code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def GetFileEntryByPathSpec(self, path_spec):
return encrypted_stream_file_entry.EncryptedStreamFileEntry(
self._resolver_context, self, path_spec, is_root=True, is_virtual=True)
|
Retrieves a file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
EncryptedStreamFileEntry: a file entry or None if not available.
|
juraj-google-style
|
def segment(self, source, language=None):
if language and not language in self.supported_languages:
raise ValueError(
'Language {} is not supported by NLAPI segmenter'.format(language))
chunks = ChunkList()
results = tinysegmenter.tokenize(source)
seek = 0
for word in results:
word = word.strip()
if not word:
continue
if source[seek: seek + len(word)] != word:
assert source[seek] == ' '
assert source[seek + 1: seek + len(word) + 1] == word
chunks.append(Chunk.space())
seek += 1
dependency = None
if word in _PARTICLES or word in _AUX_VERBS or is_hiragana(word):
dependency = False
chunk = Chunk(word, dependency=dependency)
if chunk.is_punct():
chunk.dependency = chunk.is_open_punct()
chunks.append(chunk)
seek += len(word)
chunks.resolve_dependencies()
return chunks
|
Returns a chunk list from the given sentence.
Args:
source (str): Source string to segment.
language (:obj:`str`, optional): A language code.
Returns:
A chunk list. (:obj:`budou.chunk.ChunkList`)
Raises:
ValueError: If :obj:`language` is given and it is not included in
:obj:`supported_languages`.
|
juraj-google-style
|
def GreaterThanOrEqualTo(self, value):
self._awql = self._CreateSingleValueCondition(value, '>=')
return self._query_builder
|
Sets the type of the WHERE clause as "greater than or equal to".
Args:
value: The value to be used in the WHERE condition.
Returns:
The query builder that this WHERE builder links to.
|
codesearchnet
|
def setValues(self, values):
ncols = self.getNumCols()
nindices = self.getNumIndices()
for key, value in values.items():
key = Utils.convToList(key)
assert len(key) == nindices
value = Utils.convToList(value)
assert len(value) == ncols-nindices
self.addRow(key + value)
|
Set the values of a DataFrame from a dictionary.
Args:
values: Dictionary with the values to set.
|
juraj-google-style
|
def _GetGdbThreadMapping(self, position):
if (len(gdb.selected_inferior().threads()) == 1):
return {position[1]: 1}
thread_line_regexp = '\\s*\\**\\s*([0-9]+)\\s+[a-zA-Z]+\\s+([x0-9a-fA-F]+)\\s.*'
output = gdb.execute('info threads', to_string=True)
matches = [re.match(thread_line_regexp, line) for line in output.split('\n')[1:]]
return {int(match.group(2), 16): int(match.group(1)) for match in matches if match}
|
Gets a mapping from python tid to gdb thread num.
There's no way to get the thread ident from a gdb thread. We only get the
"ID of the thread, as assigned by GDB", which is completely useless for
everything except talking to gdb. So in order to translate between these
two, we have to execute 'info threads' and parse its output. Note that this
may only work on linux, and only when python was compiled to use pthreads.
It may work elsewhere, but we won't guarantee it.
Args:
position: array of pid, tid, framedepth specifying the requested position.
Returns:
A dictionary of the form {python_tid: gdb_threadnum}.
|
codesearchnet
|
def int64_user_gauge(namespace, name, metric, ptransform=None) -> metrics_pb2.MonitoringInfo:
labels = create_labels(ptransform=ptransform, namespace=namespace, name=name)
if isinstance(metric, GaugeData):
coder = coders.VarIntCoder()
value = metric.value
timestamp = metric.timestamp
else:
raise TypeError('Expected GaugeData metric type but received %s with value %s' % (type(metric), metric))
payload = _encode_gauge(coder, timestamp, value)
return create_monitoring_info(USER_GAUGE_URN, LATEST_INT64_TYPE, payload, labels)
|
Return the gauge monitoring info for the URN, metric and labels.
Args:
namespace: User-defined namespace of gauge metric.
name: Name of gauge metric.
metric: The GaugeData containing the metrics.
ptransform: The ptransform id used as a label.
|
github-repos
|
def start(self, wait=False):
if self._status is not TaskStatus.IDLE:
raise RuntimeError("Cannot start %s in state %s" %
(self, self._status))
self._status = TaskStatus.STARTED
STARTED_TASKS.add(self)
self._start()
if wait:
self.wait()
return self.return_values
|
Start a task.
This function depends on the underlying implementation of _start, which
any subclass of ``Task`` should implement.
Args:
wait (bool): Whether or not to wait on the task to finish before
returning from this function. Default `False`.
Raises:
RuntimeError: If the task has already been started without a
subsequent call to ``reset()``.
|
juraj-google-style
|
def get_random_transform(self, img_shape, seed=None):
img_row_axis = self.row_axis - 1
img_col_axis = self.col_axis - 1
if seed is not None:
np.random.seed(seed)
if self.rotation_range:
theta = np.random.uniform(-self.rotation_range, self.rotation_range)
else:
theta = 0
if self.height_shift_range:
try:
tx = np.random.choice(self.height_shift_range)
tx *= np.random.choice([-1, 1])
except ValueError:
tx = np.random.uniform(-self.height_shift_range, self.height_shift_range)
if np.max(self.height_shift_range) < 1:
tx *= img_shape[img_row_axis]
else:
tx = 0
if self.width_shift_range:
try:
ty = np.random.choice(self.width_shift_range)
ty *= np.random.choice([-1, 1])
except ValueError:
ty = np.random.uniform(-self.width_shift_range, self.width_shift_range)
if np.max(self.width_shift_range) < 1:
ty *= img_shape[img_col_axis]
else:
ty = 0
if self.shear_range:
shear = np.random.uniform(-self.shear_range, self.shear_range)
else:
shear = 0
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = (1, 1)
else:
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
flip_horizontal = (np.random.random() < 0.5) * self.horizontal_flip
flip_vertical = (np.random.random() < 0.5) * self.vertical_flip
channel_shift_intensity = None
if self.channel_shift_range != 0:
channel_shift_intensity = np.random.uniform(-self.channel_shift_range, self.channel_shift_range)
brightness = None
if self.brightness_range is not None:
brightness = np.random.uniform(self.brightness_range[0], self.brightness_range[1])
transform_parameters = {'theta': theta, 'tx': tx, 'ty': ty, 'shear': shear, 'zx': zx, 'zy': zy, 'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness}
return transform_parameters
|
Generates random parameters for a transformation.
Args:
img_shape: Tuple of integers.
Shape of the image that is transformed.
seed: Random seed.
Returns:
A dictionary containing randomly chosen parameters describing the
transformation.
|
github-repos
|
def remove(self, layers):
if not isinstance(layers, list):
layers = [layers]
for l in layers:
if isinstance(l, string_types):
if l not in self.layers:
raise ValueError("There's no image/layer named '%s' in "
"the masking stack!" % l)
self.stack.remove(l)
else:
l = self.stack.pop(l)
del self.layers[l]
self.set_mask()
|
Remove one or more layers from the stack of masking layers.
Args:
layers: An int, string or list of strings and/or ints. Ints are
interpreted as indices in the stack to remove; strings are
interpreted as names of layers to remove. Negative ints will
also work--i.e., remove(-1) will drop the last layer added.
|
juraj-google-style
|
def _FormatMessages(self, format_string, short_format_string, event_values):
message_string = self._FormatMessage(format_string, event_values)
if short_format_string:
short_message_string = self._FormatMessage(
short_format_string, event_values)
else:
short_message_string = message_string
if len(short_message_string) > 80:
short_message_string = '{0:s}...'.format(short_message_string[:77])
return message_string, short_message_string
|
Determines the formatted message strings.
Args:
format_string (str): message format string.
short_format_string (str): short message format string.
event_values (dict[str, object]): event values.
Returns:
tuple(str, str): formatted message string and short message string.
|
juraj-google-style
|
def _plot_cwt(ts, coefs, freqs, tsize=1024, fsize=512):
import matplotlib.style
import matplotlib as mpl
mpl.style.use('classic')
import matplotlib.pyplot as plt
from scipy import interpolate
channels = ts.shape[1]
fig = plt.figure()
for i in range(channels):
rect = (0.1, 0.85*(channels - i - 1)/channels + 0.1,
0.8, 0.85/channels)
ax = fig.add_axes(rect)
logpowers = np.log((coefs[:, :, i] * coefs[:, :, i].conj()).real)
tmin, tmax = ts.tspan[0], ts.tspan[-1]
fmin, fmax = freqs[0], freqs[-1]
tgrid, fgrid = np.mgrid[tmin:tmax:tsize*1j, fmin:fmax:fsize*1j]
gd = interpolate.interpn((ts.tspan, freqs), logpowers,
(tgrid, fgrid)).T
ax.imshow(gd, cmap='gnuplot2', aspect='auto', origin='lower',
extent=(tmin, tmax, fmin, fmax))
ax.set_ylabel('freq (Hz)')
fig.axes[0].set_title(u'log(power spectral density)')
fig.axes[channels - 1].set_xlabel('time (s)')
fig.show()
|
Plot time resolved power spectral density from cwt results
Args:
ts: the original Timeseries
coefs: continuous wavelet transform coefficients as calculated by cwt()
freqs: list of frequencies (in Hz) corresponding to coefs.
tsize, fsize: size of the plot (time axis and frequency axis, in pixels)
|
juraj-google-style
|
def init_from_adversarial_batches(self, adv_batches):
for idx, (adv_batch_id, adv_batch_val) in enumerate(iteritems(adv_batches)):
work_id = ATTACK_WORK_ID_PATTERN.format(idx)
self.work[work_id] = {
'claimed_worker_id': None,
'claimed_worker_start_time': None,
'is_completed': False,
'error': None,
'elapsed_time': None,
'submission_id': adv_batch_val['submission_id'],
'shard_id': None,
'output_adversarial_batch_id': adv_batch_id,
}
|
Initializes work pieces from adversarial batches.
Args:
adv_batches: dict with adversarial batches,
could be obtained as AversarialBatches.data
|
juraj-google-style
|
def mark_causative(self, institute, case, user, link, variant):
display_name = variant['display_name']
LOG.info("Mark variant {0} as causative in the case {1}".format(
display_name, case['display_name']))
LOG.info("Adding variant to causatives in case {0}".format(
case['display_name']))
LOG.info("Marking case {0} as solved".format(
case['display_name']))
updated_case = self.case_collection.find_one_and_update(
{'_id': case['_id']},
{
'$push': {'causatives': variant['_id']},
'$set': {'status': 'solved'}
},
return_document=pymongo.ReturnDocument.AFTER
)
LOG.info("Creating case event for marking {0}" \
" causative".format(variant['display_name']))
self.create_event(
institute=institute,
case=case,
user=user,
link=link,
category='case',
verb='mark_causative',
variant=variant,
subject=variant['display_name'],
)
LOG.info("Creating variant event for marking {0}" \
" causative".format(case['display_name']))
self.create_event(
institute=institute,
case=case,
user=user,
link=link,
category='variant',
verb='mark_causative',
variant=variant,
subject=variant['display_name'],
)
return updated_case
|
Create an event for marking a variant causative.
Arguments:
institute (dict): A Institute object
case (dict): Case object
user (dict): A User object
link (str): The url to be used in the event
variant (variant): A variant object
Returns:
updated_case(dict)
|
juraj-google-style
|
def noisy_moments(self, moments: 'Iterable[cirq.Moment]', system_qubits: Sequence['cirq.Qid']) -> Sequence['cirq.OP_TREE']:
if (not hasattr(self.noisy_moment, '_not_overridden')):
result = []
for moment in moments:
result.append(self.noisy_moment(moment, system_qubits))
return result
if (not hasattr(self.noisy_operation, '_not_overridden')):
result = []
for moment in moments:
result.append([self.noisy_operation(op) for op in moment])
return result
assert False, 'Should be unreachable.'
|
Adds possibly stateful noise to a series of moments.
Args:
moments: The moments to add noise to.
system_qubits: A list of all qubits in the system.
Returns:
A sequence of OP_TREEs, with the k'th tree corresponding to the
noisy operations for the k'th moment.
|
codesearchnet
|
def market_open(self, session, mins) -> Session:
if session not in self.exch: return SessNA
start_time = self.exch[session][0]
return Session(start_time, shift_time(start_time, int(mins)))
|
Time intervals for market open
Args:
session: [allday, day, am, pm, night]
mins: mintues after open
Returns:
Session of start_time and end_time
|
juraj-google-style
|
def sg_sum(tensor, opt):
r
return tf.reduce_sum(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
|
r"""Computes the sum of elements across axis of a tensor.
See `tf.reduce_sum()` in tensorflow.
Args:
tensor: A `Tensor` with zero-padding (automatically given by chain).
opt:
axis: A tuple/list of integers or an integer. The axis to reduce.
keep_dims: If true, retains reduced dimensions with length 1.
name: If provided, replace current tensor's name.
Returns:
A `Tensor`.
|
juraj-google-style
|
def FullTransactions(self):
is_trimmed = False
try:
tx = self.Transactions[0]
if (type(tx) is str):
is_trimmed = True
except Exception as e:
pass
if (not is_trimmed):
return self.Transactions
txs = []
for hash in self.Transactions:
(tx, height) = GetBlockchain().GetTransaction(hash)
txs.append(tx)
self.Transactions = txs
return self.Transactions
|
Get the list of full Transaction objects.
Note: Transactions can be trimmed to contain only the header and the hash. This will get the full data if
trimmed transactions are found.
Returns:
list: of neo.Core.TX.Transaction.Transaction objects.
|
codesearchnet
|
def get_camera_imageseries(self, number_of_imageseries=10, offset=0):
response = None
try:
response = requests.get(
urls.get_imageseries(self._giid),
headers={
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Cookie': 'vid={}'.format(self._vid)},
params={
"numberOfImageSeries": int(number_of_imageseries),
"offset": int(offset),
"fromDate": "",
"toDate": "",
"onlyNotViewed": "",
"_": self._giid})
except requests.exceptions.RequestException as ex:
raise RequestError(ex)
_validate_response(response)
return json.loads(response.text)
|
Get smartcam image series
Args:
number_of_imageseries (int): number of image series to get
offset (int): skip offset amount of image series
|
juraj-google-style
|
def on_graph_def(self, graph_def, device_name, wall_time):
raise NotImplementedError('on_graph_def() is not implemented in the base servicer class')
|
Callback for Event proto received through the gRPC stream.
This Event proto carries a GraphDef, encoded as bytes, in its graph_def
field.
Args:
graph_def: A GraphDef object.
device_name: Name of the device on which the graph was created.
wall_time: An epoch timestamp (in microseconds) for the graph.
Returns:
`None` or an `EventReply` proto to be sent back to the client. If `None`,
an `EventReply` proto construct with the default no-arg constructor will
be sent back to the client.
|
github-repos
|
def get_plot(self, xlim=None, ylim=None):
plt = pretty_plot(12, 8)
base = 0.0
i = 0
for key, sp in self._spectra.items():
if not self.stack:
plt.plot(sp.x, sp.y + self.yshift * i, color=self.colors[i],
label=str(key), linewidth=3)
else:
plt.fill_between(sp.x, base, sp.y + self.yshift * i,
color=self.colors[i],
label=str(key), linewidth=3)
base = sp.y + base
plt.xlabel(sp.XLABEL)
plt.ylabel(sp.YLABEL)
i += 1
if xlim:
plt.xlim(xlim)
if ylim:
plt.ylim(ylim)
plt.legend()
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=30)
plt.tight_layout()
return plt
|
Get a matplotlib plot showing the DOS.
Args:
xlim: Specifies the x-axis limits. Set to None for automatic
determination.
ylim: Specifies the y-axis limits.
|
juraj-google-style
|
def getEstTraitCovar(self, term_i=None):
assert (self.P > 1), 'Trait covars not defined for single trait analysis'
if (term_i == None):
RV = SP.zeros((self.P, self.P))
for term_i in range(self.n_terms):
RV += self.vd.getTerm(term_i).getTraitCovar().K()
else:
assert (term_i < self.n_terms), 'Term index non valid'
RV = self.vd.getTerm(term_i).getTraitCovar().K()
return RV
|
Returns explicitly the estimated trait covariance matrix
Args:
term_i: index of the term we are interested in
|
codesearchnet
|
def is_displayed(target):
is_displayed = getattr(target, 'is_displayed', None)
if ((not is_displayed) or (not callable(is_displayed))):
raise TypeError("Target has no attribute 'is_displayed' or not callable")
if (not is_displayed()):
raise WebDriverException('element not visible')
|
Assert whether the target is displayed
Args:
target(WebElement): WebElement Object.
Returns:
Return True if the element is displayed or return False otherwise.
|
codesearchnet
|
def read_uint64(self, little_endian=True):
if little_endian:
endian = "<"
else:
endian = ">"
return self.unpack('%sQ' % endian, 8)
|
Read 8 bytes as an unsigned integer value from the stream.
Args:
little_endian (bool): specify the endianness. (Default) Little endian.
Returns:
int:
|
juraj-google-style
|
def get_crypt_class(self):
crypt_type = getattr(settings, 'ENCRYPTED_FIELD_MODE', 'DECRYPT_AND_ENCRYPT')
if (crypt_type == 'ENCRYPT'):
crypt_class_name = 'Encrypter'
elif (crypt_type == 'DECRYPT_AND_ENCRYPT'):
crypt_class_name = 'Crypter'
else:
raise ImproperlyConfigured(('ENCRYPTED_FIELD_MODE must be either DECRYPT_AND_ENCRYPT or ENCRYPT, not %s.' % crypt_type))
return getattr(keyczar, crypt_class_name)
|
Get the Keyczar class to use.
The class can be customized with the ENCRYPTED_FIELD_MODE setting. By default,
this setting is DECRYPT_AND_ENCRYPT. Set this to ENCRYPT to disable decryption.
This is necessary if you are only providing public keys to Keyczar.
Returns:
keyczar.Encrypter if ENCRYPTED_FIELD_MODE is ENCRYPT.
keyczar.Crypter if ENCRYPTED_FIELD_MODE is DECRYPT_AND_ENCRYPT.
Override this method to customize the type of Keyczar class returned.
|
codesearchnet
|
async def pull(
self,
from_image: str,
*,
auth: Optional[Union[MutableMapping, str, bytes]] = None,
tag: str = None,
repo: str = None,
stream: bool = False
) -> Mapping:
image = from_image
params = {"fromImage": image}
headers = {}
if repo:
params["repo"] = repo
if tag:
params["tag"] = tag
if auth is not None:
registry, has_registry_host, _ = image.partition("/")
if not has_registry_host:
raise ValueError(
"Image should have registry host "
"when auth information is provided"
)
headers["X-Registry-Auth"] = compose_auth_header(auth, registry)
response = await self.docker._query(
"images/create", "POST", params=params, headers=headers
)
return await json_stream_result(response, stream=stream)
|
Similar to `docker pull`, pull an image locally
Args:
fromImage: name of the image to pull
repo: repository name given to an image when it is imported
tag: if empty when pulling an image all tags
for the given image to be pulled
auth: special {'auth': base64} pull private repo
|
juraj-google-style
|
def __init__(self, devices=None, cross_device_ops=None, *, mesh=None):
self._validate_init_args(mesh, devices)
if not mesh:
mesh = self._build_mesh_from_device_list(devices)
extended = dtensor_strategy_extended.DTensorStrategyExtended(container_strategy=self, mesh=mesh)
super().__init__(extended)
self._mesh = mesh
self._devices = devices
|
Synchronous training across multiple replicas on one machine.
Args:
devices: a list of device strings, such as ['/gpu:0', '/gpu:1']. If both
`mesh` and `devices` are None, all the available GPU/TPU will be used.
If no accelerators are found, CPU is used.
cross_device_ops: optional, a descendant of `CrossDeviceOps`. The value is
ignored at the moment, and support will be added later.
mesh: optional DTensor mesh for the computation. Note that either `mesh`
or `devices` should be provided, and not both. The mesh should be 1D,
and will be used to split the input data among that dimension.
|
github-repos
|
def invert_dict(d):
inverted = collections.defaultdict(list)
for key, value_list in d.items():
for val in value_list:
inverted[val].append(key)
return inverted
|
Invert a dictionary.
Converts a dictionary (mapping strings to lists of strings) to a dictionary
that maps into the other direction.
Arguments:
d: Dictionary to be inverted
Returns:
A dictionary n with the property that if "y in d[x]", then "x in n[y]".
|
github-repos
|
def _parse_date(dataset_date, date_format):
if date_format is None:
try:
return parser.parse(dataset_date)
except (ValueError, OverflowError) as e:
raisefrom(HDXError, 'Invalid dataset date!', e)
else:
try:
return datetime.strptime(dataset_date, date_format)
except ValueError as e:
raisefrom(HDXError, 'Invalid dataset date!', e)
|
Parse dataset date from string using specified format. If no format is supplied, the function will guess.
For unambiguous formats, this should be fine.
Args:
dataset_date (str): Dataset date string
date_format (Optional[str]): Date format. If None is given, will attempt to guess. Defaults to None.
Returns:
datetime.datetime
|
juraj-google-style
|
def phase_histogram(dts, times=None, nbins=30, colormap=mpl.cm.Blues):
if times is None:
times = np.linspace(dts.tspan[0], dts.tspan[-1], num=4)
elif isinstance(times, numbers.Number):
times = np.array([times], dtype=np.float64)
indices = distob.gather(dts.tspan.searchsorted(times))
if indices[-1] == len(dts.tspan):
indices[-1] -= 1
nplots = len(indices)
fig = plt.figure()
n = np.zeros((nbins, nplots))
for i in range(nplots):
index = indices[i]
time = dts.tspan[index]
phases = distob.gather(dts.mod2pi()[index, 0, :])
ax = fig.add_subplot(1, nplots, i + 1, projection='polar')
n[:,i], bins, patches = ax.hist(phases, nbins, (-np.pi, np.pi),
density=True, histtype='bar')
ax.set_title('time = %d s' % time)
ax.set_xticklabels(['0', r'$\frac{\pi}{4}$', r'$\frac{\pi}{2}$',
r'$\frac{3\pi}{4}$', r'$\pi$', r'$\frac{-3\pi}{4}$',
r'$\frac{-\pi}{2}$', r'$\frac{-\pi}{4}$'])
nmin, nmax = n.min(), n.max()
norm = mpl.colors.Normalize(1.2*nmin - 0.2*nmax,
0.6*nmin + 0.4*nmax, clip=True)
for i in range(nplots):
ax = fig.get_axes()[i]
ax.set_ylim(0, nmax)
for this_n, thispatch in zip(n[:,i], ax.patches):
color = colormap(norm(this_n))
thispatch.set_facecolor(color)
thispatch.set_edgecolor(color)
fig.show()
|
Plot a polar histogram of a phase variable's probability distribution
Args:
dts: DistTimeseries with axis 2 ranging over separate instances of an
oscillator (time series values are assumed to represent an angle)
times (float or sequence of floats): The target times at which
to plot the distribution
nbins (int): number of histogram bins
colormap
|
juraj-google-style
|
def _LogForwardedIpChanges(self, configured, desired, to_add, to_remove, interface):
if ((not to_add) and (not to_remove)):
return
self.logger.info('Changing %s IPs from %s to %s by adding %s and removing %s.', interface, (configured or None), (desired or None), (to_add or None), (to_remove or None))
|
Log the planned IP address changes.
Args:
configured: list, the IP address strings already configured.
desired: list, the IP address strings that will be configured.
to_add: list, the forwarded IP address strings to configure.
to_remove: list, the forwarded IP address strings to delete.
interface: string, the output device to modify.
|
codesearchnet
|
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]:
auto_modules = [transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
model_mappings = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}']
auto_classes = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}']
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
if not hasattr(module, mapping):
continue
model_names = []
for name in getattr(module, mapping).values():
if isinstance(name, str):
model_names.append(name)
else:
model_names.extend(list(name))
table.update(dict.fromkeys(model_names, (pipeline_tag, cls)))
return table
|
Update the table mapping models to pipelines and auto classes without removing old keys if they don't exist anymore.
Args:
table (`Dict[str, Tuple[str, str]]`):
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with
which they should be used.
Returns:
`Dict[str, Tuple[str, str]]`: The updated table in the same format.
|
github-repos
|
def fit(self, col):
dates = self.safe_datetime_cast(col)
self.default_val = (dates.groupby(dates).count().index[0].timestamp() * 1000000000.0)
|
Prepare the transformer to convert data.
Args:
col(pandas.DataFrame): Data to transform.
Returns:
None
|
codesearchnet
|
def ParseNumericOption(self, options, name, base=10, default_value=None):
numeric_value = getattr(options, name, None)
if (not numeric_value):
return default_value
try:
return int(numeric_value, base)
except (TypeError, ValueError):
name = name.replace('_', ' ')
raise errors.BadConfigOption('Unsupported numeric value {0:s}: {1!s}.'.format(name, numeric_value))
|
Parses a numeric option.
If the option is not set the default value is returned.
Args:
options (argparse.Namespace): command line arguments.
name (str): name of the numeric option.
base (Optional[int]): base of the numeric value.
default_value (Optional[object]): default value.
Returns:
int: numeric value.
Raises:
BadConfigOption: if the options are invalid.
|
codesearchnet
|
def get_caching_key(self, user_context):
raise NotImplementedError('subclasses must override this')
|
Returns a unique key to use for caching.
Subclasses must override this.
Calls made to `transform_function` with functions that have the same code
object and caching key will return a cached instance on subsequent
invocations.
Args:
user_context: The context object which was passed to `transform`.
Returns:
extra_locals: A hashable.
|
github-repos
|
def __convertLongToString(self, iValue):
string = ''
strValue = str(hex(iValue))
string = strValue.lstrip('0x')
string = string.rstrip('L')
return string
|
convert a long hex integer to string
remove '0x' and 'L' return string
Args:
iValue: long integer in hex format
Returns:
string of this long integer without "0x" and "L"
|
juraj-google-style
|
def ToName(param_type):
items = inspect.getmembers(ContractParameterType)
if type(param_type) is bytes:
param_type = int.from_bytes(param_type, 'little')
for item in items:
name = item[0]
val = int(item[1].value)
if val == param_type:
return name
return None
|
Gets the name of a ContractParameterType based on its value
Args:
param_type (ContractParameterType): type to get the name of
Returns:
str
|
juraj-google-style
|
def _query(self, url, xpath):
return self.session.query(CachedRequest).filter((CachedRequest.url == url)).filter((CachedRequest.xpath == xpath))
|
Base query for an url and xpath
Args:
url (str): URL to search
xpath (str): xpath to search (may be ``None``)
|
codesearchnet
|
def MapByteStream(
self, byte_stream, byte_offset=0, context=None, **unused_kwargs):
data_type_size = self._data_type_definition.GetByteSize()
self._CheckByteStreamSize(byte_stream, byte_offset, data_type_size)
try:
if self._byte_order == definitions.BYTE_ORDER_BIG_ENDIAN:
mapped_value = uuid.UUID(
bytes=byte_stream[byte_offset:byte_offset + 16])
elif self._byte_order == definitions.BYTE_ORDER_LITTLE_ENDIAN:
mapped_value = uuid.UUID(
bytes_le=byte_stream[byte_offset:byte_offset + 16])
except Exception as exception:
error_string = (
'Unable to read: {0:s} from byte stream at offset: {1:d} '
'with error: {2!s}').format(
self._data_type_definition.name, byte_offset, exception)
raise errors.MappingError(error_string)
if context:
context.byte_size = data_type_size
return mapped_value
|
Maps the data type on a byte stream.
Args:
byte_stream (bytes): byte stream.
byte_offset (Optional[int]): offset into the byte stream where to start.
context (Optional[DataTypeMapContext]): data type map context.
Returns:
uuid.UUID: mapped value.
Raises:
MappingError: if the data type definition cannot be mapped on
the byte stream.
|
juraj-google-style
|
def firmware_version(self):
namespace = "urn:brocade.com:mgmt:brocade-firmware-ext"
request_ver = ET.Element("show-firmware-version", xmlns=namespace)
ver = self._callback(request_ver, handler='get')
return ver.find('.
|
Returns firmware version.
Args:
None
Returns:
Dictionary
Raises:
None
|
juraj-google-style
|
def preprocess_input(x, data_format=None):
return x
|
A placeholder method for backward compatibility.
The preprocessing logic has been included in the efficientnet model
implementation. Users are no longer required to call this method to
normalize the input data. This method does nothing and only kept as a
placeholder to align the API surface between old and new version of model.
Args:
x: A floating point `numpy.array` or a tensor.
data_format: Optional data format of the image tensor/array. `None`
means the global setting `keras.backend.image_data_format()`
is used (unless you changed it, it uses `"channels_last"`).
Defaults to `None`.
Returns:
Unchanged `numpy.array` or tensor.
|
github-repos
|
def build_panel(panel_info, adapter):
panel_name = panel_info.get('panel_id', panel_info.get('panel_name'))
if (not panel_name):
raise KeyError('Panel has to have a id')
panel_obj = dict(panel_name=panel_name)
LOG.info('Building panel with name: {0}'.format(panel_name))
try:
institute_id = panel_info['institute']
except KeyError as err:
raise KeyError('Panel has to have a institute')
if (adapter.institute(institute_id) is None):
raise IntegrityError(('Institute %s could not be found' % institute_id))
panel_obj['institute'] = panel_info['institute']
panel_obj['version'] = float(panel_info['version'])
try:
panel_obj['date'] = panel_info['date']
except KeyError as err:
raise KeyError('Panel has to have a date')
panel_obj['display_name'] = panel_info.get('display_name', panel_obj['panel_name'])
gene_objs = []
fail = False
for gene_info in panel_info.get('genes', []):
try:
gene_obj = build_gene(gene_info, adapter)
gene_objs.append(gene_obj)
except IntegrityError as err:
LOG.warning(err)
fail = True
if fail:
raise IntegrityError('Some genes did not exist in database. Please see log messages.')
panel_obj['genes'] = gene_objs
return panel_obj
|
Build a gene_panel object
Args:
panel_info(dict): A dictionary with panel information
adapter (scout.adapter.MongoAdapter)
Returns:
panel_obj(dict)
gene_panel = dict(
panel_id = str, # required
institute = str, # institute_id, required
version = float, # required
date = datetime, # required
display_name = str, # default is panel_name
genes = list, # list of panel genes, sorted on panel_gene['symbol']
)
|
codesearchnet
|
def run(self, dag):
for node in dag.threeQ_or_more_gates():
rule = node.op.definition
if not rule:
raise QiskitError("Cannot unroll all 3q or more gates. "
"No rule to expand instruction %s." %
node.op.name)
decomposition = DAGCircuit()
decomposition.add_qreg(rule[0][1][0][0])
for inst in rule:
decomposition.apply_operation_back(*inst)
decomposition = self.run(decomposition)
dag.substitute_node_with_dag(node, decomposition)
return dag
|
Expand 3+ qubit gates using their decomposition rules.
Args:
dag(DAGCircuit): input dag
Returns:
DAGCircuit: output dag with maximum node degrees of 2
Raises:
QiskitError: if a 3q+ gate is not decomposable
|
juraj-google-style
|
def to_proj4(self, as_dict=False, toplevel=True):
if toplevel:
string = "+proj=longlat %s %s +nodef" % (self.datum.to_proj4(), self.prime_mer.to_proj4())
else:
string = "%s %s" % (self.datum.to_proj4(), self.prime_mer.to_proj4())
if as_dict:
return dict([
entry.lstrip('+').split('=')
for entry in string.split()
if entry != "+no_defs"
])
else:
return string
|
Returns the CS as a proj4 formatted string or dict.
Arguments:
- **as_dict** (optional): If True, returns the proj4 string as a dict (defaults to False).
- **toplevel** (optional): If True, treats this CS as the final toplevel CS and adds the necessary proj4 elements (defaults to True).
|
juraj-google-style
|
def right_shift_blockwise(x, query_shape, name=None):
with tf.variable_scope(name, default_name='right_shift_blockwise', values=[x]):
x_list_shape = x.get_shape().as_list()
x_shape = common_layers.shape_list(x)
x = tf.expand_dims(x, axis=1)
x = pad_to_multiple_2d(x, query_shape)
padded_x_shape = common_layers.shape_list(x)
x_indices = gather_indices_2d(x, query_shape, query_shape)
x_new = get_shifted_center_blocks(x, x_indices)
output = scatter_blocks_2d(x_new, x_indices, padded_x_shape)
output = tf.squeeze(output, axis=1)
output = tf.slice(output, [0, 0, 0, 0], [(- 1), x_shape[1], x_shape[2], (- 1)])
output.set_shape(x_list_shape)
return output
|
Right shifts once in every block.
Args:
x: a tensor of shape [batch, height, width, depth]
query_shape: A 2d tuple of ints
name: a string
Returns:
output: a tensor of the same shape as x
|
codesearchnet
|
def get_service_name(*args):
raw_services = _get_services()
services = dict()
for raw_service in raw_services:
if args:
if ((raw_service['DisplayName'] in args) or (raw_service['ServiceName'] in args) or (raw_service['ServiceName'].lower() in args)):
services[raw_service['DisplayName']] = raw_service['ServiceName']
else:
services[raw_service['DisplayName']] = raw_service['ServiceName']
return services
|
The Display Name is what is displayed in Windows when services.msc is
executed. Each Display Name has an associated Service Name which is the
actual name of the service. This function allows you to discover the
Service Name by returning a dictionary of Display Names and Service Names,
or filter by adding arguments of Display Names.
If no args are passed, return a dict of all services where the keys are the
service Display Names and the values are the Service Names.
If arguments are passed, create a dict of Display Names and Service Names
Returns:
dict: A dictionary of display names and service names
CLI Examples:
.. code-block:: bash
salt '*' service.get_service_name
salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client'
|
codesearchnet
|
class MaxPooling1D(keras_layers.MaxPooling1D, base.Layer):
def __init__(self, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(MaxPooling1D, self).__init__(pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, name=name, **kwargs)
|
Max Pooling layer for 1D inputs.
Args:
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
|
github-repos
|
def hash_stream(self, url):
md5hash = hashlib.md5()
try:
for chunk in self.response.iter_content(chunk_size=10240):
if chunk:
md5hash.update(chunk)
return md5hash.hexdigest()
except Exception as e:
raisefrom(DownloadError, ('Download of %s failed in retrieval of stream!' % url), e)
|
Stream file from url and hash it using MD5. Must call setup method first.
Args:
url (str): URL to download
Returns:
str: MD5 hash of file
|
codesearchnet
|
def _get_arg_parser(func, types, args_and_defaults, delimiter_chars):
_LOG.debug("Creating ArgumentParser for '%s'", func.__name__)
(description, arg_help) = _prepare_doc(func, [x for (x, _) in args_and_defaults], delimiter_chars)
parser = argparse.ArgumentParser(description=description)
for ((arg, default), arg_type) in zip_longest(args_and_defaults, types):
help_msg = arg_help[arg]
if (default is NoDefault):
arg_type = (arg_type or identity_type)
if (arg_type == bool):
_LOG.debug('Adding optional flag %s.%s', func.__name__, arg)
parser.add_argument(('--%s' % arg), default=True, required=False, action='store_false', help=('%s. Defaults to True if not specified' % help_msg))
else:
_LOG.debug('Adding positional argument %s.%s', func.__name__, arg)
parser.add_argument(arg, help=help_msg, type=arg_type)
else:
if ((default is None) and (arg_type is None)):
raise ParseThisError("To use default value of 'None' you need to specify the type of the argument '{}' for the method '{}'".format(arg, func.__name__))
arg_type = (arg_type or type(default))
if (arg_type == bool):
action = ('store_false' if default else 'store_true')
_LOG.debug('Adding optional flag %s.%s', func.__name__, arg)
parser.add_argument(('--%s' % arg), help=help_msg, default=default, action=action)
else:
_LOG.debug('Adding optional argument %s.%s', func.__name__, arg)
parser.add_argument(('--%s' % arg), help=help_msg, default=default, type=arg_type)
return parser
|
Return an ArgumentParser for the given function. Arguments are defined
from the function arguments and their associated defaults.
Args:
func: function for which we want an ArgumentParser
types: types to which the command line arguments should be converted to
args_and_defaults: list of 2-tuples (arg_name, arg_default)
delimiter_chars: characters used to separate the parameters from their
help message in the docstring
|
codesearchnet
|
def _parse_state(self, config):
value = STATE_RE.search(config).group('value')
return dict(state=value)
|
_parse_state scans the provided configuration block and extracts
the vlan state value. The config block is expected to always return
the vlan state config. The return dict is inteded to be merged into
the response dict.
Args:
config (str): The vlan configuration block from the nodes
running configuration
Returns:
dict: resource dict attribute
|
codesearchnet
|
def is_str(string):
if (sys.version_info[:2] >= (3, 0)):
return isinstance(string, str)
return isinstance(string, basestring)
|
Python 2 and 3 compatible string checker.
Args:
string (str | basestring): the string to check
Returns:
bool: True or False
|
codesearchnet
|
def notify(self, method_name: str, *args: Any, trim_log_values: Optional[bool]=None, validate_against_schema: Optional[bool]=None, **kwargs: Any) -> Response:
return self.send(Notification(method_name, *args, **kwargs), trim_log_values=trim_log_values, validate_against_schema=validate_against_schema)
|
Send a JSON-RPC request, without expecting a response.
Args:
method_name: The remote procedure's method name.
args: Positional arguments passed to the remote procedure.
kwargs: Keyword arguments passed to the remote procedure.
trim_log_values: Abbreviate the log entries of requests and responses.
validate_against_schema: Validate response against the JSON-RPC schema.
|
codesearchnet
|
def execute_with_cancellation(op_name, num_outputs, inputs, attrs, ctx, cancellation_manager, name=None):
device_name = ctx.device_name
try:
ctx.ensure_initialized()
tensors = pywrap_tfe.TFE_Py_ExecuteCancelable(ctx._handle, device_name, op_name, inputs, attrs, cancellation_manager._impl, num_outputs)
except core._NotOkStatusException as e:
if name is not None:
e.message += ' name: ' + name
raise core._status_to_exception(e) from None
except TypeError as e:
keras_symbolic_tensors = [x for x in inputs if _is_keras_symbolic_tensor(x)]
if keras_symbolic_tensors:
raise core._SymbolicException('Inputs to eager execution function cannot be Keras symbolic tensors, but found {}'.format(keras_symbolic_tensors))
raise e
return tensors
|
Execute a TensorFlow operation.
Args:
op_name: Name of the TensorFlow operation (see REGISTER_OP in C++ code) to
execute.
num_outputs: The number of outputs of the operation to fetch. (Explicitly
provided instead of being inferred for performance reasons).
inputs: A list of inputs to the operation. Each entry should be a Tensor, or
a value which can be passed to the Tensor constructor to create one.
attrs: A tuple with alternating string attr names and attr values for this
operation.
ctx: The value of context.context().
cancellation_manager: a `CancellationManager` object that can be used to
cancel the operation.
name: Customized name for the operation.
Returns:
List of output Tensor objects. The list is empty if there are no outputs
Raises:
An exception on error.
|
github-repos
|
def make_decoder(activation, latent_size, output_shape, base_depth):
deconv = functools.partial(
tf.keras.layers.Conv2DTranspose, padding="SAME", activation=activation)
conv = functools.partial(
tf.keras.layers.Conv2D, padding="SAME", activation=activation)
decoder_net = tf.keras.Sequential([
deconv(2 * base_depth, 7, padding="VALID"),
deconv(2 * base_depth, 5),
deconv(2 * base_depth, 5, 2),
deconv(base_depth, 5),
deconv(base_depth, 5, 2),
deconv(base_depth, 5),
conv(output_shape[-1], 5, activation=None),
])
def decoder(codes):
original_shape = tf.shape(input=codes)
codes = tf.reshape(codes, (-1, 1, 1, latent_size))
logits = decoder_net(codes)
logits = tf.reshape(
logits, shape=tf.concat([original_shape[:-1], output_shape], axis=0))
return tfd.Independent(tfd.Bernoulli(logits=logits),
reinterpreted_batch_ndims=len(output_shape),
name="image")
return decoder
|
Creates the decoder function.
Args:
activation: Activation function in hidden layers.
latent_size: Dimensionality of the encoding.
output_shape: The output image shape.
base_depth: Smallest depth for a layer.
Returns:
decoder: A `callable` mapping a `Tensor` of encodings to a
`tfd.Distribution` instance over images.
|
juraj-google-style
|
def is_type(url: str, message_or_descriptor: annotation_utils.MessageOrDescriptorBase) -> bool:
return annotation_utils.get_structure_definition_url(message_or_descriptor) == url
|
Returns True if message_or_descriptor has a structure definition of url.
Args:
url: The FHIR structure definition URL to compare against.
message_or_descriptor: The Message or Descriptor to examine.
Returns:
True if message_or_descriptor has a structure definition equal to url.
|
github-repos
|
def bulk_write(self, metrics):
actions = []
index = self.get_index()
for metric in metrics:
actions.append({'index': {'_index': index, '_type': self.doc_type}})
actions.append(metric)
try:
self.client.bulk(actions)
except TransportError as exc:
logger.warning('bulk_write metrics %r failure %r', metrics, exc)
|
Write multiple metrics to elasticsearch in one request
Args:
metrics (list): data with mappings to send to elasticsearch
|
juraj-google-style
|
def get_owner_emails(self, partial_owner_match=True):
for tag in self.tags:
if (tag.key.lower() == 'owner'):
rgx = re.compile(RGX_EMAIL_VALIDATION_PATTERN, re.I)
if partial_owner_match:
match = rgx.findall(tag.value)
if match:
return [NotificationContact('email', email) for email in match]
else:
match = rgx.match(tag.value)
if match:
return [NotificationContact('email', email) for email in match.groups()]
return None
|
Return a list of email addresses associated with the instance, based on tags
Returns:
List of email addresses if any, else None
|
codesearchnet
|
class CombinePerKey(PTransformWithSideInputs):
def with_hot_key_fanout(self, fanout):
from apache_beam.transforms.combiners import curry_combine_fn
if fanout is None:
return self
else:
return _CombinePerKeyWithHotKeyFanout(curry_combine_fn(self.fn, self.args, self.kwargs), fanout)
def display_data(self):
return {'combine_fn': DisplayDataItem(self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn}
def make_fn(self, fn, has_side_inputs):
self._fn_label = ptransform.label_from_callable(fn)
return CombineFn.maybe_from_callable(fn, has_side_inputs)
def default_label(self):
return '%s(%s)' % (self.__class__.__name__, self._fn_label)
def _process_argspec_fn(self):
return lambda element, *args, **kwargs: None
def expand(self, pcoll):
args, kwargs = util.insert_values_in_args(self.args, self.kwargs, self.side_inputs)
return pcoll | GroupByKey() | 'Combine' >> CombineValues(self.fn, *args, **kwargs)
def default_type_hints(self):
result = self.fn.get_type_hints()
k = typehints.TypeVariable('K')
if result.input_types:
args, kwargs = result.input_types
args = (typehints.Tuple[k, args[0]],) + args[1:]
result = result.with_input_types(*args, **kwargs)
else:
result = result.with_input_types(typehints.Tuple[k, typehints.Any])
if result.output_types:
main_output_type = result.simple_output_type('')
result = result.with_output_types(typehints.Tuple[k, main_output_type])
else:
result = result.with_output_types(typehints.Tuple[k, typehints.Any])
return result
def to_runner_api_parameter(self, context):
if self.args or self.kwargs:
from apache_beam.transforms.combiners import curry_combine_fn
combine_fn = curry_combine_fn(self.fn, self.args, self.kwargs)
else:
combine_fn = self.fn
return (common_urns.composites.COMBINE_PER_KEY.urn, _combine_payload(combine_fn, context))
@staticmethod
@PTransform.register_urn(common_urns.composites.COMBINE_PER_KEY.urn, beam_runner_api_pb2.CombinePayload)
def from_runner_api_parameter(unused_ptransform, combine_payload, context):
return CombinePerKey(CombineFn.from_runner_api(combine_payload.combine_fn, context))
def runner_api_requires_keyed_input(self):
return True
|
A per-key Combine transform.
Identifies sets of values associated with the same key in the input
PCollection, then applies a CombineFn to condense those sets to single
values. See documentation in CombineFn for details on the specifics on how
CombineFns are applied.
Args:
pcoll: input pcollection.
fn: instance of CombineFn to apply to all values under the same key in
pcoll, or a callable whose signature is ``f(iterable, *args, **kwargs)``
(e.g., sum, max).
*args: arguments and side inputs, passed directly to the CombineFn.
**kwargs: arguments and side inputs, passed directly to the CombineFn.
Returns:
A PObject holding the result of the combine operation.
|
github-repos
|
def AddEventTags(self, event_tags):
self._RaiseIfNotWritable()
for event_tag in event_tags:
self.AddEventTag(event_tag)
|
Adds event tags.
Args:
event_tags (list[EventTag]): event tags.
Raises:
IOError: when the storage file is closed or read-only or
if the event tags cannot be serialized.
OSError: when the storage file is closed or read-only or
if the event tags cannot be serialized.
|
codesearchnet
|
def __init__(self, sources, stacker_cache_dir=None):
if not stacker_cache_dir:
stacker_cache_dir = os.path.expanduser("~/.stacker")
package_cache_dir = os.path.join(stacker_cache_dir, 'packages')
self.stacker_cache_dir = stacker_cache_dir
self.package_cache_dir = package_cache_dir
self.sources = sources
self.configs_to_merge = []
self.create_cache_directories()
|
Process a config's defined package sources.
Args:
sources (dict): Package sources from Stacker config dictionary
stacker_cache_dir (string): Path where remote sources will be
cached.
|
juraj-google-style
|
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = utils.BytearrayStream()
if self._unique_identifier is not None:
self._unique_identifier.write(
local_stream,
kmip_version=kmip_version
)
if self._key_format_type is not None:
self._key_format_type.write(
local_stream,
kmip_version=kmip_version
)
if self._key_compression_type is not None:
self._key_compression_type.write(
local_stream,
kmip_version=kmip_version
)
if self._key_wrapping_specification is not None:
self._key_wrapping_specification.write(
local_stream,
kmip_version=kmip_version
)
self.length = local_stream.length()
super(GetRequestPayload, self).write(
output_stream,
kmip_version=kmip_version
)
output_stream.write(local_stream.buffer)
|
Write the data encoding the Get request payload to a stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
|
juraj-google-style
|
def tf_retrieve_indices(self, indices):
states = dict()
for name in sorted(self.states_memory):
states[name] = tf.gather(params=self.states_memory[name], indices=indices)
internals = dict()
for name in sorted(self.internals_memory):
internals[name] = tf.gather(params=self.internals_memory[name], indices=indices)
actions = dict()
for name in sorted(self.actions_memory):
actions[name] = tf.gather(params=self.actions_memory[name], indices=indices)
terminal = tf.gather(params=self.terminal_memory, indices=indices)
reward = tf.gather(params=self.reward_memory, indices=indices)
if self.include_next_states:
assert (util.rank(indices) == 1)
next_indices = ((indices + 1) % self.capacity)
next_states = dict()
for name in sorted(self.states_memory):
next_states[name] = tf.gather(params=self.states_memory[name], indices=next_indices)
next_internals = dict()
for name in sorted(self.internals_memory):
next_internals[name] = tf.gather(params=self.internals_memory[name], indices=next_indices)
return dict(states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals)
else:
return dict(states=states, internals=internals, actions=actions, terminal=terminal, reward=reward)
|
Fetches experiences for given indices.
Args:
indices: Index tensor
Returns: Batch of experiences
|
codesearchnet
|
def get_framework(model, revision: Optional[str]=None):
warnings.warn('`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.', FutureWarning)
if not is_tf_available() and (not is_torch_available()):
raise RuntimeError('At least one of TensorFlow 2.0 or PyTorch should be installed. To install TensorFlow 2.0, read the instructions at https:
if isinstance(model, str):
if is_torch_available() and (not is_tf_available()):
model = AutoModel.from_pretrained(model, revision=revision)
elif is_tf_available() and (not is_torch_available()):
model = TFAutoModel.from_pretrained(model, revision=revision)
else:
try:
model = AutoModel.from_pretrained(model, revision=revision)
except OSError:
model = TFAutoModel.from_pretrained(model, revision=revision)
framework = infer_framework(model.__class__)
return framework
|
Select framework (TensorFlow or PyTorch) to use.
Args:
model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`):
If both frameworks are installed, picks the one corresponding to the model passed (either a model class or
the model name). If no specific model is provided, defaults to using PyTorch.
|
github-repos
|
def get_data(img_path):
mean = np.array([123.68, 116.779, 103.939])
img = Image.open(img_path)
img = np.array(img, dtype=np.float32)
reshaped_mean = mean.reshape(1, 1, 3)
img = img - reshaped_mean
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 1, 2)
img = np.expand_dims(img, axis=0)
return img
|
get the (1, 3, h, w) np.array data for the supplied image
Args:
img_path (string): the input image path
Returns:
np.array: image data in a (1, 3, h, w) shape
|
juraj-google-style
|
def normalize(self, text, normalizations=None):
for normalization, kwargs in self._parse_normalizations(
normalizations or self._config.normalizations):
try:
text = getattr(self, normalization)(text, **kwargs)
except AttributeError as e:
self._logger.debug('Invalid normalization: %s', e)
return text
|
Normalize a given text applying all normalizations.
Normalizations to apply can be specified through a list of
parameters and will be executed in that order.
Args:
text: The text to be processed.
normalizations: List of normalizations to apply.
Returns:
The text normalized.
|
juraj-google-style
|
def update_configuration(self):
uri = '{}/configuration'.format(self.data['uri'])
result = self._helper.update({}, uri)
self.refresh()
return result
|
Asynchronously applies or re-applies the SAS Logical Interconnect configuration to all managed interconnects
of a SAS Logical Interconnect.
Returns:
dict: SAS Logical Interconnect.
|
codesearchnet
|
def call_fn(fn, args):
if expand_as_args(args):
return fn(*args)
elif _expand_as_kwargs(args):
return fn(**args)
else:
return fn(args)
|
Calls `fn` with `args`, possibly expanding `args`.
Use this function when calling a user-provided callable using user-provided
arguments.
The expansion rules are as follows:
`fn(*args)` if `args` is a `list` or a `tuple`, but not a `namedtuple`.
`fn(**args)` if `args` is a `dict`.
`fn(args)` otherwise.
Args:
fn: A callable that takes either `args` as an argument(s).
args: Arguments to `fn`.
Returns:
result: Return value of `fn`.
|
juraj-google-style
|
def setup(__pkg: str) -> jinja2.Environment:
dirs = [path.join(d, 'templates')
for d in xdg_basedir.get_data_dirs(__pkg)]
env = jinja2.Environment(
autoescape=jinja2.select_autoescape(['html', 'xml']),
loader=jinja2.ChoiceLoader([jinja2.FileSystemLoader(s) for s in dirs]))
env.loader.loaders.append(jinja2.PackageLoader(__pkg, 'templates'))
env.filters.update(FILTERS)
return env
|
Configure a new Jinja environment with our filters.
Args:
__pkg: Package name to use as base for templates searches
Returns:
Configured Jinja environment
|
juraj-google-style
|
def allele_clusters(dists, t=0.025):
clusters = fcluster(linkage(dists), 0.025, criterion='distance')
cluster_idx = defaultdict(list)
for idx, cl in enumerate(clusters):
cluster_idx[cl].append(idx)
return cluster_idx
|
Flat clusters from distance matrix
Args:
dists (numpy.array): pdist distance matrix
t (float): fcluster (tree cutting) distance threshold
Returns:
dict of lists: cluster number to list of indices of distances in cluster
|
juraj-google-style
|
def generate_states(state_count, process_matrix, process_covariance,
initial_state=None):
process_matrix = np.atleast_2d(process_matrix)
process_covariance = np.atleast_2d(process_covariance)
state_dim = process_matrix.shape[0]
if process_matrix.shape != (state_dim, state_dim):
raise ValueError("Process matrix has inconsistent shape: {}".format(
process_matrix.shape))
if process_covariance.shape != (state_dim, state_dim):
raise ValueError("Process covariance has inconsistent shape: {}".format(
process_covariance.shape))
if initial_state is None:
initial_state = np.zeros(process_matrix.shape[0])
states = [initial_state]
while len(states) < state_count:
states.append(
process_matrix.dot(states[-1]) + np.random.multivariate_normal(
mean=np.zeros(state_dim), cov=process_covariance
)
)
return np.vstack(states)
|
Generate states by simulating a linear system with constant process matrix
and process noise covariance.
Args:
state_count (int): Number of states to generate.
process_matrix (array): Square array
process_covariance (array): Square array specifying process noise
covariance.
initial_state (array or None): If omitted, use zero-filled vector as
initial state.
|
juraj-google-style
|
def persist(self, status=None):
self._persist = (status if (type(status) is bool) else True)
|
Enables persistent mode for the current mock.
Returns:
self: current Mock instance.
|
codesearchnet
|
def get_dict_definition(self, dict, get_list=False):
list_def_candidate = []
for definition_name in self.specification['definitions'].keys():
if self.validate_definition(definition_name, dict):
if (not get_list):
return definition_name
list_def_candidate.append(definition_name)
if get_list:
return list_def_candidate
return None
|
Get the definition name of the given dict.
Args:
dict: dict to test.
get_list: if set to true, return a list of definition that match the body.
if False, only return the first.
Returns:
The definition name or None if the dict does not match any definition.
If get_list is True, return a list of definition_name.
|
codesearchnet
|
def call(poly, args):
args = list(args)
if len(args) < poly.dim:
args = args + [np.nan]*(poly.dim-len(args))
elif len(args) > poly.dim:
raise ValueError("too many arguments")
x0, x1 = [], []
for idx, arg in enumerate(args):
if isinstance(arg, Poly):
poly_ = Poly({
tuple(np.eye(poly.dim)[idx]): np.array(1)
})
x0.append(poly_)
x1.append(arg)
args[idx] = np.nan
if x0:
poly = call(poly, args)
return substitute(poly, x0, x1)
masks = np.zeros(len(args), dtype=bool)
for idx, arg in enumerate(args):
if np.ma.is_masked(arg) or np.any(np.isnan(arg)):
masks[idx] = True
args[idx] = 0
shape = np.array(
args[
np.argmax(
[np.prod(np.array(arg).shape) for arg in args]
)
]
).shape
args = np.array([np.ones(shape, dtype=int)*arg for arg in args])
A = {}
for key in poly.keys:
key_ = np.array(key)*(1-masks)
val = np.outer(poly.A[key], np.prod((args.T**key_).T, \
axis=0))
val = np.reshape(val, poly.shape + tuple(shape))
val = np.where(val != val, 0, val)
mkey = tuple(np.array(key)*(masks))
if not mkey in A:
A[mkey] = val
else:
A[mkey] = A[mkey] + val
out = Poly(A, poly.dim, None, None)
if out.keys and not np.sum(out.keys):
out = out.A[out.keys[0]]
elif not out.keys:
out = np.zeros(out.shape, dtype=out.dtype)
return out
|
Evaluate a polynomial along specified axes.
Args:
poly (Poly):
Input polynomial.
args (numpy.ndarray):
Argument to be evaluated. Masked values keeps the variable intact.
Returns:
(Poly, numpy.ndarray):
If masked values are used the Poly is returned. Else an numpy array
matching the polynomial's shape is returned.
|
juraj-google-style
|
def __init__(self, jss, data, **kwargs):
self.jss = jss
if isinstance(data, basestring):
super(JSSObject, self).__init__(tag=self.list_type)
self._new(data, **kwargs)
elif isinstance(data, ElementTree.Element):
super(JSSObject, self).__init__(tag=data.tag)
for child in data.getchildren():
self.append(child)
else:
raise TypeError("JSSObjects data argument must be of type "
"xml.etree.ElemenTree.Element, or a string for the"
" name.")
|
Initialize a new JSSObject
Args:
jss: JSS object.
data: xml.etree.ElementTree.Element data to use for
creating the object OR a string name to use for creating
a new object (provided it has an implemented _new()
method.
|
juraj-google-style
|
def scan_servos():
servos = []
for servo_id in range(0, 254):
model = get_model(servo_id)
if model:
servos += [(servo_id, model)]
return servos
|
Scan for the herkulex servos connected
This function will scan for all the herkulex servos connected
to the bus.
Args:
none
Returns:
list: a list of tuples of the form [(id, model)]
|
codesearchnet
|
def GetMap(self, cache_info, data):
for obj in json.loads(cache_info.read()):
key = obj.get('Key', '')
value = obj.get('Value', '')
if not value or not key:
continue
map_entry = self._ReadEntry(key, value)
if map_entry is None:
self.log.warning('Could not create entry from line %r in cache, skipping', value)
continue
if not data.Add(map_entry):
self.log.warning('Could not add entry %r read from line %r in cache', map_entry, value)
return data
|
Returns a map from a cache.
Args:
cache_info: file like object containing the cache.
data: a Map to populate.
Returns:
A child of Map containing the cache data.
|
github-repos
|
def get_data_path(self, filename, env_prefix=None):
if env_prefix == None:
target_file = filename
else:
target_file = os.path.join(env_prefix, filename)
if os.path.exists(os.path.join(self._data_path, target_file)):
return os.path.join(self._data_path, target_file)
else:
raise DataNotFoundError(
u("Cannot find data file: {0}").format(target_file))
|
Get data path.
Args:
filename (string) : Name of file inside of /data folder to retrieve.
Kwargs:
env_prefix (string) : Name of subfolder, ex: 'qa' will find files in /data/qa
Returns:
String - path to file.
Usage::
open(WTF_DATA_MANAGER.get_data_path('testdata.csv')
Note: WTF_DATA_MANAGER is a provided global instance of DataManager
|
juraj-google-style
|
def _convert_value(value, expected_type, path, context=_ConversionContext.VALUE):
assert isinstance(path, tuple)
if expected_type is None:
expected_type = _NoneType
if expected_type is tensor.Tensor:
return _convert_tensor(value, path, context)
elif isinstance(expected_type, type) and _issubclass(expected_type, composite_tensor.CompositeTensor):
return _convert_composite_tensor(value, expected_type, path, context)
elif expected_type is tensor_shape.TensorShape:
try:
return tensor_shape.as_shape(value)
except TypeError as e:
raise TypeError(f"{''.join(path)}: expected 'tf.TensorShape', got {type(value).__name__!r}") from e
elif expected_type is dtypes.DType:
try:
return dtypes.as_dtype(value)
except TypeError as e:
raise TypeError(f"{''.join(path)}: expected 'tf.DType', got {type(value).__name__!r}") from e
elif expected_type in (int, float, bool, str, bytes, _NoneType):
if not isinstance(value, expected_type):
raise TypeError(f'{''.join(path)}: expected {expected_type.__name__!r}, got {type(value).__name__!r}')
return value
elif type_annotations.is_generic_tuple(expected_type):
return _convert_tuple(value, expected_type, path, context)
elif type_annotations.is_generic_mapping(expected_type):
return _convert_mapping(value, expected_type, path, context)
elif type_annotations.is_generic_union(expected_type):
return _convert_union(value, expected_type, path, context)
else:
raise TypeError(f'{''.join(path)}: Unsupported type annotation {expected_type!r}')
|
Type-checks and converts a value.
Args:
value: The value to type-check.
expected_type: The expected type for the value.
path: Tuple of `str` naming the value (used for exception messages).
context: _ConversionContext, indicates what kind of value we are converting.
Returns:
A copy of `value`, converted to the expected type.
Raises:
TypeError: If `value` can not be converted to the expected type.
|
github-repos
|
def SetPermissions(path, mode=None, uid=None, gid=None, mkdir=False):
if mkdir and not os.path.exists(path):
os.mkdir(path, mode or 0o777)
elif mode:
os.chmod(path, mode)
if uid and gid:
os.chown(path, uid, gid)
_SetSELinuxContext(path)
|
Set the permissions and ownership of a path.
Args:
path: string, the path for which owner ID and group ID needs to be setup.
mode: octal string, the permissions to set on the path.
uid: int, the owner ID to be set for the path.
gid: int, the group ID to be set for the path.
mkdir: bool, True if the directory needs to be created.
|
juraj-google-style
|
def ExpectingFunctionArgs(clean_lines, linenum):
line = clean_lines.elided[linenum]
return (Match('^\\s*MOCK_(CONST_)?METHOD\\d+(_T)?\\(', line) or ((linenum >= 2) and (Match('^\\s*MOCK_(?:CONST_)?METHOD\\d+(?:_T)?\\((?:\\S+,)?\\s*$', clean_lines.elided[(linenum - 1)]) or Match('^\\s*MOCK_(?:CONST_)?METHOD\\d+(?:_T)?\\(\\s*$', clean_lines.elided[(linenum - 2)]) or Search('\\bstd::m?function\\s*\\<\\s*$', clean_lines.elided[(linenum - 1)]))))
|
Checks whether where function type arguments are expected.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
Returns:
True if the line at 'linenum' is inside something that expects arguments
of function types.
|
codesearchnet
|
def get_config(self, key, default=MISSING):
keyname = ('config:' + key)
try:
return self.kvstore.get(keyname)
except KeyError:
if (default is MISSING):
raise ArgumentError('No config value found for key', key=key)
return default
|
Get the value of a persistent config key from the registry
If no default is specified and the key is not found ArgumentError is raised.
Args:
key (string): The key name to fetch
default (string): an optional value to be returned if key cannot be found
Returns:
string: the key's value
|
codesearchnet
|
def _force_float(v):
try:
return float(v)
except Exception as exc:
return float('nan')
logger.warning('Failed to convert {} to float with {} error. Using 0 instead.'.format(v, exc))
|
Converts given argument to float. On fail logs warning and returns 0.0.
Args:
v (any): value to convert to float
Returns:
float: converted v or 0.0 if conversion failed.
|
juraj-google-style
|
def __init__(self, axis=-1, validate_args=False, name="cumsum"):
if not isinstance(axis, int) or axis >= 0:
raise ValueError("`axis` must be a negative integer.")
self._axis = axis
super(Cumsum, self).__init__(
is_constant_jacobian=True,
forward_min_event_ndims=-axis,
validate_args=validate_args,
name=name)
|
Instantiates the `Cumsum` bijector.
Args:
axis: Negative Python `int` indicating the axis along which to compute the
cumulative sum. Note that positive (and zero) values are not supported.
validate_args: Python `bool` indicating whether arguments should be
checked for correctness.
name: Python `str` name given to ops managed by this object.
Raises:
ValueError: If `axis` is not a negative `int`.
|
juraj-google-style
|
def indicator_associations_types(
self, indicator_type, api_entity=None, api_branch=None, params=None
):
if params is None:
params = {}
if not self.can_update():
self._tcex.handle_error(910, [self.type])
target = self._tcex.ti.indicator(indicator_type)
for at in self.tc_requests.indicator_associations_types(
self.api_type,
self.api_sub_type,
self.unique_id,
target,
api_entity=api_entity,
api_branch=api_branch,
owner=self.owner,
params=params,
):
yield at
|
Gets the indicator association from a Indicator/Group/Victim
Args:
indicator_type:
api_entity:
api_branch:
params:
Returns:
|
juraj-google-style
|
def execute_show(args, root_dir):
key = None
if args.get('key'):
key = args['key']
status = command_factory('status')({}, root_dir=root_dir)
if key not in status['data'] or status['data'][key]['status'] != 'running':
print('No running process with this key, use `log` to show finished processes.')
return
else:
status = command_factory('status')({}, root_dir=root_dir)
if isinstance(status['data'], str):
print(status['data'])
return
for k in sorted(status['data'].keys()):
if status['data'][k]['status'] == 'running':
key = k
break
if key is None:
print('No running process, use `log` to show finished processes.')
return
config_dir = os.path.join(root_dir, '.config/pueue')
stdoutFile = os.path.join(config_dir, 'pueue_process_{}.stdout'.format(key))
stderrFile = os.path.join(config_dir, 'pueue_process_{}.stderr'.format(key))
stdoutDescriptor = open(stdoutFile, 'r')
stderrDescriptor = open(stderrFile, 'r')
running = True
if args['watch']:
stdscr = curses.initscr()
curses.noecho()
curses.cbreak()
curses.curs_set(2)
stdscr.keypad(True)
stdscr.refresh()
try:
while running:
stdscr.clear()
stdoutDescriptor.seek(0)
message = stdoutDescriptor.read()
stdscr.addstr(0, 0, message)
stdscr.refresh()
time.sleep(2)
except Exception:
curses.nocbreak()
stdscr.keypad(False)
curses.echo()
curses.endwin()
else:
print('Stdout output:\n')
stdoutDescriptor.seek(0)
print(get_descriptor_output(stdoutDescriptor, key))
print('\n\nStderr output:\n')
stderrDescriptor.seek(0)
print(get_descriptor_output(stderrDescriptor, key))
|
Print stderr and stdout of the current running process.
Args:
args['watch'] (bool): If True, we open a curses session and tail
the output live in the console.
root_dir (string): The path to the root directory the daemon is running in.
|
juraj-google-style
|
def is_macos_gfortran(f90_compiler):
from numpy.distutils.fcompiler import gnu
if (sys.platform != MAC_OS):
return False
if (not isinstance(f90_compiler, gnu.Gnu95FCompiler)):
return False
return True
|
Checks if the current build is ``gfortran`` on macOS.
Args:
f90_compiler (numpy.distutils.fcompiler.FCompiler): A Fortran compiler
instance.
Returns:
bool: Only :data:`True` if
* Current OS is macOS (checked via ``sys.platform``).
* ``f90_compiler`` corresponds to ``gfortran``.
|
codesearchnet
|
def _read_single(parser, filepath):
from os import path
global packages
if path.isfile(filepath):
parser.readfp(open(filepath))
|
Reads a single config file into the parser, silently failing if the file
does not exist.
Args:
parser (ConfigParser): parser to read the file into.
filepath (str): full path to the config file.
|
codesearchnet
|
def import_string_code_as_module(code):
sha256 = hashlib.sha256(code.encode('UTF-8')).hexdigest()
module = imp.new_module(sha256)
try:
exec_(code, module.__dict__)
except Exception as e:
raise exceptions.UserError('User code exception', exception_message=str(e))
sys.modules[sha256] = module
return module
|
Used to run arbitrary passed code as a module
Args:
code (string): Python code to import as module
Returns:
module: Python module
|
codesearchnet
|
def cumulative_distribution(self, X):
self.check_fit()
return norm.cdf(X, loc=self.mean, scale=self.std)
|
Cumulative distribution function for gaussian distribution.
Arguments:
X: `np.ndarray` of shape (n, 1).
Returns:
np.ndarray: Cumulative density for X.
|
juraj-google-style
|
def get_blob(profile, sha):
resource = "/blobs/" + sha
data = api.get_request(profile, resource)
return prepare(data)
|
Fetch a blob.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
sha
The SHA of the blob to fetch.
Returns:
A dict with data about the blob.
|
juraj-google-style
|
def from_string(header_str):
lines = tuple(clean_lines(header_str.split("\n"), False))
comment1 = lines[0]
feffpmg = comment1.find("pymatgen")
if feffpmg:
comment2 = ' '.join(lines[1].split()[2:])
source = ' '.join(lines[2].split()[2:])
basis_vec = lines[6].split(":")[-1].split()
a = float(basis_vec[0])
b = float(basis_vec[1])
c = float(basis_vec[2])
lengths = [a, b, c]
basis_ang = lines[7].split(":")[-1].split()
alpha = float(basis_ang[0])
beta = float(basis_ang[1])
gamma = float(basis_ang[2])
angles = [alpha, beta, gamma]
lattice = Lattice.from_lengths_and_angles(lengths, angles)
natoms = int(lines[8].split(":")[-1].split()[0])
atomic_symbols = []
for i in range(9, 9 + natoms):
atomic_symbols.append(lines[i].split()[2])
coords = []
for i in range(natoms):
toks = lines[i + 9].split()
coords.append([float(s) for s in toks[3:]])
struct = Structure(lattice, atomic_symbols, coords, False,
False, False)
h = Header(struct, source, comment2)
return h
else:
return "Header not generated by pymatgen, cannot return header object"
|
Reads Header string and returns Header object if header was
generated by pymatgen.
Note: Checks to see if generated by pymatgen, if not it is impossible
to generate structure object so it is not possible to generate
header object and routine ends
Args:
header_str: pymatgen generated feff.inp header
Returns:
Structure object.
|
juraj-google-style
|
def set_doc_ids(self, doc_ids):
if isinstance(doc_ids, list):
self.set_documents(dict.fromkeys(doc_ids))
else:
self.set_documents({doc_ids: None})
|
Build xml documents from a list of document ids.
Args:
doc_ids -- A document id or a lost of those.
|
juraj-google-style
|
def from_las3(cls, string, lexicon=None, source='LAS', dlm=',', abbreviations=False):
f = (re.DOTALL | re.IGNORECASE)
regex = '\\~\\w+?_Data.+?\\n(.+?)(?:\\n\\n+|\\n*\\~|\\n*$)'
pattern = re.compile(regex, flags=f)
text = pattern.search(string).group(1)
s = re.search('\\.(.+?)\\: ?.+?source', string)
if s:
source = s.group(1).strip()
return cls.from_descriptions(text, lexicon, source=source, dlm=dlm, abbreviations=abbreviations)
|
Turn LAS3 'lithology' section into a Striplog.
Args:
string (str): A section from an LAS3 file.
lexicon (Lexicon): The language for conversion to components.
source (str): A source for the data.
dlm (str): The delimiter.
abbreviations (bool): Whether to expand abbreviations.
Returns:
Striplog: The ``striplog`` object.
Note:
Handles multiple 'Data' sections. It would be smarter for it
to handle one at a time, and to deal with parsing the multiple
sections in the Well object.
Does not read an actual LAS file. Use the Well object for that.
|
codesearchnet
|
def _get_napp_key(self, key, user=None, napp=None):
if user is None:
user = self.user
if napp is None:
napp = self.napp
kytos_json = self._installed / user / napp / 'kytos.json'
try:
with kytos_json.open() as file_descriptor:
meta = json.load(file_descriptor)
return meta[key]
except (FileNotFoundError, json.JSONDecodeError, KeyError):
return ''
|
Return a value from kytos.json.
Args:
user (string): A Username.
napp (string): A NApp name
key (string): Key used to get the value within kytos.json.
Returns:
meta (object): Value stored in kytos.json.
|
juraj-google-style
|
def _CheckPenalties(self, tree, list_of_expected):
def FlattenRec(tree):
if pytree_utils.NodeName(tree) in pytree_utils.NONSEMANTIC_TOKENS:
return []
if isinstance(tree, pytree.Leaf):
return [(tree.value, pytree_utils.GetNodeAnnotation(tree, pytree_utils.Annotation.SPLIT_PENALTY))]
nodes = []
for node in tree.children:
nodes += FlattenRec(node)
return nodes
self.assertEqual(list_of_expected, FlattenRec(tree))
|
Check that the tokens in the tree have the correct penalties.
Args:
tree: the pytree.
list_of_expected: list of (name, penalty) pairs. Non-semantic tokens are
filtered out from the expected values.
|
github-repos
|
def from_iterable(cls, frames, sort=False):
return FrameSet(sorted(frames) if sort else frames)
|
Build a :class:`FrameSet` from an iterable of frames.
Args:
frames (collections.Iterable): an iterable object containing frames as integers
sort (bool): True to sort frames before creation, default is False
Returns:
:class:`FrameSet`:
|
juraj-google-style
|
def get_dfa_conjecture(self):
dfa = DFA(self.alphabet)
for s in self.observation_table.sm_vector:
for i in self.alphabet:
dst = self.observation_table.equiv_classes[s + i]
if dst == None:
logging.debug('Conjecture attempt on non closed table.')
return None
obsrv = self.observation_table[s, i]
src_id = self.observation_table.sm_vector.index(s)
dst_id = self.observation_table.sm_vector.index(dst)
dfa.add_arc(src_id, dst_id, i, obsrv)
i = 0
for s in self.observation_table.sm_vector:
dfa[i].final = self.observation_table[s, self.epsilon]
i += 1
return dfa
|
Utilize the observation table to construct a Mealy Machine.
The library used for representing the Mealy Machine is the python
bindings of the openFST library (pyFST).
Args:
None
Returns:
MealyMachine: A mealy machine build based on a closed and consistent
observation table.
|
juraj-google-style
|
def restore(self, x):
with tf.name_scope("pad_reduce/restore"):
x = tf.scatter_nd(
indices=self.nonpad_ids,
updates=x,
shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0),
)
return x
|
Add padding back to the given tensor.
Args:
x (tf.Tensor): of shape [dim_compressed,...]
Returns:
a tensor of shape [dim_origin,...] with dim_compressed >= dim_origin. The
dim is restored from the original reference tensor
|
juraj-google-style
|
def _publish_scan_response(self, client):
devices = self._manager.scanned_devices
converted_devs = []
for (uuid, info) in devices.items():
slug = self._build_device_slug(uuid)
message = {}
message['uuid'] = uuid
if (uuid in self._connections):
message['user_connected'] = True
elif ('user_connected' in info):
message['user_connected'] = info['user_connected']
else:
message['user_connected'] = False
message['connection_string'] = slug
message['signal_strength'] = info['signal_strength']
converted_devs.append({x: y for (x, y) in message.items()})
message['type'] = 'notification'
message['operation'] = 'advertisement'
self.client.publish(self.topics.gateway_topic(slug, 'data/advertisement'), message)
probe_message = {}
probe_message['type'] = 'response'
probe_message['client'] = client
probe_message['success'] = True
probe_message['devices'] = converted_devs
self.client.publish(self.topics.status, probe_message)
|
Publish a scan response message
The message contains all of the devices that are currently known
to this agent. Connection strings for direct connections are
translated to what is appropriate for this agent.
Args:
client (string): A unique id for the client that made this request
|
codesearchnet
|
def get_instances_with_configs(configs):
results = []
for c in configs:
try:
serial = c.pop('serial')
except KeyError:
raise Error(('Required value "serial" is missing in AndroidDevice config %s.' % c))
is_required = c.get(KEY_DEVICE_REQUIRED, True)
try:
ad = AndroidDevice(serial)
ad.load_config(c)
except Exception:
if is_required:
raise
ad.log.exception('Skipping this optional device due to error.')
continue
results.append(ad)
return results
|
Create AndroidDevice instances from a list of dict configs.
Each config should have the required key-value pair 'serial'.
Args:
configs: A list of dicts each representing the configuration of one
android device.
Returns:
A list of AndroidDevice objects.
|
codesearchnet
|
def set(self, name, permission):
assert isinstance(permission, BasePermission), 'Only permission instances can be added to the set'
self._permissions[name] = permission
|
Adds permission with the given name to the set. Permission with the same name will be overridden.
Args:
name: name of the permission
permission: permission instance
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.