {'sha': sha} data = api.patch_request(profile, resource, payload) return prepare(data)
Point a ref to a new SHA. Args: profile A profile generated from ``simplygithub.authentication.profile``. Such profiles tell this module (i) the ``repo`` to connect to, and (ii) the ``token`` to connect with. ref The ref to update, e.g., ``heads/my-feature-branch``. sha The SHA of the commit to point the ref to. Returns A dict with data about the ref.
codesearchnet
def get_json(self): try: usernotes = self.subreddit.wiki[self.page_name].content_md notes = json.loads(usernotes) except NotFound: self._init_notes() else: if (notes['ver'] != self.schema): raise RuntimeError('Usernotes schema is v{0}, puni requires v{1}'.format(notes['ver'], self.schema)) self.cached_json = self._expand_json(notes) return self.cached_json
Get the JSON stored on the usernotes wiki page. Returns a dict representation of the usernotes (with the notes BLOB decoded). Raises: RuntimeError if the usernotes version is incompatible with this version of puni.
codesearchnet
def set_members(self, name, members, mode=None): commands = list() grpid = re.search('(\\d+)', name).group() current_members = self.get_members(name) lacp_mode = self.get_lacp_mode(name) if (mode and (mode != lacp_mode)): lacp_mode = mode self.set_lacp_mode(grpid, lacp_mode) for member in set(current_members).difference(members): commands.append(('interface %s' % member)) commands.append(('no channel-group %s' % grpid)) for member in set(members).difference(current_members): commands.append(('interface %s' % member)) commands.append(('channel-group %s mode %s' % (grpid, lacp_mode))) return (self.configure(commands) if commands else True)
Configures the array of member interfaces for the Port-Channel Args: name(str): The Port-Channel interface name to configure the member interfaces members(list): The list of Ethernet interfaces that should be member interfaces mode(str): The LACP mode to configure the member interfaces to. Valid values are 'on, 'passive', 'active'. When there are existing channel-group members and their lacp mode differs from this attribute, all of those members will be removed and then re-added using the specified lacp mode. If this attribute is omitted, the existing lacp mode will be used for new member additions. Returns: True if the operation succeeds otherwise False
codesearchnet
def get_firmware(self): firmware_uri = '{}/firmware'.format(self.data['uri']) return self._helper.do_get(firmware_uri)
Gets baseline firmware information for a SAS Logical Interconnect. Returns: dict: SAS Logical Interconnect Firmware.
codesearchnet
def create(configs): if not configs: raise Error(ANDROID_DEVICE_EMPTY_CONFIG_MSG) elif configs == ANDROID_DEVICE_PICK_ALL_TOKEN: ads = get_all_instances() elif not isinstance(configs, list): raise Error(ANDROID_DEVICE_NOT_LIST_CONFIG_MSG) elif isinstance(configs[0], dict): ads = get_instances_with_configs(configs) elif isinstance(configs[0], basestring): ads = get_instances(configs) else: raise Error('No valid config found in: %s' % configs) valid_ad_identifiers = list_adb_devices() + list_adb_devices_by_usb_id() for ad in ads: if ad.serial not in valid_ad_identifiers: raise DeviceError(ad, 'Android device is specified in config but' ' is not attached.') _start_services_on_ads(ads) return ads
Creates AndroidDevice controller objects. Args: configs: A list of dicts, each representing a configuration for an Android device. Returns: A list of AndroidDevice objects.
juraj-google-style
def one_hot_class_label_loss(top_out, targets, model_hparams, vocab_size, weights_fn): del model_hparams, vocab_size loss_scale = tf.losses.softmax_cross_entropy( onehot_labels=targets, logits=top_out) weights = weights_fn(targets) loss_denom = tf.reduce_sum(weights) return loss_scale, loss_denom
Apply softmax cross-entropy between outputs and targets. Args: top_out: logits Tensor with shape [batch, ?, ?, num_classes] targets: one-hot encoding Tensor with shape [batch, ?, ?, num_classes] model_hparams: HParams, model hyperparmeters. vocab_size: int, vocabulary size. weights_fn: Returns: loss_scale (cross-entropy), loss_denom
juraj-google-style
def is_orthogonal( matrix: np.ndarray, *, rtol: float = 1e-5, atol: float = 1e-8) -> bool: return (matrix.shape[0] == matrix.shape[1] and np.all(np.imag(matrix) == 0) and np.allclose(matrix.dot(matrix.T), np.eye(matrix.shape[0]), rtol=rtol, atol=atol))
Determines if a matrix is approximately orthogonal. A matrix is orthogonal if it's square and real and its transpose is its inverse. Args: matrix: The matrix to check. rtol: The per-matrix-entry relative tolerance on equality. atol: The per-matrix-entry absolute tolerance on equality. Returns: Whether the matrix is orthogonal within the given tolerance.
juraj-google-style
def __init__(self, input_spec): def maybe_parse_byte_size(s): return parse_byte_size(s) if isinstance(s, str) else int(s) self._num_records = input_spec['numRecords'] self._key_size = maybe_parse_byte_size(input_spec.get('keySizeBytes', 1)) self._hot_key_fraction = input_spec.get('hotKeyFraction', 0) self._num_hot_keys = input_spec.get('numHotKeys', 0) self._value_size = maybe_parse_byte_size(input_spec.get('valueSizeBytes', 1)) self._total_size = self.element_size * self._num_records self._initial_splitting = input_spec['bundleSizeDistribution']['type'] if 'bundleSizeDistribution' in input_spec else 'const' if self._initial_splitting != 'const' and self._initial_splitting != 'zipf': raise ValueError('Only const and zipf distributions are supported for determining sizes of bundles produced by initial splitting. Received: %s', self._initial_splitting) self._initial_splitting_num_bundles = input_spec['forceNumInitialBundles'] if 'forceNumInitialBundles' in input_spec else 0 if self._initial_splitting == 'zipf': self._initial_splitting_distribution_parameter = input_spec['bundleSizeDistribution']['param'] if self._initial_splitting_distribution_parameter < 1: raise ValueError('Parameter for a Zipf distribution must be larger than 1. Received %r.', self._initial_splitting_distribution_parameter) else: self._initial_splitting_distribution_parameter = 0 self._dynamic_splitting = 'none' if 'splitPointFrequencyRecords' in input_spec and input_spec['splitPointFrequencyRecords'] == 0 else 'perfect' if 'delayDistribution' in input_spec: if input_spec['delayDistribution']['type'] != 'const': raise ValueError("SyntheticSource currently only supports delay distributions of type 'const'. Received %s.", input_spec['delayDistribution']['type']) self._sleep_per_input_record_sec = float(input_spec['delayDistribution']['const']) / 1000 if self._sleep_per_input_record_sec and self._sleep_per_input_record_sec < 0.001: raise ValueError('Sleep time per input record must be at least 1e-3. Received: %r', self._sleep_per_input_record_sec) else: self._sleep_per_input_record_sec = 0 self.gen_algo = input_spec.get('algorithm', None) if self.gen_algo not in (None, 'builtin', 'lcg'): raise ValueError('Unknown algorithm for input_spec: %s. Supported algorithms are "builtin" and "lcg".', self.gen_algo)
Initiates a synthetic source. Args: input_spec: Input specification of the source. See corresponding option in function 'parse_args()' below for more details. Raises: ValueError: if input parameters are invalid.
github-repos
def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info): type_counts = collections.Counter() for numeric_values in row_index_to_values.values(): type_counts.update(_get_all_types(numeric_values)) if not type_counts: return {} max_count = max(type_counts.values()) if max_count < len(row_index_to_values) * min_consolidation_fraction: return {} valid_types = set() for value_type, count in type_counts.items(): if count == max_count: valid_types.add(value_type) if len(valid_types) > 1: assert DATE_TYPE in valid_types max_type = DATE_TYPE else: max_type = next(iter(valid_types)) new_row_index_to_value = {} for index, values in row_index_to_values.items(): for value in values: if _get_value_type(value) == max_type: new_row_index_to_value[index] = value break return new_row_index_to_value
Finds the most common numeric values in a column and returns them Args: row_index_to_values: For each row index all the values in that cell. min_consolidation_fraction: Fraction of cells that need to have consolidated value. debug_info: Additional information only used for logging Returns: For each row index the first value that matches the most common value. Rows that don't have a matching value are dropped. Empty list if values can't be consolidated.
github-repos
def setup(self, paths=None): if (not paths): self.state.add_error('No `paths` argument provided in recipe, bailing', critical=True) else: self._paths = [path.strip() for path in paths.strip().split(',')]
Sets up the _paths attribute. Args: paths: Comma-separated list of strings representing the paths to collect.
codesearchnet
def scan(self, proxy_scanner, expected_num=20, val_thr_num=4, queue_timeout=3, val_timeout=5, out_file='proxies.json'): try: proxy_scanner.scan() self.logger.info('starting {} threads to validating proxies...'.format(val_thr_num)) val_threads = [] for i in range(val_thr_num): t = threading.Thread(name='val-{:0>2d}'.format((i + 1)), target=self.validate, kwargs=dict(proxy_scanner=proxy_scanner, expected_num=expected_num, queue_timeout=queue_timeout, val_timeout=val_timeout)) t.daemon = True val_threads.append(t) t.start() for t in val_threads: t.join() self.logger.info('Proxy scanning done!') except: raise finally: if (out_file is not None): self.save(out_file)
Scan and validate proxies Firstly, call the `scan` method of `proxy_scanner`, then using multiple threads to validate them. Args: proxy_scanner: A ProxyScanner object. expected_num: Max number of valid proxies to be scanned. val_thr_num: Number of threads used for validating proxies. queue_timeout: Timeout for getting a proxy from the queue. val_timeout: An integer passed to `is_valid` as argument `timeout`. out_file: A string or None. If not None, the proxies will be saved into `out_file`.
codesearchnet
def Snapshot(self, request, global_params=None): config = self.GetMethodConfig('Snapshot') return self._RunMethod(config, request, global_params=global_params)
Snapshot the state of a streaming job. Args: request: (DataflowProjectsLocationsJobsSnapshotRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Snapshot) The response message.
github-repos
def use_value_spec(self, value_spec: Optional[pg_typing.Dict], allow_partial: bool=False) -> 'Dict': if value_spec is None: self._value_spec = None self._accessor_writable = True return self if not isinstance(value_spec, pg_typing.Dict): raise ValueError(self._error_message(f'Value spec for list must be a `pg.typing.Dict` object. Encountered: {value_spec!r}')) if self._value_spec and self._value_spec != value_spec: raise RuntimeError(self._error_message(f'Dict is already bound with a different value spec: {self._value_spec}. New value spec: {value_spec}.')) self._allow_partial = allow_partial if flags.is_type_check_enabled(): value_spec.apply(self, allow_partial=base.accepts_partial(self), child_transform=base.symbolic_transform_fn(self._allow_partial), root_path=self.sym_path) else: self._value_spec = value_spec return self
Applies a ``pg.typing.Dict`` as the value spec for current dict. Args: value_spec: A Dict ValueSpec to apply to this Dict. If current Dict is schema-less (whose immediate members are not validated against schema), and `value_spec` is not None, the value spec will be applied to the Dict. Or else if current Dict is already symbolic (whose immediate members are under the constraint of a Dict value spec), and `value_spec` is None, current Dict will become schema-less. However, the schema constraints for non-immediate members will remain. allow_partial: Whether allow partial dict based on the schema. This flag will override allow_partial flag in __init__ for spec-less Dict. Returns: Self. Raises: ValueError: validation failed due to value error. RuntimeError: Dict is already bound with another spec. TypeError: type errors during validation. KeyError: key errors during validation.
github-repos
def get_address_coords(self, address): url = "https: r = requests.get(url) r.raise_for_status() results = r.json()['results'] lat = results[0]['geometry']['location']['lat'] lng = results[0]['geometry']['location']['lng'] return lat, lng
Use the google geocoder to get latitude and longitude for an address string Args: address: any address string Returns: A tuple of (lat,lng)
juraj-google-style
def __init__(self, channel): self.ListIntents = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/ListIntents', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.ListIntentsRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.ListIntentsResponse.FromString, ) self.GetIntent = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/GetIntent', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.GetIntentRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.Intent.FromString, ) self.CreateIntent = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/CreateIntent', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.CreateIntentRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.Intent.FromString, ) self.UpdateIntent = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/UpdateIntent', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.UpdateIntentRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.Intent.FromString, ) self.DeleteIntent = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/DeleteIntent', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.DeleteIntentRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.BatchUpdateIntents = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/BatchUpdateIntents', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.BatchUpdateIntentsRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, ) self.BatchDeleteIntents = channel.unary_unary( '/google.cloud.dialogflow.v2.Intents/BatchDeleteIntents', request_serializer=google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.BatchDeleteIntentsRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, )
Constructor. Args: channel: A grpc.Channel.
juraj-google-style
def _ReadEntry(self, line): line = line.split() map_entry = automount.AutomountMapEntry() try: map_entry.key = line[0] if len(line) > 2: map_entry.options = line[1] map_entry.location = line[2] else: map_entry.location = line[1] except IndexError: return None return map_entry
Return an AutomountMapEntry from a record in the target cache. Args: line: A string from a file cache. Returns: An AutomountMapEntry if the line is successfully parsed, None otherwise.
github-repos
def reduce(cls, requirements: Iterable['FetchRequirement']) -> 'FetchRequirement': return reduce((lambda x, y: (x | y)), requirements, cls.NONE)
Reduce a set of fetch requirements into a single requirement. Args: requirements: The set of fetch requirements.
codesearchnet
def publishApp(self, app_info, map_info=None, fsInfo=None): if self.securityhandler is None: print ("Security handler required") return appDet = None try: app_results = [] if isinstance(app_info, list): for appDet in app_info: app_results.append(self._publishAppLogic(appDet=appDet,map_info=map_info,fsInfo=fsInfo)) else: app_results.append(self._publishAppLogic(appDet=app_info,map_info=map_info,fsInfo=fsInfo)) return app_results except (common.ArcRestHelperError) as e: raise e except Exception as e: line, filename, synerror = trace() raise common.ArcRestHelperError({ "function": "publishApp", "line": line, "filename": filename, "synerror": synerror, }) finally: appDet = None del appDet gc.collect()
Publishes apps to AGOL/Portal Args: app_info (list): A list of JSON configuration apps to publish. map_info (list): Defaults to ``None``. fsInfo (list): Defaults to ``None``. Returns: dict: A dictionary of results objects.
juraj-google-style
def users_getPresence(self, *, user: str, **kwargs) -> SlackResponse: kwargs.update({'user': user}) return self.api_call('users.getPresence', http_verb='GET', params=kwargs)
Gets user presence information. Args: user (str): User to get presence info on. Defaults to the authed user. e.g. 'W1234567890'
codesearchnet
def _make_unique_slug(slug: str, language: str, is_unique: Callable[[str], bool]) -> str: index = 1 unique_slug = slug while not is_unique(unique_slug, language): unique_slug = '%s-%d' % (slug, index) index += 1 return unique_slug
Guarentees that the specified slug is unique by appending a number until it is unique. Arguments: slug: The slug to make unique. is_unique: Function that can be called to verify whether the generate slug is unique. Returns: A guarenteed unique slug.
juraj-google-style
def getdoc(object): return _inspect.getdoc(object)
TFDecorator-aware replacement for inspect.getdoc. Args: object: An object, possibly decorated. Returns: The docstring associated with the object. The outermost-decorated object is intended to have the most complete documentation, so the decorated parameter is not unwrapped.
github-repos
def create_position_ids_from_input_ids(self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int]=0): mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor
github-repos
def features(self): buf = (ctypes.c_char * self.MAX_BUF_SIZE)() self._dll.JLINKARM_GetFeatureString(buf) result = ctypes.string_at(buf).decode().strip() if len(result) == 0: return list() return result.split(', ')
Returns a list of the J-Link embedded features. Args: self (JLink): the ``JLink`` instance Returns: A list of strings, each a feature. Example: ``[ 'RDI', 'FlashBP', 'FlashDL', 'JFlash', 'GDB' ]``
juraj-google-style
def __init__(self, value=b''): super(DigestValue, self).__init__(value, Tags.DIGEST_VALUE)
Construct a DigestValue object. Args: value (bytes): The bytes of the hash. Optional, defaults to the empty byte string.
juraj-google-style
def get_weights(self): with self.distribute_strategy.scope(): return super(Model, self).get_weights()
Retrieves the weights of the model. Returns: A flat list of Numpy arrays.
github-repos
class OrderedEnqueuer(PyDatasetEnqueuer): def __init__(self, py_dataset, workers=1, use_multiprocessing=False, max_queue_size=10, shuffle=False): super().__init__(py_dataset, workers, use_multiprocessing, max_queue_size) self.shuffle = shuffle if self.py_dataset.num_batches is None: self.indices = itertools.count() def _get_executor_init(self, workers): def pool_fn(seqs): pool = get_pool_class(True)(workers, initializer=init_pool_generator, initargs=(seqs, None, get_worker_id_queue())) _DATA_POOLS.add(pool) return pool return pool_fn def _run(self): try: if self.py_dataset.num_batches is not None: indices = range(self.py_dataset.num_batches) if self.shuffle: indices = list(indices) random.shuffle(indices) self.indices = iter(indices) self._send_py_dataset() with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor: while self.is_running(): try: i = next(self.indices) self.future_queue.put(executor.apply_async(get_index, (self.uid, i)), block=True) except StopIteration: break except Exception as e: self.future_queue.put(e) def get(self): while self.is_running(): try: inputs = self.ready_queue.get(block=False) yield inputs continue except queue.Empty: pass try: value = self.future_queue.get(block=True, timeout=5) self.future_queue.task_done() if isinstance(value, Exception): raise value inputs = value.get() if inputs is not None: yield inputs except queue.Empty: pass except Exception as e: self.stop(drain_queue_and_join=True) raise e raise ValueError('Iterator called after `on_epoch_end` or before `on_epoch_begin`.')
Builds a Enqueuer from a PyDataset. Args: py_dataset: A `keras.utils.PyDataset` object. use_multiprocessing: use multiprocessing if True, otherwise threading shuffle: whether to shuffle the data at the beginning of each epoch
github-repos
def flatten(l): for el in l: if (isinstance(el, Iterable) and (not isinstance(el, (str, bytes))) and (not isinstance(el, dict))): (yield from flatten(el)) else: (yield el)
Flatten a multi-deminision list and return a iterable Note that dict and str will not be expanded, instead, they will be kept as a single element. Args: l (list): The list needs to be flattened Returns: A iterable of flattened list. To have a list instead use ``list(flatten(l))``
codesearchnet
def _build_recursive_hd_scatter(input_tensors, devices): num_devices = len(devices) num_hops = int(math.log(num_devices, 2)) assert num_devices == 2 ** num_hops, 'num_devices must be a power of 2' chunks = input_tensors for h in reversed(range(0, num_hops)): span = 2 ** h group_size = span * 2 new_chunks = [[] for _ in devices] for d in range(0, num_devices): if d % group_size >= group_size / 2: continue left_idx = d right_idx = d + span left_dev = devices[left_idx] right_dev = devices[right_idx] with ops.device(left_dev): new_chunks[left_idx] = array_ops.concat([chunks[left_idx], chunks[right_idx]], 0) with ops.device(right_dev): new_chunks[right_idx] = array_ops.concat([chunks[left_idx], chunks[right_idx]], 0) chunks = new_chunks return chunks
Construct the scatter phase of recursive halving-doubling all-reduce. Args: input_tensors: list of `tf.Tensor` that are fully-reduced shards. devices: a list of strings naming the devices on which the reconstituted full tensors should be placed. Returns: list of `tf.Tensor` which are the fully reduced tensors.
github-repos
async def executor(func, *args, **kwargs): def syncfunc(): return func(*args, **kwargs) loop = asyncio.get_running_loop() return await loop.run_in_executor(None, syncfunc)
Execute a function in an executor thread. Args: todo ((func,args,kwargs)): A todo tuple.
juraj-google-style
def merge_with(self, other): other = as_dimension(other) self.assert_is_convertible_with(other) if (self._value is None): return Dimension(other.value) else: return Dimension(self._value)
Returns a Dimension that combines the information in `self` and `other`. Dimensions are combined as follows: ```python tf.Dimension(n) .merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(n) .merge_with(tf.Dimension(None)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(None)) == tf.Dimension(None) tf.Dimension(n) .merge_with(tf.Dimension(m)) # raises ValueError for n != m ``` Args: other: Another Dimension. Returns: A Dimension containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not convertible (see is_convertible_with).
codesearchnet
def find_vulnerabilities(cfg_list, blackbox_mapping_file, sources_and_sinks_file, interactive=False, nosec_lines=defaultdict(set)): vulnerabilities = list() definitions = parse(sources_and_sinks_file) with open(blackbox_mapping_file) as infile: blackbox_mapping = json.load(infile) for cfg in cfg_list: find_vulnerabilities_in_cfg(cfg, definitions, Lattice(cfg.nodes), blackbox_mapping, vulnerabilities, interactive, nosec_lines) if interactive: with open(blackbox_mapping_file, 'w') as outfile: json.dump(blackbox_mapping, outfile, indent=4) return vulnerabilities
Find vulnerabilities in a list of CFGs from a trigger_word_file. Args: cfg_list(list[CFG]): the list of CFGs to scan. blackbox_mapping_file(str) sources_and_sinks_file(str) interactive(bool): determines if we ask the user about blackbox functions not in the mapping file. Returns: A list of vulnerabilities.
codesearchnet
def stop_requested(self): return self._stop_requested
Returns whether a stop is requested or not. If true, `MonitoredSession` stops iterations. Returns: A `bool`
github-repos
def draw(self, current_time, frame_time): self.set_default_viewport() self.timeline.draw(current_time, frame_time, self.fbo)
Draws a frame. Internally it calls the configured timeline's draw method. Args: current_time (float): The current time (preferrably always from the configured timer class) frame_time (float): The duration of the previous frame in seconds
juraj-google-style
def _ParseDateTimeValue(self, byte_stream, file_offset): datetime_value_map = self._GetDataTypeMap('cups_ipp_datetime_value') try: value = self._ReadStructureFromByteStream( byte_stream, file_offset, datetime_value_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError( 'Unable to parse datetime value with error: {0!s}'.format(exception)) direction_from_utc = chr(value.direction_from_utc) rfc2579_date_time_tuple = ( value.year, value.month, value.day_of_month, value.hours, value.minutes, value.seconds, value.deciseconds, direction_from_utc, value.hours_from_utc, value.minutes_from_utc) return dfdatetime_rfc2579_date_time.RFC2579DateTime( rfc2579_date_time_tuple=rfc2579_date_time_tuple)
Parses a CUPS IPP RFC2579 date-time value from a byte stream. Args: byte_stream (bytes): byte stream. file_offset (int): offset of the attribute data relative to the start of the file-like object. Returns: dfdatetime.RFC2579DateTime: RFC2579 date-time stored in the value. Raises: ParseError: when the RFC2579 date-time value cannot be parsed.
juraj-google-style
End of preview. Expand in Data Studio

Overview

This dataset contains Python code-docstring pairs, whereas the docstrings are in Google style. A Google style docstring is structured as follows:

<Description of the code>

Args:
<var1> (<data-type>) : <description of var1>
<var2> (<data_type>) : <description of var2>

Returns:
<var3> (<data-type>) : <description of var3>

Raises:
<var4> (<data-type>) : <description of var4>

The format varies widely (like additional sections such as Examples, Notes, etc) but generally speaking, it should contain an Args/Parameters and Returns section.

Source

The dataset was gathered from 3 different sources:

CodeSearchNet

From their Python split of ~250k samples, ~23k samples was extracted. A less than 10% sample retention, most samples from CodeSearchNet contained informal docstrings that only contained descriptions and no sections.

Repositories Under Google's GitHub Organization Page

You can find the specified page here here. These repos are dictated by the list:

repos = [
    "https://github.com/google/python-fire",
    "https://github.com/google/yapf",
    "https://github.com/google/pytype",
    "https://github.com/google/tf-quant-finance",
    "https://github.com/google/budoux",
    "https://github.com/google/mobly",
    "https://github.com/google/temporian",
    "https://github.com/google/pyglove",
    "https://github.com/google/subpar",
    "https://github.com/google/weather-tools",
    "https://github.com/google/ci_edit",
    "https://github.com/google/etils",
    "https://github.com/google/pcbdl",
    "https://github.com/google/starthinker",
    "https://github.com/google/pytruth",
    "https://github.com/google/nsscache",
    "https://github.com/google/megalista",
    "https://github.com/google/fhir-py",
    "https://github.com/google/chatbase-python",
    "https://github.com/tensorflow/tensorflow",
    "https://github.com/google/project-OCEAN",
    "https://github.com/google/qhbm-library",
    "https://github.com/google/data-quality-monitor",
    "https://github.com/google/genai-processors",
    "https://github.com/google/python-proto-converter",
    "https://github.com/google/sprockets",
    "https://github.com/keras-team/keras",
    "https://github.com/scikit-learn/scikit-learn",
    "https://github.com/apache/beam",
    "https://github.com/huggingface/transformers"
]

A total of ~11k samples was gathered from this source.

Juraj's Python Google-style Docstrings Dataset

I found this dataset here and is made my user Juraj-juraj. You can find the dataset here. A total of ~25k samples was gathered from this source, after further preprocessing.

Preprocessing Steps

The following cleaning, normalizing and preprocessing steps were performed:

  1. Removed duplicates based on both code and docstring
  2. Remove samples with empty code and docstrings
  3. Remove samples with extremely short entries (<20 chars)
  4. Remove samples with extremely long entries (>5000 chars)
  5. Removed comments and docstring from the code
  6. Removed samples where docstring isn't in English (using langdetect)
  7. Removed samples where docstring contained special characters like html tags or URLS
  8. Using CodeT5+ tokenizer, removed samples where docstring tokens are < 12 or > 256
  9. Normalized all docstring entries by removing any indentions

Data Structure

The data structure of the dataset is as follows:

<code> : <The code, removed of docstrings and comments>,
<docstring> : <The corresponding docstring of the code>,
<source> : <The source which the code came from>

The source is any of the following:

CodeSearchNet - from the CodeSearchNet dataset
github-repos - from the repositories under Google's Organization GitHub page
juraj-google-style - from Juraj's Python Google-style docstring dataset

Downloads last month
99

Models trained or fine-tuned on Mir-2002/python-google-style-docstrings