code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def to_json_str(self):
adict = dict(vars(self), sort_keys=True)
adict['type'] = self.__class__.__name__
return json.dumps(adict)
|
Convert data to json string representation.
Returns:
json representation as string.
|
codesearchnet
|
def get_organisation(self, **query_params):
organisation_json = self.get_organisations_json(self.base_uri, query_params=query_params)
return self.create_organisation(organisation_json)
|
Get the Organisation for this board. Returns Organisation object.
Returns:
list(Organisation): The organisation attached to this board
|
codesearchnet
|
def get_airport_details(self, iata, page=1, limit=100):
url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)
details = self._fr24.get_airport_details(url)
weather = self._fr24.get_airport_weather(url)
details['position']['elevation'] = weather['elevation']
return details
|
Retrieve the details of an airport
Given the IATA code of an airport, this method returns the detailed information like lat lon, full name, URL, codes etc.
Args:
iata (str): The IATA code for an airport, e.g. HYD
page (int): Optional page number; for users who are on a plan with flightradar24 they can pass in higher page numbers to get more data
limit (int): Optional limit on number of records returned
Returns:
A list of dicts with the data; one dict for each row of data from flightradar24
Example::
from pyflightdata import FlightData
f=FlightData()
#optional login
f.login(myemail,mypassword)
f.get_airport_details('HYD')
f.get_airport_details('HYD',page=1,limit=10)
|
codesearchnet
|
def create(self, name, passphrase=None, wallet_data=None):
if (not self.application):
raise RoundError('User accounts are limited to one wallet. Make an account or shoot us an email <dev@gem.co> if you have a compelling use case for more.')
if ((not passphrase) and (not wallet_data)):
raise ValueError('Usage: wallets.create(name, passphrase [, wallet_data])')
elif passphrase:
wallet_data = generate(passphrase, trees=(['primary', 'backup'] if self.application else ['primary']))
wallet = dict(primary_private_seed=wallet_data['primary']['encrypted_seed'], primary_public_seed=wallet_data['primary']['public_seed'], name=name)
if self.application:
wallet['backup_public_seed'] = wallet_data['backup']['public_seed']
resource = self.resource.create(wallet)
wallet = self.wrap(resource)
return ((wallet_data['backup']['private_seed'], self.add(wallet)) if self.application else self.add(wallet))
|
Create a new Wallet object and add it to this Wallets collection.
This is only available in this library for Application wallets. Users
must add additional wallets in their User Console
Args:
name (str): wallet name
passphrase (str, optional): A passphrase with which to encrypt a user
wallet. If not supplied, wallet_data is mandatory.
wallet_data (dict): Output from wallets.generate.
For User Wallets, only the primary tree is used.
For Application Wallets, the primary and backup trees are used.
Returns:
A tuple of the (backup_private_seed, round.Wallet).
|
codesearchnet
|
def merge(self, workdir, pot_files, out_dvdb, delete_source=True):
pot_files = [os.path.abspath(s) for s in list_strings(pot_files)]
if (not os.path.isabs(out_dvdb)):
out_dvdb = os.path.join(os.path.abspath(workdir), os.path.basename(out_dvdb))
if self.verbose:
print(('Will merge %d files into output DVDB %s' % (len(pot_files), out_dvdb)))
for (i, f) in enumerate(pot_files):
print((' [%d] %s' % (i, f)))
if (len(pot_files) == 1):
with open(pot_files[0], 'r') as inh, open(out_dvdb, 'w') as out:
for line in inh:
out.write(line)
return out_dvdb
(self.stdin_fname, self.stdout_fname, self.stderr_fname) = map(os.path.join, (3 * [os.path.abspath(workdir)]), ['mrgdvdb.stdin', 'mrgdvdb.stdout', 'mrgdvdb.stderr'])
inp = StringIO()
inp.write((out_dvdb + '\n'))
inp.write((str(len(pot_files)) + '\n'))
for fname in pot_files:
inp.write((fname + '\n'))
self.stdin_data = [s for s in inp.getvalue()]
with open(self.stdin_fname, 'wt') as fh:
fh.writelines(self.stdin_data)
fh.flush()
os.fsync(fh.fileno())
retcode = self.execute(workdir)
if ((retcode == 0) and delete_source):
for f in pot_files:
try:
os.remove(f)
except IOError:
pass
return out_dvdb
|
Merge POT files containing 1st order DFPT potential
return the absolute path of the new database in workdir.
Args:
delete_source: True if POT1 files should be removed after (successful) merge.
|
codesearchnet
|
def kill_raylet_monitor(self, check_alive=True):
self._kill_process_type(ray_constants.PROCESS_TYPE_RAYLET_MONITOR, check_alive=check_alive)
|
Kill the raylet monitor.
Args:
check_alive (bool): Raise an exception if the process was already
dead.
|
codesearchnet
|
def period_end_day(self, value=None):
if (value is not None):
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str for field `period_end_day`'.format(value))
if (',' in value):
raise ValueError('value should not contain a comma for field `period_end_day`')
self._period_end_day = value
|
Corresponds to IDD Field `period_end_day`
Args:
value (str): value for IDD Field `period_end_day`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
def label(self, name):
if isinstance(name, str):
self._label = name
else:
raise TypeError('label expects a string')
|
Set snapshot label to name
Args:
name (str or None): label to assign unitary
Raises:
TypeError: name is not string or None.
|
codesearchnet
|
def get_unique_variable(name):
candidates = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, name)
if not candidates:
raise ValueError('Couldnt find variable %s' % name)
for candidate in candidates:
if candidate.op.name == name:
return candidate
raise ValueError('Variable %s does not uniquely identify a variable', name)
|
Gets the variable uniquely identified by that name.
Args:
name: a name that uniquely identifies the variable.
Returns:
a tensorflow variable.
Raises:
ValueError: if no variable uniquely identified by the name exists.
|
juraj-google-style
|
def save(self, output_saved_model_dir):
assert self._converted
if self._need_calibration:
assert self._calibration_data_collected
if self._input_graph_def:
raise ValueError('Not able to save to a SavedModel since input is a GraphDef')
def _restore_collections(dest_graph, src_meta_graph_def, collection_keys):
scope = ''
for key in collection_keys:
collection_def = src_meta_graph_def.collection_def[key]
kind = collection_def.WhichOneof('kind')
if kind is None:
logging.error('Cannot identify data type for collection %s. Skipping.', key)
continue
from_proto = ops.get_from_proto_function(key)
if from_proto and kind == 'bytes_list':
proto_type = ops.get_collection_proto_type(key)
for value in collection_def.bytes_list.value:
proto = proto_type()
proto.ParseFromString(value)
try:
new_value = from_proto(proto, import_scope=scope)
except:
continue
dest_graph.add_to_collection(key, new_value)
else:
field = getattr(collection_def, kind)
if kind == 'node_list':
for value in field.value:
name = ops.prepend_name_scope(value, scope)
try:
col_op = dest_graph.as_graph_element(name)
except (TypeError, ValueError, KeyError):
continue
dest_graph.add_to_collection(key, col_op)
elif kind == 'int64_list':
for value in field.value:
dest_graph.add_to_collection(key, int(value))
else:
for value in field.value:
dest_graph.add_to_collection(key, ops.prepend_name_scope(value, scope))
saved_model_builder = builder.SavedModelBuilder(output_saved_model_dir)
with ops.Graph().as_default():
importer.import_graph_def(self._converted_graph_def, name='')
_restore_collections(ops.get_default_graph(), self._grappler_meta_graph_def, self._collections_to_keep(self._grappler_meta_graph_def.collection_def))
with session.Session() as sess:
saved_model_builder.add_meta_graph_and_variables(sess, self._input_saved_model_tags, signature_def_map=self._grappler_meta_graph_def.signature_def)
saved_model_builder.save()
|
Save the converted graph as a SavedModel.
Args:
output_saved_model_dir: construct a SavedModel using the converted
GraphDef and save it to the specified directory. This option only works
when the input graph is loaded from a SavedModel, i.e. when
input_saved_model_dir is specified and input_graph_def is None in
__init__().
Raises:
ValueError: if the input to the converter is a GraphDef instead of a
SavedModel.
|
github-repos
|
def track(self, event_key, user_id, attributes=None, event_tags=None):
if (not self.is_valid):
self.logger.error(enums.Errors.INVALID_DATAFILE.format('track'))
return
if (not validator.is_non_empty_string(event_key)):
self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('event_key'))
return
if (not isinstance(user_id, string_types)):
self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id'))
return
if (not self._validate_user_inputs(attributes, event_tags)):
return
event = self.config.get_event(event_key)
if (not event):
self.logger.info(('Not tracking user "%s" for event "%s".' % (user_id, event_key)))
return
conversion_event = self.event_builder.create_conversion_event(event_key, user_id, attributes, event_tags)
self.logger.info(('Tracking event "%s" for user "%s".' % (event_key, user_id)))
self.logger.debug(('Dispatching conversion event to URL %s with params %s.' % (conversion_event.url, conversion_event.params)))
try:
self.event_dispatcher.dispatch_event(conversion_event)
except:
self.logger.exception('Unable to dispatch conversion event!')
self.notification_center.send_notifications(enums.NotificationTypes.TRACK, event_key, user_id, attributes, event_tags, conversion_event)
|
Send conversion event to Optimizely.
Args:
event_key: Event key representing the event which needs to be recorded.
user_id: ID for user.
attributes: Dict representing visitor attributes and values which need to be recorded.
event_tags: Dict representing metadata associated with the event.
|
codesearchnet
|
def GetCodeObjectAtLine(module, line):
if (not hasattr(module, '__file__')):
return (False, (None, None))
prev_line = 0
next_line = six.MAXSIZE
for code_object in _GetModuleCodeObjects(module):
for co_line_number in _GetLineNumbers(code_object):
if (co_line_number == line):
return (True, code_object)
elif (co_line_number < line):
prev_line = max(prev_line, co_line_number)
elif (co_line_number > line):
next_line = min(next_line, co_line_number)
break
prev_line = (None if (prev_line == 0) else prev_line)
next_line = (None if (next_line == six.MAXSIZE) else next_line)
return (False, (prev_line, next_line))
|
Searches for a code object at the specified line in the specified module.
Args:
module: module to explore.
line: 1-based line number of the statement.
Returns:
(True, Code object) on success or (False, (prev_line, next_line)) on
failure, where prev_line and next_line are the closest lines with code above
and below the specified line, or None if they do not exist.
|
codesearchnet
|
def __init__(self, identifier, text_format=False):
super(FormatSpecification, self).__init__()
self._text_format = text_format
self.identifier = identifier
self.signatures = []
|
Initializes a format specification.
Args:
identifier (str): unique name for the format.
text_format (Optional[bool]): True if the format is a text format,
False otherwise.
|
juraj-google-style
|
def _get_column_alias(builder: column_expression_builder.ColumnExpressionBuilder) -> str:
if builder.column_name:
return builder.column_name
else:
invoke_node = builder.node
while invoke_node and (not hasattr(invoke_node, 'identifier') or not invoke_node.identifier):
invoke_node = invoke_node.parent_node
if _fhir_path_data_types.returns_collection(invoke_node.return_type):
return f'{invoke_node.identifier}_element_'
else:
return invoke_node.identifier
|
Determine the column alias based on the builder's state.
Args:
builder: A ColumnExpressionBuilder object.
Returns:
A string representing the column alias.
|
github-repos
|
def CreateBudget(client):
budget_service = client.GetService('BudgetService', version='v201809')
budget = {
'name': 'Interplanetary Cruise App Budget
'amount': {
'microAmount': '50000000'
},
'deliveryMethod': 'STANDARD',
'isExplicitlyShared': False
}
budget_operations = [{
'operator': 'ADD',
'operand': budget
}]
budget_id = budget_service.mutate(budget_operations)['value'][0]['budgetId']
return budget_id
|
Creates a budget and returns its budgetId.
Args:
client: An AdWordsClient instance.
Returns:
An int budgetId for the created Budget.
|
juraj-google-style
|
def setup(__pkg: ModuleType) -> Tuple[Callable[[str], str],
Callable[[str, str, int], str]]:
package_locale = path.join(path.dirname(__pkg.__file__), 'locale')
gettext.install(__pkg.__name__, package_locale)
return gettext.gettext, gettext.ngettext
|
Configure ``gettext`` for given package.
Args:
__pkg: Package to use as location for :program:`gettext` files
Returns:
:program:`gettext` functions for singular and plural translations
|
juraj-google-style
|
def minutes(start, end=None):
return iterate.between(start, datetime.timedelta(minutes=1), end)
|
Iterate over the minutes between the given datetime_tzs.
Args:
start: datetime_tz to start from.
end: (Optional) Date to end at, if not given the iterator will never
terminate.
Returns:
An iterator which generates datetime_tz objects a minute apart.
|
codesearchnet
|
def _GetClientLibCallback(args, client_func=_GetClientLib):
client_paths = client_func(
args.service, args.language, args.output, args.build_system,
hostname=args.hostname, application_path=args.application)
for client_path in client_paths:
print 'API client library written to %s' % client_path
|
Generate discovery docs and client libraries to files.
Args:
args: An argparse.Namespace object to extract parameters from.
client_func: A function that generates client libraries and stores them to
files, accepting a list of service names, a client library language,
an output directory, a build system for the client library language, and
a hostname.
|
juraj-google-style
|
def _bfd_rx(self, **kwargs):
method_name = 'rbridge_id_router_router_bgp_router_bgp_attributes_' \
'bfd_interval_min_rx'
bfd_rx = getattr(self._rbridge, method_name)
config = bfd_rx(**kwargs)
if kwargs['delete']:
tag = 'min-rx'
config.find('.
pass
return config
|
Return the BFD minimum receive interval XML.
You should not use this method.
You probably want `BGP.bfd`.
Args:
min_rx (str): BFD receive interval in milliseconds (300, 500, etc)
delete (bool): Remove the configuration if ``True``.
Returns:
XML to be passed to the switch.
Raises:
None
|
juraj-google-style
|
def GetSystemConfigurationArtifact(self, session_identifier=CURRENT_SESSION):
system_configuration = artifacts.SystemConfigurationArtifact()
system_configuration.code_page = self.GetValue(
'codepage', default_value=self._codepage)
system_configuration.hostname = self._hostnames.get(
session_identifier, None)
system_configuration.keyboard_layout = self.GetValue('keyboard_layout')
system_configuration.operating_system = self.GetValue('operating_system')
system_configuration.operating_system_product = self.GetValue(
'operating_system_product')
system_configuration.operating_system_version = self.GetValue(
'operating_system_version')
date_time = datetime.datetime(2017, 1, 1)
time_zone = self._time_zone.tzname(date_time)
if time_zone and isinstance(time_zone, py2to3.BYTES_TYPE):
time_zone = time_zone.decode('ascii')
system_configuration.time_zone = time_zone
user_accounts = self._user_accounts.get(session_identifier, {})
system_configuration.user_accounts = list(user_accounts.values())
return system_configuration
|
Retrieves the knowledge base as a system configuration artifact.
Args:
session_identifier (Optional[str])): session identifier, where
CURRENT_SESSION represents the active session.
Returns:
SystemConfigurationArtifact: system configuration artifact.
|
juraj-google-style
|
def build_info(self):
if self.is_bootloader:
self.log.error('Device is in fastboot mode, could not get build info.')
return
if self._build_info is None or self._is_rebooting:
info = {}
build_info = self.adb.getprops(CACHED_SYSTEM_PROPS)
for build_info_constant in BuildInfoConstants:
info[build_info_constant.build_info_key] = build_info.get(build_info_constant.system_prop_key, '')
self._build_info = info
return info
return self._build_info
|
Gets the build info of this Android device, including build id and type.
This is not available if the device is in bootloader mode.
Returns:
A dict with the build info of this Android device, or None if the
device is in bootloader mode.
|
github-repos
|
def get_dihedral(self, i: int, j: int, k: int, l: int) -> float:
v1 = (self[k].coords - self[l].coords)
v2 = (self[j].coords - self[k].coords)
v3 = (self[i].coords - self[j].coords)
v23 = np.cross(v2, v3)
v12 = np.cross(v1, v2)
return math.degrees(math.atan2((np.linalg.norm(v2) * np.dot(v1, v23)), np.dot(v12, v23)))
|
Returns dihedral angle specified by four sites.
Args:
i: Index of first site
j: Index of second site
k: Index of third site
l: Index of fourth site
Returns:
Dihedral angle in degrees.
|
codesearchnet
|
def parse_received(received):
values_by_clause = {}
for pattern in RECEIVED_COMPILED_LIST:
matches = [match for match in pattern.finditer(received)]
if len(matches) == 0:
log.debug("No matches found for %s in %s" % (
pattern.pattern, received))
continue
elif len(matches) > 1:
msg = "More than one match found for %s in %s" % (
pattern.pattern, received)
log.error(msg)
raise MailParserReceivedParsingError(msg)
else:
log.debug("Found one match for %s in %s" % (
pattern.pattern, received))
match = matches[0].groupdict()
if six.PY2:
values_by_clause[match.keys()[0]] = match.values()[0]
elif six.PY3:
key = list(match.keys())[0]
value = list(match.values())[0]
values_by_clause[key] = value
if len(values_by_clause) == 0:
msg = "Unable to match any clauses in %s" % (received)
log.error(msg)
raise MailParserReceivedParsingError(msg)
return values_by_clause
|
Parse a single received header.
Return a dictionary of values by clause.
Arguments:
received {str} -- single received header
Raises:
MailParserReceivedParsingError -- Raised when a
received header cannot be parsed
Returns:
dict -- values by clause
|
juraj-google-style
|
def mknod(self, filename, mode=None, device=None, dir_fd=None):
if self.filesystem.is_windows_fs:
raise (AttributeError, "module 'os' has no attribute 'mknode'")
if (mode is None):
mode = (S_IFREG | 384)
if (device or ((not (mode & S_IFREG)) and (not is_root()))):
self.filesystem.raise_os_error(errno.EPERM)
filename = self._path_with_dir_fd(filename, self.mknod, dir_fd)
(head, tail) = self.path.split(filename)
if (not tail):
if self.filesystem.exists(head, check_link=True):
self.filesystem.raise_os_error(errno.EEXIST, filename)
self.filesystem.raise_os_error(errno.ENOENT, filename)
if (tail in (b'.', u'.', b'..', u'..')):
self.filesystem.raise_os_error(errno.ENOENT, filename)
if self.filesystem.exists(filename, check_link=True):
self.filesystem.raise_os_error(errno.EEXIST, filename)
try:
self.filesystem.add_object(head, FakeFile(tail, (mode & (~ self.filesystem.umask)), filesystem=self.filesystem))
except IOError as e:
self.filesystem.raise_os_error(e.errno, filename)
|
Create a filesystem node named 'filename'.
Does not support device special files or named pipes as the real os
module does.
Args:
filename: (str) Name of the file to create
mode: (int) Permissions to use and type of file to be created.
Default permissions are 0o666. Only the stat.S_IFREG file type
is supported by the fake implementation. The umask is applied
to this mode.
device: not supported in fake implementation
dir_fd: If not `None`, the file descriptor of a directory,
with `filename` being relative to this directory.
New in Python 3.3.
Raises:
OSError: if called with unsupported options or the file can not be
created.
|
codesearchnet
|
def add_business_days(self, date_tensor, num_days, roll_convention=constants.BusinessDayConvention.NONE):
pass
|
Adds given number of business days to given dates.
Note that this is different from calling `add_period_and_roll` with
PeriodType.DAY. For example, adding 5 business days to Monday gives the next
Monday (unless there are holidays on this week or next Monday). Adding 5
days and rolling means landing on Saturday and then rolling either to next
Monday or to Friday of the same week, depending on the roll convention.
If any of the dates in `date_tensor` are not business days, they will be
rolled to business days before doing the addition. If `roll_convention` is
`NONE`, and any dates are not business days, an exception is raised.
Args:
date_tensor: DateTensor of dates to advance from.
num_days: Tensor of int32 type broadcastable to `date_tensor`.
roll_convention: BusinessDayConvention. Determines how to roll a date that
falls on a holiday.
Returns:
The resulting DateTensor.
|
github-repos
|
def assert_corofunction(**kw):
for name, value in kw.items():
if not asyncio.iscoroutinefunction(value):
raise TypeError(
'paco: {} must be a coroutine function'.format(name))
|
Asserts if a given values are a coroutine function.
Arguments:
**kw (mixed): value to check if it is an iterable.
Raises:
TypeError: if assertion fails.
|
juraj-google-style
|
def gen_pdf(rst_content, style_text, header=None, footer=FOOTER):
out_file_obj = StringIO()
with NamedTemporaryFile() as f:
f.write(style_text)
f.flush()
pdf = _init_pdf(f.name, header, footer)
pdf.createPdf(text=rst_content, output=out_file_obj, compressed=True)
out_file_obj.seek(0)
return out_file_obj
|
Create PDF file from `rst_content` using `style_text` as style.
Optinally, add `header` or `footer`.
Args:
rst_content (str): Content of the PDF file in restructured text markup.
style_text (str): Style for the :mod:`rst2pdf` module.
header (str, default None): Header which will be rendered to each page.
footer (str, default FOOTER): Footer, which will be rendered to each
page. See :attr:`FOOTER` for details.
Returns:
obj: StringIO file instance containing PDF file.
|
codesearchnet
|
def _check_root_tag(self, root):
supported = self.supported_tags()
if root.tag in supported:
return
error = "Document root element ({0}) not one of ({1})"
raise UnsupportedRootElementError(
message=error.format(root.tag, supported),
expected=supported,
found=root.tag,
)
|
Check that the XML element tree has a supported root element.
Args:
root (etree.Element)
Raises:
UnsupportedRootElementError
|
juraj-google-style
|
def get_instances_with_configs(configs):
results = []
for c in configs:
try:
serial = c.pop('serial')
except KeyError:
raise Error(
'Required value "serial" is missing in AndroidDevice config %s.'
% c)
is_required = c.get(KEY_DEVICE_REQUIRED, True)
try:
ad = AndroidDevice(serial)
ad.load_config(c)
except Exception:
if is_required:
raise
ad.log.exception('Skipping this optional device due to error.')
continue
results.append(ad)
return results
|
Create AndroidDevice instances from a list of dict configs.
Each config should have the required key-value pair 'serial'.
Args:
configs: A list of dicts each representing the configuration of one
android device.
Returns:
A list of AndroidDevice objects.
|
juraj-google-style
|
def run(self, args):
jlink = pylink.JLink()
if args.test:
if jlink.test():
print('Self-test succeeded.')
else:
print('Self-test failed.')
elif ((args.list is None) or (args.list in ['usb', 'ip'])):
host = pylink.JLinkHost.USB_OR_IP
if (args.list == 'usb'):
host = pylink.JLinkHost.USB
elif (args.list == 'ip'):
host = pylink.JLinkHost.IP
emulators = jlink.connected_emulators(host)
for (index, emulator) in enumerate(emulators):
if (index > 0):
print('')
print(('Product Name: %s' % emulator.acProduct.decode()))
print(('Serial Number: %s' % emulator.SerialNumber))
usb = bool(emulator.Connection)
if (not usb):
print(('Nickname: %s' % emulator.acNickname.decode()))
print(('Firmware: %s' % emulator.acFWString.decode()))
print(('Connection: %s' % ('USB' if usb else 'IP')))
if (not usb):
print(('IP Address: %s' % emulator.aIPAddr))
elif (args.supported is not None):
device = args.supported[0]
num_supported_devices = jlink.num_supported_devices()
for i in range(num_supported_devices):
found_device = jlink.supported_device(i)
if (device.lower() == found_device.name.lower()):
print(('Device Name: %s' % device))
print(('Core ID: %s' % found_device.CoreId))
print(('Flash Address: %s' % found_device.FlashAddr))
print(('Flash Size: %s bytes' % found_device.FlashSize))
print(('RAM Address: %s' % found_device.RAMAddr))
print(('RAM Size: %s bytes' % found_device.RAMSize))
print(('Manufacturer: %s' % found_device.manufacturer))
break
else:
print(('%s is not supported :(' % device))
return None
|
Runs the emulator command.
Args:
self (EmulatorCommand): the ``EmulatorCommand`` instance
args (Namespace): arguments to parse
Returns:
``None``
|
codesearchnet
|
def expected_h(nvals, fit='RANSAC'):
rsvals = [expected_rs(n) for n in nvals]
poly = poly_fit(np.log(nvals), np.log(rsvals), 1, fit=fit)
return poly[0]
|
Uses expected_rs to calculate the expected value for the Hurst exponent h
based on the values of n used for the calculation.
Args:
nvals (iterable of int):
the values of n used to calculate the individual (R/S)_n
KWargs:
fit (str):
the fitting method to use for the line fit, either 'poly' for normal
least squares polynomial fitting or 'RANSAC' for RANSAC-fitting which
is more robust to outliers
Returns:
float:
expected h for white noise
|
codesearchnet
|
def mixture_stddev(mixture_weight_vector, mean_vector, stddev_vector):
tensorshape_util.assert_has_rank(mixture_weight_vector.shape, 2)
if (not tensorshape_util.is_compatible_with(mean_vector.shape, mixture_weight_vector.shape)):
raise ValueError('Expecting means to have same shape as mixture weights.')
if (not tensorshape_util.is_compatible_with(stddev_vector.shape, mixture_weight_vector.shape)):
raise ValueError('Expecting stddevs to have same shape as mixture weights.')
pi_for_dot_prod = tf.expand_dims(mixture_weight_vector, axis=1)
mu_for_dot_prod = tf.expand_dims(mean_vector, axis=2)
sigma_for_dot_prod = tf.expand_dims(stddev_vector, axis=2)
mean_wa = tf.matmul(pi_for_dot_prod, mu_for_dot_prod)
mean_wa = tf.reshape(mean_wa, ((- 1),))
var_wa = tf.matmul(pi_for_dot_prod, tf.square(sigma_for_dot_prod))
var_wa = tf.reshape(var_wa, ((- 1),))
sq_mean_wa = tf.matmul(pi_for_dot_prod, tf.square(mu_for_dot_prod))
sq_mean_wa = tf.reshape(sq_mean_wa, ((- 1),))
mixture_variance = ((var_wa + sq_mean_wa) - tf.square(mean_wa))
return tf.sqrt(mixture_variance)
|
Computes the standard deviation of a mixture distribution.
This function works regardless of the component distribution, so long as
each component's mean and standard deviation can be provided.
Args:
mixture_weight_vector: A 2D tensor with shape [batch_size, num_components]
mean_vector: A 2D tensor of mixture component means. Has shape `[batch_size,
num_components]`.
stddev_vector: A 2D tensor of mixture component standard deviations. Has
shape `[batch_size, num_components]`.
Returns:
A 1D tensor of shape `[batch_size]` representing the standard deviation of
the mixture distribution with given weights and component means and standard
deviations.
Raises:
ValueError: If the shapes of the input tensors are not as expected.
|
codesearchnet
|
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: bool=False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
if token_ids_1 is not None:
return [1] + [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1)
return [1] + [0] * len(token_ids_0)
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`): List of IDs.
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
github-repos
|
def _parse_config(self):
config = self.get_block('mlag configuration')
cfg = dict()
cfg.update(self._parse_domain_id(config))
cfg.update(self._parse_local_interface(config))
cfg.update(self._parse_peer_address(config))
cfg.update(self._parse_peer_link(config))
cfg.update(self._parse_shutdown(config))
return dict(config=cfg)
|
Parses the mlag global configuration
Returns:
dict: A dict object that is intended to be merged into the
resource dict
|
codesearchnet
|
def _register_notification_callback(self, connection_handle, attribute_handle, callback, once=False):
notification_id = (connection_handle, attribute_handle)
with self.notification_callbacks_lock:
self.notification_callbacks[notification_id] = (callback, once)
|
Register a callback as a notification callback. It will be called if a notification with the matching
connection_handle and attribute_handle is received.
Args:
connection_handle (int): The connection handle to watch
attribute_handle (int): The attribute handle to watch
callback (func): The callback function to call once the notification has been received
once (bool): Should the callback only be called once (and then removed from the notification callbacks)
|
codesearchnet
|
def derivative_extraction(feat, DeltaWindows):
rows, cols = feat.shape
DIF = np.zeros(feat.shape, dtype=feat.dtype)
Scale = 0
FEAT = np.lib.pad(feat, ((0, 0), (DeltaWindows, DeltaWindows)), 'edge')
for i in range(DeltaWindows):
offset = DeltaWindows
Range = i + 1
dif = Range * FEAT[:, offset + Range:offset + Range + cols]
- FEAT[:, offset - Range:offset - Range + cols]
Scale += 2 * np.power(Range, 2)
DIF += dif
return DIF / Scale
|
This function the derivative features.
Args:
feat (array): The main feature vector(For returning the second
order derivative it can be first-order derivative).
DeltaWindows (int): The value of DeltaWindows is set using
the configuration parameter DELTAWINDOW.
Returns:
array: Derivative feature vector - A NUMFRAMESxNUMFEATURES numpy
array which is the derivative features along the features.
|
juraj-google-style
|
def datasets_insert(self, dataset_name, friendly_name=None, description=None):
url = (Api._ENDPOINT + (Api._DATASETS_PATH % (dataset_name.project_id, '')))
data = {'kind': 'bigquery
if friendly_name:
data['friendlyName'] = friendly_name
if description:
data['description'] = description
return datalab.utils.Http.request(url, data=data, credentials=self._credentials)
|
Issues a request to create a dataset.
Args:
dataset_name: the name of the dataset to create.
friendly_name: (optional) the friendly name for the dataset
description: (optional) a description for the dataset
Returns:
A parsed result object.
Raises:
Exception if there is an error performing the operation.
|
codesearchnet
|
def options(self, section):
if not self.has_section(section):
raise NoSectionError(section) from None
return self.__getitem__(section).options()
|
Returns list of configuration options for the named section.
Args:
section (str): name of section
Returns:
list: list of option names
|
juraj-google-style
|
def call_remoteckan(self, *args, **kwargs):
requests_kwargs = kwargs.get('requests_kwargs', dict())
credentials = self._get_credentials()
if credentials:
requests_kwargs['auth'] = credentials
kwargs['requests_kwargs'] = requests_kwargs
apikey = kwargs.get('apikey', self.get_api_key())
kwargs['apikey'] = apikey
return self.remoteckan().call_action(*args, **kwargs)
|
Calls the remote CKAN
Args:
*args: Arguments to pass to remote CKAN call_action method
**kwargs: Keyword arguments to pass to remote CKAN call_action method
Returns:
Dict: The response from the remote CKAN call_action method
|
juraj-google-style
|
def export_model(module_spec, class_count, saved_model_dir):
(sess, in_image, _, _, _, _) = build_eval_session(module_spec, class_count)
with sess.graph.as_default() as graph:
tf.saved_model.simple_save(sess, saved_model_dir, inputs={'image': in_image}, outputs={'prediction': graph.get_tensor_by_name('final_result:0')}, legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op'))
|
Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
|
codesearchnet
|
def SignBuffer(self, in_buffer):
precondition.AssertType(in_buffer, bytes)
with tempfile.NamedTemporaryFile() as temp_in:
temp_in.write(in_buffer)
temp_in.seek(0)
outfile = self.SignFile(temp_in.name)
with io.open(outfile, 'rb') as filedesc:
return filedesc.read()
|
Sign a buffer via temp files.
Our signing tool can't sign a buffer, so we work around it using temporary
files.
Args:
in_buffer: data to sign
Returns:
signed data
|
codesearchnet
|
def _parse_description(self, config):
value = None
match = re.search(r'description (.+)$', config, re.M)
if match:
value = match.group(1)
return dict(description=value)
|
Scans the specified config block and returns the description value
Args:
config (str): The interface config block to scan
Returns:
dict: Returns a dict object with the description value retrieved
from the config block. If the description value is not
configured, None is returned as the value. The returned dict
is intended to be merged into the interface resource dict.
|
juraj-google-style
|
def load_checkpoints(self, checkpointDirs):
self.memo_lookup_table = None
if (not checkpointDirs):
return {}
if (type(checkpointDirs) is not list):
raise BadCheckpoint('checkpointDirs expects a list of checkpoints')
return self._load_checkpoints(checkpointDirs)
|
Load checkpoints from the checkpoint files into a dictionary.
The results are used to pre-populate the memoizer's lookup_table
Kwargs:
- checkpointDirs (list) : List of run folder to use as checkpoints
Eg. ['runinfo/001', 'runinfo/002']
Returns:
- dict containing, hashed -> future mappings
|
codesearchnet
|
def indicators(self, indicator_type=None, filters=None, params=None):
indicator = self._tcex.ti.indicator(indicator_type)
for i in self.tc_requests.indicators_from_tag(indicator, self.name, filters=filters, params=params):
(yield i)
|
Gets all indicators from a tag.
Args:
params:
filters:
indicator_type:
|
codesearchnet
|
def sever_sink_ports(self, context, ports, connected_to=None):
if connected_to:
source_port_lookup = self._source_port_lookup(
ports.get(connected_to, []))
else:
source_port_lookup = True
sink_ports = self._get_flowgraph_ports(ports, SinkPortInfo)
if sink_ports and source_port_lookup:
child = context.block_view(self.mri)
attribute_values = {}
for name, port_info in sink_ports.items():
if source_port_lookup is True or source_port_lookup.get(
child[name].value, None) == port_info.port:
attribute_values[name] = port_info.disconnected_value
child.put_attribute_values(attribute_values)
|
Conditionally sever Sink Ports of the child. If connected_to
is then None then sever all, otherwise restrict to connected_to's
Source Ports
Args:
context (Context): The context to use
ports (dict): {part_name: [PortInfo]}
connected_to (str): Restrict severing to this part
|
juraj-google-style
|
def get_nn(self, structure, n):
return [e['site'] for e in self.get_nn_info(structure, n)]
|
Get near neighbors of site with index n in structure.
Args:
structure (Structure): input structure.
n (integer): index of site in structure for which to determine
neighbors.
Returns:
sites (list of Site objects): near neighbors.
|
juraj-google-style
|
def tflite_to_tosa_bytecode(flatbuffer, bytecode, use_external_constant=False, ordered_input_arrays=None, ordered_output_arrays=None):
pywrap_mlir.experimental_tflite_to_tosa_bytecode(flatbuffer, bytecode, use_external_constant, ordered_input_arrays, ordered_output_arrays)
|
Converts TFLite flatbuffer to TOSA dialect in MLIR bytecode.
Args:
flatbuffer: Path to flatbuffer.
bytecode: Path to output bytecode.
use_external_constant: Whether to create `tfl.external_const` instead of
`tfl.const`.
ordered_input_arrays:
ordered_output_arrays: If ordered_output_arrays is not empty, then the
function will only return nodes in ordered_output_arrays in the same order
|
github-repos
|
def op_priority(op_type):
if op_type in ('Const', 'Shape', 'BroadcastGradientArgs', 'Range', 'VariableShape', 'Fill', 'OneHot', 'ShapeN'):
return 7
if op_type in ('Identity', 'Cast', 'Reshape', 'ExpandDims', 'StopGradient', 'PreventGradient', 'Squeeze', 'Gather', 'GatherNd'):
return 6
if op_type in ('ConcatV2', 'Concat', 'StridedSlice', 'Slice', 'Pack', 'Tile', 'CollectivePermute', 'SplitV', 'DynamicPartition'):
return 5
if op_type in ('Pad', 'RandomUniformInt', 'GreaterEqual'):
return 4
if op_type in ('Sum', 'AddV2', 'Add', 'AddN', 'BiasAdd', 'CrossReplicaSum'):
return 3
if op_type in ('Neg', 'Sub'):
return 2
if op_type in ('Mul', 'Square', 'MatMul', 'RandomUniform', 'Select', 'Maximum', 'Mean', 'Variance', 'Exp', 'Rsqrt'):
return 1
return 2
|
Returns the priority of the op.
If the priority of the op is k, it will be traced if trace_level>=k.
Args:
op_type: String name of the operation type.
Returns:
Integer value corresponding the priority of the op.
|
github-repos
|
def verify_exhausted_iterator(self, ds_fn, num_outputs, sparse_tensors=False, assert_items_equal=False):
del assert_items_equal
self.gen_outputs(ds_fn, [], num_outputs, verify_exhausted=True, sparse_tensors=sparse_tensors)
actual = self.gen_outputs(ds_fn, [], 0, ckpt_saved=True, verify_exhausted=True, sparse_tensors=sparse_tensors)
self.assertLen(actual, 0)
|
Verifies that saving and restoring an exhausted iterator works.
An exhausted iterator is one which has returned an OutOfRange error.
Args:
ds_fn: 0-argument function that returns a Dataset.
num_outputs: Total number of outputs expected from this Dataset.
sparse_tensors: Whether dataset is built from SparseTensor(s).
assert_items_equal: Tests the output has the expected elements regardless
of order.
Raises:
AssertionError if any test fails.
|
github-repos
|
def _catch_errors(a_func, to_catch):
def inner(*args, **kwargs):
try:
return a_func(*args, **kwargs)
except tuple(to_catch) as exception:
utils.raise_with_traceback(
gax.errors.create_error('RPC failed', cause=exception))
return inner
|
Updates a_func to wrap exceptions with GaxError
Args:
a_func (callable): A callable.
to_catch (list[Exception]): Configures the exceptions to wrap.
Returns:
Callable: A function that will wrap certain exceptions with GaxError
|
juraj-google-style
|
def multithread_predict_dataflow(dataflows, model_funcs):
num_worker = len(model_funcs)
assert len(dataflows) == num_worker
if num_worker == 1:
return predict_dataflow(dataflows[0], model_funcs[0])
kwargs = {'thread_name_prefix': 'EvalWorker'} if sys.version_info.minor >= 6 else {}
with ThreadPoolExecutor(max_workers=num_worker, **kwargs) as executor, \
tqdm.tqdm(total=sum([df.size() for df in dataflows])) as pbar:
futures = []
for dataflow, pred in zip(dataflows, model_funcs):
futures.append(executor.submit(predict_dataflow, dataflow, pred, pbar))
all_results = list(itertools.chain(*[fut.result() for fut in futures]))
return all_results
|
Running multiple `predict_dataflow` in multiple threads, and aggregate the results.
Args:
dataflows: a list of DataFlow to be used in :func:`predict_dataflow`
model_funcs: a list of callable to be used in :func:`predict_dataflow`
Returns:
list of dict, in the format used by
`DetectionDataset.eval_or_save_inference_results`
|
juraj-google-style
|
def get_blob(profile, sha):
resource = ('/blobs/' + sha)
data = api.get_request(profile, resource)
return prepare(data)
|
Fetch a blob.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
sha
The SHA of the blob to fetch.
Returns:
A dict with data about the blob.
|
codesearchnet
|
def __init__(self, **kwargs):
prefix_chars = kwargs.get('prefix_chars', '-')
if prefix_chars != '-':
raise ValueError(
'argparse_flags.ArgumentParser only supports "-" as the prefix '
'character, found "{}".'.format(prefix_chars))
self._inherited_absl_flags = kwargs.pop('inherited_absl_flags', flags.FLAGS)
super(ArgumentParser, self).__init__(**kwargs)
if self.add_help:
self.add_argument(
'--helpshort', action='help',
default=argparse.SUPPRESS, help=argparse.SUPPRESS)
self.add_argument(
'--helpfull', action=_HelpFullAction,
default=argparse.SUPPRESS, help='show full help message and exit')
if self._inherited_absl_flags:
self.add_argument('--undefok', help=argparse.SUPPRESS)
self._define_absl_flags(self._inherited_absl_flags)
|
Initializes ArgumentParser.
Args:
**kwargs: same as argparse.ArgumentParser, except:
1. It also accepts `inherited_absl_flags`: the absl flags to inherit.
The default is the global absl.flags.FLAGS instance. Pass None to
ignore absl flags.
2. The `prefix_chars` argument must be the default value '-'.
Raises:
ValueError: Raised when prefix_chars is not '-'.
|
juraj-google-style
|
def char(self, c: str) -> None:
if self.peek() == c:
self.offset += 1
else:
raise UnexpectedInput(self, f"char '{c}'")
|
Parse the specified character.
Args:
c: One-character string.
Raises:
EndOfInput: If past the end of `self.input`.
UnexpectedInput: If the next character is different from `c`.
|
juraj-google-style
|
def _transform(transformer_chain: Sequence[Tuple[(DataTransformer, Type)]], data: S, context: PipelineContext=None) -> T:
for (transformer, target_type) in transformer_chain:
data = transformer.transform(target_type, data, context)
return data
|
Transform data to a new type.
Args:
transformer_chain: A sequence of (transformer, type) pairs to convert the data.
data: The data to be transformed.
context: The context of the transformations (mutable).
Returns:
The transformed data.
|
codesearchnet
|
def task_address(self, job_name, task_index):
try:
job = self._cluster_spec[job_name]
except KeyError:
raise ValueError('No such job in cluster: %r' % job_name)
try:
return job[task_index]
except KeyError:
raise ValueError('No task with index %r in job %r' % (task_index, job_name))
|
Returns the address of the given task in the given job.
Args:
job_name: The string name of a job in this cluster.
task_index: A non-negative integer.
Returns:
The address of the given task in the given job.
Raises:
ValueError: If `job_name` does not name a job in this cluster,
or no task with index `task_index` is defined in that job.
|
github-repos
|
def has_open_file(self, file_object):
return (file_object in [wrappers[0].get_object() for wrappers in self.open_files if wrappers])
|
Return True if the given file object is in the list of open files.
Args:
file_object: The FakeFile object to be checked.
Returns:
`True` if the file is open.
|
codesearchnet
|
def _submitQuery(self, gitquery, gitvars={}, verbose=False, rest=False):
errOut = (DEVNULL if (not verbose) else None)
authhead = ('Authorization: bearer ' + self.__githubApiToken)
bashcurl = ('curl -iH TMPauthhead -X POST -d TMPgitquery https:
bashcurl_list = bashcurl.split()
bashcurl_list[2] = authhead
if (not rest):
gitqueryJSON = json.dumps({'query': gitquery, 'variables': json.dumps(gitvars)})
bashcurl_list[6] = gitqueryJSON
fullResponse = check_output(bashcurl_list, stderr=errOut).decode()
_vPrint(verbose, ('\n' + fullResponse))
fullResponse = fullResponse.split('\r\n\r\n')
heads = fullResponse[0].split('\r\n')
if (len(fullResponse) > 1):
result = fullResponse[1]
else:
result = ''
http = heads[0].split()
statusNum = int(http[1])
headDict = {}
headDict['http'] = heads[0]
for header in heads[1:]:
h = header.split(': ')
headDict[h[0]] = h[1]
linkDict = None
if ('Link' in headDict):
linkProperties = headDict['Link'].split(', ')
propDict = {}
for item in linkProperties:
divided = re.split('<https:
propDict[divided[2]] = divided[1]
linkDict = propDict
return {'statusNum': statusNum, 'headDict': headDict, 'linkDict': linkDict, 'result': result}
|
Send a curl request to GitHub.
Args:
gitquery (str): The query or endpoint itself.
Examples:
query: 'query { viewer { login } }'
endpoint: '/user'
gitvars (Optional[Dict]): All query variables.
Defaults to empty.
verbose (Optional[bool]): If False, stderr prints will be
suppressed. Defaults to False.
rest (Optional[bool]): If True, uses the REST API instead
of GraphQL. Defaults to False.
Returns:
{
'statusNum' (int): The HTTP status code.
'headDict' (Dict[str]): The response headers.
'linkDict' (Dict[int]): Link based pagination data.
'result' (str): The body of the response.
}
|
codesearchnet
|
def basis(sample_paths):
samples = tf.convert_to_tensor(sample_paths)
dim = samples.shape.as_list()[-1]
grid = tf.range(0, degree + 1, dtype=samples.dtype)
samples_centered = samples - tf.math.reduce_mean(samples, axis=0)
samples_centered = tf.expand_dims(samples_centered, -2)
grid = tf.meshgrid(*dim * [grid])
grid = tf.reshape(tf.stack(grid, -1), [-1, dim])
basis_expansion = tf.reduce_prod(samples_centered ** grid, -1)
return tf.transpose(basis_expansion)
|
Computes polynomial basis expansion at the given sample points.
Args:
sample_paths: A `Tensor`s of either `flot32` or `float64` dtype and of
shape `[num_samples, dim]` where `dim` has to be statically known.
Returns:
A `Tensor`s of shape `[degree * dim, num_samples]`.
|
github-repos
|
def register_views(self, app):
self.add_resource(LoginRedirectView, '/auth/login')
self.add_resource(LogoutRedirectView, '/auth/logout')
for entry_point in CINQ_PLUGINS['cloud_inquisitor.plugins.auth']['plugins']:
cls = entry_point.load()
app.available_auth_systems[cls.name] = cls
if app.register_auth_system(cls):
for vcls in cls.views:
self.add_resource(vcls, *vcls.URLS)
logger.debug('Registered auth system view {} for paths: {}'.format(cls.__name__, ', '.join(vcls.URLS)))
if (not app.active_auth_system):
logger.error('No auth systems active, please enable an auth system and then start the system again')
sys.exit((- 1))
for entry_point in CINQ_PLUGINS['cloud_inquisitor.plugins.views']['plugins']:
view = entry_point.load()
self.add_resource(view, *view.URLS)
app.register_menu_item(view.MENU_ITEMS)
logger.debug('Registered view {} for paths: {}'.format(view.__name__, ', '.join(view.URLS)))
|
Iterates all entry points for views and auth systems and dynamically load and register the routes with Flask
Args:
app (`CINQFlask`): CINQFlask object to register views for
Returns:
`None`
|
codesearchnet
|
def Match(self, event):
if (not self._matcher):
return True
self._decision = self._matcher.Matches(event)
return self._decision
|
Determines if an event matches the filter.
Args:
event (EventObject): an event.
Returns:
bool: True if the event matches the filter.
|
codesearchnet
|
def match_pattern(expr_or_pattern: object, expr: object) -> MatchDict:
try:
return expr_or_pattern.match(expr)
except AttributeError:
if expr_or_pattern == expr:
return MatchDict()
else:
res = MatchDict()
res.success = False
res.reason = "Expressions '%s' and '%s' are not the same" % (
repr(expr_or_pattern), repr(expr))
return res
|
Recursively match `expr` with the given `expr_or_pattern`
Args:
expr_or_pattern: either a direct expression (equal to `expr` for a
successful match), or an instance of :class:`Pattern`.
expr: the expression to be matched
|
juraj-google-style
|
def eigvals(tensor, name=None):
if tensor.dtype == dtypes.float32 or tensor.dtype == dtypes.complex64:
out_dtype = dtypes.complex64
elif tensor.dtype == dtypes.float64 or tensor.dtype == dtypes.complex128:
out_dtype = dtypes.complex128
e, _ = gen_linalg_ops.eig(tensor, Tout=out_dtype, compute_v=False, name=name)
return e
|
Computes the eigenvalues of one or more matrices.
Note: If your program backpropagates through this function, you should replace
it with a call to tf.linalg.eig (possibly ignoring the second output) to
avoid computing the eigen decomposition twice. This is because the
eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See
_SelfAdjointEigV2Grad in linalg_grad.py.
Args:
tensor: `Tensor` of shape `[..., N, N]`.
name: string, optional name of the operation.
Returns:
e: Eigenvalues. Shape is `[..., N]`. The vector `e[..., :]` contains the `N`
eigenvalues of `tensor[..., :, :]`.
|
github-repos
|
def return_type(type_name, formatter=None):
def _returns(func):
annotated(func)
func.metadata.typed_returnvalue(type_name, formatter)
return func
return _returns
|
Specify that this function returns a typed value.
Args:
type_name (str): A type name known to the global typedargs type system
formatter (str): An optional name of a formatting function specified
for the type given in type_name.
|
juraj-google-style
|
def _ConvertCollectionsCounterToDict(cls, collections_counter):
if (not isinstance(collections_counter, collections.Counter)):
raise TypeError
json_dict = {'__type__': 'collections.Counter'}
for (attribute_name, attribute_value) in iter(collections_counter.items()):
if (attribute_value is None):
continue
if isinstance(attribute_value, py2to3.BYTES_TYPE):
attribute_value = {'__type__': 'bytes', 'stream': '{0:s}'.format(binascii.b2a_qp(attribute_value))}
json_dict[attribute_name] = attribute_value
return json_dict
|
Converts a collections.Counter object into a JSON dictionary.
The resulting dictionary of the JSON serialized objects consists of:
{
'__type__': 'collections.Counter'
...
}
Here '__type__' indicates the object base type. In this case
'collections.Counter'. The rest of the elements of the dictionary make up
the collections.Counter object attributes.
Args:
collections_counter (collections.Counter): counter.
Returns:
dict[str, object]: JSON serialized objects.
Raises:
TypeError: if not an instance of collections.Counter.
|
codesearchnet
|
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
raise NotImplementedError
|
For each query in the batch, retrieves `n_docs` documents.
Args:
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
An array of query vectors.
n_docs (`int`):
The number of docs retrieved per query.
Returns:
`np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of
shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents.
|
github-repos
|
def _set_advertising_data(self, packet_type, data):
payload = struct.pack("<BB%ss" % (len(data)), packet_type, len(data), bytes(data))
response = self._send_command(6, 9, payload)
result, = unpack("<H", response.payload)
if result != 0:
return False, {'reason': 'Error code from BLED112 setting advertising data', 'code': result}
return True, None
|
Set the advertising data for advertisements sent out by this bled112
Args:
packet_type (int): 0 for advertisement, 1 for scan response
data (bytearray): the data to set
|
juraj-google-style
|
def _StartAnalysisProcesses(self, storage_writer, analysis_plugins):
logger.info('Starting analysis plugins.')
for analysis_plugin in analysis_plugins.values():
self._analysis_plugins[analysis_plugin.NAME] = analysis_plugin
process = self._StartWorkerProcess(analysis_plugin.NAME, storage_writer)
if not process:
logger.error('Unable to create analysis process: {0:s}'.format(
analysis_plugin.NAME))
logger.info('Analysis plugins running')
|
Starts the analysis processes.
Args:
storage_writer (StorageWriter): storage writer.
analysis_plugins (dict[str, AnalysisPlugin]): analysis plugins that
should be run and their names.
|
juraj-google-style
|
def seek(self, offset, whence=os.SEEK_SET):
if not self._is_open:
raise IOError('Not opened.')
self._vslvm_logical_volume.seek(offset, whence)
|
Seeks to an offset within the file-like object.
Args:
offset (int): offset to seek to.
whence (Optional(int)): value that indicates whether offset is an absolute
or relative position within the file.
Raises:
IOError: if the seek failed.
OSError: if the seek failed.
|
juraj-google-style
|
def __generate_localization_dictionary_from_file(file_path, localization_entry_attribute_name_for_key):
localization_dictionary = {}
f = open_strings_file(file_path, "r+")
header_comment_key_value_tuples = extract_header_comment_key_value_tuples_from_file(f)
if len(header_comment_key_value_tuples) == 0:
logging.warning("Couldn't find any strings in file '%s'. Check encoding and format." % file_path)
for header_comment, comments, key, value in header_comment_key_value_tuples:
localization_entry = LocalizationEntry(comments, key, value)
localization_dictionary[
localization_entry.__getattribute__(localization_entry_attribute_name_for_key)] = localization_entry
f.close()
return localization_dictionary
|
Generates a dictionary mapping between keys (defined by the given attribute name) and localization entries.
Args:
file_path (str): The strings file path.
localization_entry_attribute_name_for_key: The name of the attribute of LocalizationEntry to use as key.
Returns:
dict: A dictionary mapping between keys (defined by the given attribute name) and localization entries.
|
juraj-google-style
|
def GetMissingChunks(self, fd, length, offset):
start_chunk = (offset
end_chunk = (((offset + length) - 1)
relevant_chunks = range(start_chunk, (end_chunk + 1))
missing_chunks = set(relevant_chunks)
for (idx, metadata) in iteritems(fd.ChunksMetadata(relevant_chunks)):
if (not self.DataRefreshRequired(last=metadata.get('last', None))):
missing_chunks.remove(idx)
return sorted(missing_chunks)
|
Return which chunks a file doesn't have.
Specifically, we return a list of the chunks specified by a
length-offset range which are not in the datastore.
Args:
fd: The database object to read chunks from.
length: Length to read.
offset: File offset to read from.
Returns:
A list of chunk numbers.
|
codesearchnet
|
def description(self, force_refresh=False):
if force_refresh:
self.clear_cache()
if not self._tuning_job_describe_result:
self._tuning_job_describe_result = self._sage_client.describe_hyper_parameter_tuning_job(
HyperParameterTuningJobName=self.name
)
return self._tuning_job_describe_result
|
Call ``DescribeHyperParameterTuningJob`` for the hyperparameter tuning job.
Args:
force_refresh (bool): Set to True to fetch the latest data from SageMaker API.
Returns:
dict: The Amazon SageMaker response for ``DescribeHyperParameterTuningJob``.
|
juraj-google-style
|
def add_field_with_label(self, key, label_description, field):
self.inputs[key] = field
label = Label(label_description)
label.style['margin'] = '0px 5px'
label.style['min-width'] = '30%'
container = HBox()
container.style.update({'justify-content': 'space-between', 'overflow': 'auto', 'padding': '3px'})
container.append(label, key=('lbl' + key))
container.append(self.inputs[key], key=key)
self.container.append(container, key=key)
|
Adds a field to the dialog together with a descriptive label and a unique identifier.
Note: You can access to the fields content calling the function GenericDialog.get_field(key).
Args:
key (str): The unique identifier for the field.
label_description (str): The string content of the description label.
field (Widget): The instance of the field Widget. It can be for example a TextInput or maybe
a custom widget.
|
codesearchnet
|
def draw_mask(im, mask, alpha=0.5, color=None):
if color is None:
color = PALETTE_RGB[np.random.choice(len(PALETTE_RGB))][::-1]
im = np.where(np.repeat((mask > 0)[:, :, None], 3, axis=2),
im * (1 - alpha) + color * alpha, im)
im = im.astype('uint8')
return im
|
Overlay a mask on top of the image.
Args:
im: a 3-channel uint8 image in BGR
mask: a binary 1-channel image of the same size
color: if None, will choose automatically
|
juraj-google-style
|
def stop(self, timeout_s=None):
self.stopped.set()
if self.thread:
self.thread.join(timeout_s)
return (not self.thread.isAlive())
else:
return True
|
Stops the interval.
If a timeout is provided and stop returns False then the thread is
effectively abandoned in whatever state it was in (presumably dead-locked).
Args:
timeout_s: The time in seconds to wait on the thread to finish. By
default it's forever.
Returns:
False if a timeout was provided and we timed out.
|
codesearchnet
|
def with_input_types(self, input_type_hint):
input_type_hint = native_type_compatibility.convert_to_beam_type(input_type_hint)
validate_composite_type_param(input_type_hint, 'Type hints for a PTransform')
return super().with_input_types(input_type_hint)
|
Annotates the input type of a :class:`PTransform` with a type-hint.
Args:
input_type_hint (type): An instance of an allowed built-in type, a custom
class, or an instance of a
:class:`~apache_beam.typehints.typehints.TypeConstraint`.
Raises:
TypeError: If **input_type_hint** is not a valid type-hint.
See
:obj:`apache_beam.typehints.typehints.validate_composite_type_param()`
for further details.
Returns:
PTransform: A reference to the instance of this particular
:class:`PTransform` object. This allows chaining type-hinting related
methods.
|
github-repos
|
def _SetPath(self, path):
old_path = self._path
if (old_path and (not io_wrapper.IsCloudPath(old_path))):
try:
size = tf.io.gfile.stat(old_path).length
logger.debug('Setting latest size of %s to %d', old_path, size)
self._finalized_sizes[old_path] = size
except tf.errors.OpError as e:
logger.error('Unable to get size of %s: %s', old_path, e)
self._path = path
self._loader = self._loader_factory(path)
|
Sets the current path to watch for new events.
This also records the size of the old path, if any. If the size can't be
found, an error is logged.
Args:
path: The full path of the file to watch.
|
codesearchnet
|
def sym_get(self, path: Union[utils.KeyPath, str, int], default: Any=RAISE_IF_NOT_FOUND, use_inferred: bool=False) -> Any:
path = utils.KeyPath.from_value(path)
if default is RAISE_IF_NOT_FOUND:
return path.query(self, use_inferred=use_inferred)
else:
return path.get(self, default, use_inferred=use_inferred)
|
Returns a sub-node by path.
NOTE: there is no `sym_set`, use `sym_rebind`.
Args:
path: A KeyPath object or equivalence.
default: Default value if path does not exists. If absent, `KeyError` will
be thrown.
use_inferred: If True, return inferred value instead of the symbolic form
of `pg.Inferential` objects.
Returns:
Value of symbolic attribute specified by path if found, otherwise the
default value if it's specified.
Raises:
KeyError if `path` does not exist and `default` is not specified.
|
github-repos
|
def _get_relationships(self, dna: pg.DNA) -> Tuple[List[pg.DNA], List[Optional[pg.DNA]], List[Optional[int]]]:
def is_mutable_node(obj):
return self._is_mutable_node(obj)
results = pg.query(dna, where=is_mutable_node, enter_selected=True)
child_nodes = list(results.values())
parent_nodes = [n.parent_dna for n in child_nodes]
child_indexes = [n.sym_path.key if n.parent_dna else None for n in child_nodes]
return (child_nodes, parent_nodes, child_indexes)
|
Extracts the parent-child node relationships in a DNA.
Note that PyGlove represents the nodes in a DNA instance as DNA instances
themselves.
Args:
dna: the DNA that will be mutated.
Returns:
A tuple of 3 lists of the same length with corresponding elements:
-child_nodes: a list of every node in the DNA.
-parent_nodes: a list of the parent node of the corresponding node in
`child_nodes`.
-child_indexes: a list of indexes. For all j, child_nodes[j] is the i-th
child of parent_nodes[j], where i = child_indexes[j].
Note that the root is included as a "child" with a `None` parent.
|
github-repos
|
def patch_deepCopy(self, patches):
patchesCopy = []
for patch in patches:
patchCopy = patch_obj()
patchCopy.diffs = patch.diffs[:]
patchCopy.start1 = patch.start1
patchCopy.start2 = patch.start2
patchCopy.length1 = patch.length1
patchCopy.length2 = patch.length2
patchesCopy.append(patchCopy)
return patchesCopy
|
Given an array of patches, return another array that is identical.
Args:
patches: Array of Patch objects.
Returns:
Array of Patch objects.
|
codesearchnet
|
def _FormatDateTime(self, event):
if (not event.timestamp):
return 'N/A'
date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(timestamp=event.timestamp)
(year, month, day_of_month) = date_time.GetDate()
(hours, minutes, seconds) = date_time.GetTimeOfDay()
try:
return '{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}:{5:02d}'.format(year, month, day_of_month, hours, minutes, seconds)
except (TypeError, ValueError):
self._ReportEventError(event, 'unable to copy timestamp: {0!s} to a human readable date and time. Defaulting to: "0000-00-00 00:00:00"'.format(event.timestamp))
return '0000-00-00 00:00:00'
|
Formats the date and time.
Args:
event (EventObject): event.
Returns:
str: date and time string or "N/A" if no event timestamp is available.
|
codesearchnet
|
def _get_common_params(self, user_id, attributes):
commonParams = {}
commonParams[self.EventParams.PROJECT_ID] = self._get_project_id()
commonParams[self.EventParams.ACCOUNT_ID] = self._get_account_id()
visitor = {}
visitor[self.EventParams.END_USER_ID] = user_id
visitor[self.EventParams.SNAPSHOTS] = []
commonParams[self.EventParams.USERS] = []
commonParams[self.EventParams.USERS].append(visitor)
commonParams[self.EventParams.USERS][0][self.EventParams.ATTRIBUTES] = self._get_attributes(attributes)
commonParams[self.EventParams.SOURCE_SDK_TYPE] = 'python-sdk'
commonParams[self.EventParams.ENRICH_DECISIONS] = True
commonParams[self.EventParams.SOURCE_SDK_VERSION] = version.__version__
commonParams[self.EventParams.ANONYMIZE_IP] = self._get_anonymize_ip()
commonParams[self.EventParams.REVISION] = self._get_revision()
return commonParams
|
Get params which are used same in both conversion and impression events.
Args:
user_id: ID for user.
attributes: Dict representing user attributes and values which need to be recorded.
Returns:
Dict consisting of parameters common to both impression and conversion events.
|
juraj-google-style
|
def SplitKeyPath(key_path, path_separator=definitions.KEY_PATH_SEPARATOR):
return list(filter(None, key_path.split(path_separator)))
|
Splits the key path into path segments.
Args:
key_path (str): key path.
path_separator (Optional[str]): path separator.
Returns:
list[str]: key path segments without the root path segment, which is an
empty string.
|
codesearchnet
|
def create_channels(self, dataset, token, new_channels_data):
channels = {}
for channel_new in new_channels_data:
self._check_channel(channel_new.name)
if channel_new.channel_type not in ['image', 'annotation']:
raise ValueError('Channel type must be ' +
'neuroRemote.IMAGE or ' +
'neuroRemote.ANNOTATION.')
if channel_new.readonly * 1 not in [0, 1]:
raise ValueError("readonly must be 0 (False) or 1 (True).")
channels[channel_new.name] = {
"channel_name": channel_new.name,
"channel_type": channel_new.channel_type,
"datatype": channel_new.dtype,
"readonly": channel_new.readonly * 1
}
req = requests.post(self.url("/{}/project/".format(dataset) +
"{}".format(token)),
json={"channels": {channels}}, verify=False)
if req.status_code is not 201:
raise RemoteDataUploadError('Could not upload {}'.format(req.text))
else:
return True
|
Creates channels given a dictionary in 'new_channels_data'
, 'dataset' name, and 'token' (project) name.
Arguments:
token (str): Token to identify project
dataset (str): Dataset name to identify dataset to download from
new_channels_data (dict): New channel data to upload into new
channels
Returns:
bool: Process completed succesfully or not
|
juraj-google-style
|
def Instance(reactor=None):
if (NodeLeader._LEAD is None):
NodeLeader._LEAD = NodeLeader(reactor)
return NodeLeader._LEAD
|
Get the local node instance.
Args:
reactor: (optional) custom reactor to use in NodeLeader.
Returns:
NodeLeader: instance.
|
codesearchnet
|
def supported_features_mapping(*supported_features: str, onnx_config_cls: Optional[str]=None) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
if onnx_config_cls is None:
raise ValueError('A OnnxConfig class must be provided')
config_cls = transformers
for attr_name in onnx_config_cls.split('.'):
config_cls = getattr(config_cls, attr_name)
mapping = {}
for feature in supported_features:
if '-with-past' in feature:
task = feature.replace('-with-past', '')
mapping[feature] = partial(config_cls.with_past, task=task)
else:
mapping[feature] = partial(config_cls.from_model_config, task=feature)
return mapping
|
Generate the mapping between supported the features and their corresponding OnnxConfig for a given model.
Args:
*supported_features: The names of the supported features.
onnx_config_cls: The OnnxConfig full name corresponding to the model.
Returns:
The dictionary mapping a feature to an OnnxConfig constructor.
|
github-repos
|
def ToJson(self, index):
return {
'n': index,
'asset': self.AssetId.To0xString(),
'value': self.Value.ToNeoJsonString(),
'address': self.Address
}
|
Convert object members to a dictionary that can be parsed as JSON.
Args:
index (int): The index of the output in a transaction
Returns:
dict:
|
juraj-google-style
|
def __init__(
self, location=None, parent=None, part_index=None, start_offset=None,
**kwargs):
if not parent:
raise ValueError('Missing parent value.')
super(TSKPartitionPathSpec, self).__init__(parent=parent, **kwargs)
self.location = location
self.part_index = part_index
self.start_offset = start_offset
|
Initializes a path specification.
Note that the TSK partition path specification must have a parent.
Args:
location (Optional[str]): location.
parent (Optional[PathSpec]): parent path specification.
part_index (Optional[int]): part index.
start_offset (Optional[int]): start offset.
Raises:
ValueError: when parent is not set.
|
juraj-google-style
|
def __init__(self, *args, allow_comments=False, directory=None, **kwargs):
super().__init__(*args, **kwargs)
self.allow_comments = allow_comments
self.dir = directory
|
Constructor. Also see Entry.__init__.
Args:
allow_comments (bool): Whether to allow comments. Default False.
directory (str): Optional. If the page should live in a subdirectory
instead of at the web root, specify it here instead of making it
part of the slug.
|
juraj-google-style
|
def open_repository(path, spor_dir='.spor'):
root = _find_root_dir(path, spor_dir)
return Repository(root, spor_dir)
|
Open an existing repository.
Args:
path: Path to any file or directory within the repository.
spor_dir: The name of the directory containing spor data.
Returns: A `Repository` instance.
Raises:
ValueError: No repository is found.
|
codesearchnet
|
def zoom_blur(x, severity=1):
c = [
np.arange(1, 1.11, 0.01),
np.arange(1, 1.16, 0.01),
np.arange(1, 1.21, 0.02),
np.arange(1, 1.26, 0.02),
np.arange(1, 1.31, 0.03)
][severity - 1]
x = (np.array(x) / 255.).astype(np.float32)
out = np.zeros_like(x)
for zoom_factor in c:
out += clipped_zoom(x, zoom_factor)
x = (x + out) / (len(c) + 1)
x_clip = np.clip(x, 0, 1) * 255
return around_and_astype(x_clip)
|
Zoom blurring to images.
Applying zoom blurring to images by zooming the central part of the images.
Args:
x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255].
severity: integer, severity of corruption.
Returns:
numpy array, image with uint8 pixels in [0,255]. Applied zoom blur.
|
juraj-google-style
|
def console_get_height_rect(con: tcod.console.Console, x: int, y: int, w: int, h: int, fmt: str) -> int:
return int(lib.TCOD_console_get_height_rect_fmt(_console(con), x, y, w, h, _fmt(fmt)))
|
Return the height of this text once word-wrapped into this rectangle.
Returns:
int: The number of lines of text once word-wrapped.
.. deprecated:: 8.5
Use :any:`Console.get_height_rect` instead.
|
codesearchnet
|
def inspect(self, nids=None, wslice=None, **kwargs):
figs = []
for task in self.select_tasks(nids=nids, wslice=wslice):
if hasattr(task, "inspect"):
fig = task.inspect(**kwargs)
if fig is None:
cprint("Cannot inspect Task %s" % task, color="blue")
else:
figs.append(fig)
else:
cprint("Task %s does not provide an inspect method" % task, color="blue")
return figs
|
Inspect the tasks (SCF iterations, Structural relaxation ...) and
produces matplotlib plots.
Args:
nids: List of node identifiers.
wslice: Slice object used to select works.
kwargs: keyword arguments passed to `task.inspect` method.
.. note::
nids and wslice are mutually exclusive.
If nids and wslice are both None, all tasks in self are inspected.
Returns:
List of `matplotlib` figures.
|
juraj-google-style
|
def get_broker() -> 'Broker':
global global_broker
if (global_broker is None):
from .brokers.rabbitmq import RabbitmqBroker
set_broker(RabbitmqBroker(host='127.0.0.1', port=5672, heartbeat=5, connection_attempts=5, blocked_connection_timeout=30))
return global_broker
|
Get the global broker instance. If no global broker is set,
this initializes a RabbitmqBroker and returns it.
Returns:
Broker: The default Broker.
|
codesearchnet
|
def MetaGraph(self):
if (self._meta_graph is None):
raise ValueError('There is no metagraph in this EventAccumulator')
meta_graph = meta_graph_pb2.MetaGraphDef()
meta_graph.ParseFromString(self._meta_graph)
return meta_graph
|
Return the metagraph definition, if there is one.
Raises:
ValueError: If there is no metagraph for this run.
Returns:
The `meta_graph_def` proto.
|
codesearchnet
|
def get_snpeff_info(snpeff_string, snpeff_header):
snpeff_annotations = [dict(zip(snpeff_header, snpeff_annotation.split('|'))) for snpeff_annotation in snpeff_string.split(',')]
return snpeff_annotations
|
Make the vep annotations into a dictionaries
A snpeff dictionary will have the snpeff column names as keys and
the vep annotations as values.
The dictionaries are stored in a list.
One dictionary for each transcript.
Args:
snpeff_string (string): A string with the ANN annotation
snpeff_header (list): A list with the vep header
Return:
snpeff_annotations (list): A list of vep dicts
|
codesearchnet
|
def __init__(self, n, key=None, reverse=False):
super().__init__()
self._n = n
self._key = key
self._reverse = reverse
|
Creates a global Top operation.
The arguments 'key' and 'reverse' may be passed as keyword arguments,
and have the same meaning as for Python's sort functions.
Args:
n: number of elements to extract from pcoll.
key: (optional) a mapping of elements to a comparable key, similar to
the key argument of Python's sorting methods.
reverse: (optional) whether to order things smallest to largest, rather
than largest to smallest
|
github-repos
|
def __toString(self, values):
for key in values:
if (not (values[key] is str)):
values[key] = str(values[key])
return values
|
Will replace dict values with string values
Args:
values (dict): Dictionary of values
Returns:
Updated values dict
|
codesearchnet
|
def path_of_module(self, mod: nn.Module) -> str:
try:
return super().path_of_module(mod)
except NameError as e:
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and (len(list(mod.buffers())) == 0):
path = self._insert_module_as_submodule(mod)
return path
raise e
|
Helper method to find the qualified name of `mod` in the Module hierarchy of `root`. For example, if `root` has
a submodule named `foo`, which has a submodule named `bar`, passing `bar` into this function will return the
string "foo.bar".
Args:
mod (str): The `Module` to retrieve the qualified name for.
|
github-repos
|
def _process_debug_op_state_changes(self, event_reply=None):
if event_reply is None:
event_reply = debug_service_pb2.EventReply()
while not self._debug_ops_state_change_queue.empty():
state_change = self._debug_ops_state_change_queue.get()
debug_node_key = (state_change.node_name, state_change.output_slot, state_change.debug_op)
if state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.READ_WRITE:
logging.info('Adding breakpoint %s:%d:%s', state_change.node_name, state_change.output_slot, state_change.debug_op)
self._breakpoints.add(debug_node_key)
elif state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.READ_ONLY:
logging.info('Adding watchpoint %s:%d:%s', state_change.node_name, state_change.output_slot, state_change.debug_op)
if debug_node_key in self._breakpoints:
self._breakpoints.discard(debug_node_key)
elif state_change.state == debug_service_pb2.EventReply.DebugOpStateChange.DISABLED:
logging.info('Removing watchpoint or breakpoint: %s:%d:%s', state_change.node_name, state_change.output_slot, state_change.debug_op)
if debug_node_key in self._breakpoints:
self._breakpoints.discard(debug_node_key)
else:
logging.warn('Attempting to remove a non-existent debug node key: %s', debug_node_key)
new_state_change = event_reply.debug_op_state_changes.add()
new_state_change.CopyFrom(state_change)
return event_reply
|
Dequeue and process all the queued debug-op state change protos.
Include all the debug-op state change protos in a `EventReply` proto.
Args:
event_reply: An `EventReply` to add the `DebugOpStateChange` protos to,
or `None`.
Returns:
An `EventReply` proto with the dequeued `DebugOpStateChange` protos (if
any) added.
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.