code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def flatten(sequence): flat_sequence = nest.flatten(sequence, expand_composites=True) return [item.flow if isinstance(item, tensor_array_ops.TensorArray) else item for item in flat_sequence]
Like nest.flatten w/ expand_composites, but returns flow for TensorArrays. Args: sequence: A nested structure of Tensors, CompositeTensors, and TensorArrays. Returns: A list of tensors.
github-repos
def AddWatchOnly(self, script_hash): if script_hash in self._contracts: logger.error("Address already in contracts") return self._watch_only.append(script_hash)
Add a watch only address to the wallet. Args: script_hash (UInt160): a bytearray (len 20) representing the public key. Note: Prints a warning to the console if the address already exists in the wallet.
juraj-google-style
def check_annotation_type_mismatch(self, node, name, typ, value, stack, allow_none, details=None): if not typ or not value: return if value.data == [self.convert.ellipsis] or (allow_none and value.data == [self.convert.none]): return contained_type = abstract_utils.match_type_container(typ, ('typing.ClassVar', 'dataclasses.InitVar')) if contained_type: typ = contained_type bad = self.matcher(node).compute_one_match(value, typ).bad_matches for match in bad: self.errorlog.annotation_type_mismatch(stack, match.expected.typ, match.actual_binding, name, match.error_details, details)
Checks for a mismatch between a variable's annotation and value. Args: node: node name: variable name typ: variable annotation value: variable value stack: a frame stack for error reporting allow_none: whether a value of None is allowed for any type details: any additional details to add to the error message
github-repos
def _case_create_default_action(predicates, actions): k = len(predicates) - 1 predicate, action = (predicates[k], actions[k]) other_predicates, other_actions = (predicates[:k], actions[:k]) def default_action(): others_msg = 'Implementation error: selected default action default_msg = ('Input error: None of conditions evaluated as True:', array_ops_stack.stack(predicates, name='preds_c')) with ops.control_dependencies([_assert_at_most_n_true(other_predicates, n=0, msg=others_msg), control_flow_assert.Assert(predicate, data=default_msg)]): return action() return (default_action, other_predicates, other_actions)
Creates default action for a list of actions and their predicates. It uses the input actions to select an arbitrary as default and makes sure that corresponding predicates have valid values. Args: predicates: a list of bool scalar tensors actions: a list of callable objects which return tensors. Returns: a callable
github-repos
def RemoveConnectedPeer(self, peer): if (peer in self.Peers): self.Peers.remove(peer)
Remove a connected peer from the known peers list. Args: peer (NeoNode): instance.
codesearchnet
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor: for processor in self: function_args = inspect.signature(processor.__call__).parameters if len(function_args) > 2: if not all((arg in kwargs for arg in list(function_args.keys())[2:])): raise ValueError(f'Make sure that all the required parameters: {list(function_args.keys())} for {processor.__class__} are passed to the logits processor.') scores = processor(input_ids, scores, **kwargs) else: scores = processor(input_ids, scores) return scores
Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional kwargs that are specific to a logits processor. Return: `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
github-repos
def parquet_to_df(filename, use_threads=1): try: return pq.read_table(filename, use_threads=use_threads).to_pandas() except pa.lib.ArrowIOError: print('Could not read parquet file {:s}'.format(filename)) return None
parquet_to_df: Reads a Parquet file into a Pandas DataFrame Args: filename (string): The full path to the filename for the Parquet file ntreads (int): The number of threads to use (defaults to 1)
juraj-google-style
def resumeProducing(self): self._running = True for consumer in self._consumers.values(): (queue_object, _) = (yield consumer.channel.basic_consume(queue=consumer.queue, consumer_tag=consumer.tag)) deferred = self._read(queue_object, consumer) deferred.addErrback((lambda f: _legacy_twisted_log.msg), '_read failed on consumer {c}', c=consumer, logLevel=logging.ERROR) _legacy_twisted_log.msg('AMQP connection successfully established')
Starts or resumes the retrieval of messages from the server queue. This method starts receiving messages from the server, they will be passed to the consumer callback. .. note:: This is called automatically when :meth:`.consume` is called, so users should not need to call this unless :meth:`.pauseProducing` has been called. Returns: defer.Deferred: fired when the production is ready to start
codesearchnet
def create_pipeline_box(self, pipeline_key, name, **kwargs): if not (pipeline_key and name): return requests.codes.bad_request, None uri = '/'.join([ self.api_uri, self.pipelines_suffix, pipeline_key, self.boxes_suffix ]) kwargs.update({'name':name}) new_box = StreakBox(**kwargs) code, data = self._req('put', uri, new_box.to_dict(rw = True)) return code, data
Creates a box int the pipeline specified with the provided attributes. Args: name required name string kwargs {...} see StreakBox object for details return (status code, box dict)
juraj-google-style
def display_arr(screen, arr, video_size, transpose): if transpose: pyg_img = pygame.surfarray.make_surface(arr.swapaxes(0, 1)) else: pyg_img = arr pyg_img = pygame.transform.scale(pyg_img, video_size) screen.blit(pyg_img, (0, 0))
Display an image to the pygame screen. Args: screen (pygame.Surface): the pygame surface to write frames to arr (np.ndarray): numpy array representing a single frame of gameplay video_size (tuple): the size to render the frame as transpose (bool): whether to transpose the frame before displaying Returns: None
codesearchnet
async def export_image(self, name: str): response = await self.docker._query( "images/{name}/get".format(name=name), "GET" ) return response.content
Get a tarball of an image by name or id. Args: name: name/id of the image to be exported Returns: Streamreader of tarball image
juraj-google-style
def execute_no_wait(self, cmd, walltime=2, envs={}): (stdin, stdout, stderr) = self.ssh_client.exec_command(self.prepend_envs(cmd, envs), bufsize=(- 1), timeout=walltime) return (None, stdout, stderr)
Execute asynchronousely without waiting for exitcode Args: - cmd (string): Commandline string to be executed on the remote side - walltime (int): timeout to exec_command KWargs: - envs (dict): A dictionary of env variables Returns: - None, stdout (readable stream), stderr (readable stream) Raises: - ChannelExecFailed (reason)
codesearchnet
def run(self, *args, backend=None, **kwargs): if (backend is None): if (self._default_backend is None): backend = self.__get_backend(DEFAULT_BACKEND_NAME) else: backend = self.__get_backend(self._default_backend) elif isinstance(backend, str): backend = self.__get_backend(backend) return backend.run(self.ops, self.n_qubits, *args, **kwargs)
Run the circuit. `Circuit` have several backends. When `backend` parameter is specified, use specified backend, and otherwise, default backend is used. Other parameters are passed to the backend. The meaning of parameters are depends on the backend specifications. However, following parameters are commonly used. Commonly used args (Depends on backend): shots (int, optional): The number of sampling the circuit. returns (str, optional): The category of returns value. e.g. "statevector" returns the state vector after run the circuit. "shots" returns the counter of measured value. token, url (str, optional): The token and URL for cloud resource. Returns: Depends on backend. Raises: Depends on backend.
codesearchnet
def split(self, grouper): data = self.to_df(condition=True, entities=True) data = data.drop('condition', axis=1) subsets = [] for i, (name, g) in enumerate(data.groupby(grouper)): name = '%s.%s' % (self.name, name) col = self.__class__(name=name, data=g, source=self.source, run_info=getattr(self, 'run_info', None)) subsets.append(col) return subsets
Split the current SparseRunVariable into multiple columns. Args: grouper (iterable): list to groupby, where each unique value will be taken as the name of the resulting column. Returns: A list of SparseRunVariables, one per unique value in the grouper.
juraj-google-style
def shapes_match(a, b): if (isinstance(a, (tuple, list)) and isinstance(b, (tuple, list))): if (len(a) != len(b)): return False return all([shapes_match(ia, ib) for (ia, ib) in zip(a, b)]) elif (isinstance(a, dict) and isinstance(b, dict)): if (len(a) != len(b)): return False match = True for ((ak, av), (bk, bv)) in zip(a.items(), b.items()): match = (match and all([((ak == bk) and shapes_match(av, bv))])) return match else: shape_checker = shape_checkers[(type(a), type(b))] return shape_checker(a, b)
Recursively check if shapes of object `a` and `b` match. Will walk lists, tuples and dicts. Args: a: object of type (numpy.ndarray,tf.Tensor,list,tuple,dict) to check for matching shapes against `b`. b: object to check for matching shape against `a`. Returns: A boolean indicating whether the shapes of `a` and `b` match.
codesearchnet
def get_connected_client(self): if (self.__sem is not None): (yield self.__sem.acquire()) client = None (newly_created, client) = self._get_client_from_pool_or_make_it() if newly_created: res = (yield client.connect()) if (not res): LOG.warning("can't connect to %s", client.title) raise tornado.gen.Return(ClientError(("can't connect to %s" % client.title))) raise tornado.gen.Return(client)
Gets a connected Client object. If max_size is reached, this method will block until a new client object is available. Returns: A Future object with connected Client instance as a result (or ClientError if there was a connection problem)
codesearchnet
def get_bucket(self, key, rate=None, capacity=None, **kwargs): return buckets.Bucket(key=key, rate=(rate or self.rate), capacity=(capacity or self.capacity), storate=self.storate, **kwargs)
Fetch a Bucket for the given key. rate and capacity might be overridden from the Throttler defaults. Args: rate (float): Units regenerated by second, or None to keep Throttler defaults capacity (int): Maximum units available, or None to keep Throttler defaults
codesearchnet
def _recurse(self, matrix, m_list, indices, output_m_list=[]): if self._finished: return while (m_list[(- 1)][1] == 0): m_list = copy(m_list) m_list.pop() if (not m_list): matrix_sum = np.sum(matrix) if (matrix_sum < self._current_minimum): self.add_m_list(matrix_sum, output_m_list) return if (m_list[(- 1)][1] > len(indices.intersection(m_list[(- 1)][2]))): return if ((len(m_list) == 1) or (m_list[(- 1)][1] > 1)): if (self.best_case(matrix, m_list, indices) > self._current_minimum): return index = self.get_next_index(matrix, m_list[(- 1)], indices) m_list[(- 1)][2].remove(index) matrix2 = np.copy(matrix) m_list2 = deepcopy(m_list) output_m_list2 = copy(output_m_list) matrix2[(index, :)] *= m_list[(- 1)][0] matrix2[(:, index)] *= m_list[(- 1)][0] output_m_list2.append([index, m_list[(- 1)][3]]) indices2 = copy(indices) indices2.remove(index) m_list2[(- 1)][1] -= 1 self._recurse(matrix2, m_list2, indices2, output_m_list2) self._recurse(matrix, m_list, indices, output_m_list)
This method recursively finds the minimal permutations using a binary tree search strategy. Args: matrix: The current matrix (with some permutations already performed). m_list: The list of permutations still to be performed indices: Set of indices which haven't had a permutation performed on them.
codesearchnet
def __init__(self, d: Dict, nlp) -> None: self.dependencies = d["dependencies"] if "dependencies" in d else [] self.description = d["description"] if "description" in d else "" self.active = tf_transfer(d["is_active"]) self.identifier = d["identifier"] self.output_format = d["output_format"] self.polarity = tf_transfer(d["polarity"]) self.patterns = [] for pattern_idx, a_pattern in enumerate(d["pattern"]): this_pattern = Pattern(a_pattern, nlp) self.patterns.append(this_pattern)
Storing information for each Rule, create list of Pattern for a rule Args: d: Dict nlp Returns:
juraj-google-style
def select_rows(self, rows): self.values = self.values.iloc[rows] self.index = self.index.iloc[rows, :] for prop in self._property_columns: vals = getattr(self, prop)[rows] setattr(self, prop, vals)
Truncate internal arrays to keep only the specified rows. Args: rows (array): An integer or boolean array identifying the indices of rows to keep.
juraj-google-style
def serialize(self, datas): self._metas = OrderedDict({ 'references': self.get_meta_references(datas), }) return self.get_enabled_references(datas, self._metas['references'])
Serialize datas to manifest structure with metas and references. Only references are returned, metas are assigned to attribute ``ManifestSerializer._metas``. Arguments: datas (dict): Data where to search for reference declarations. This is commonly the fully parsed manifest. Returns: collections.OrderedDict: Serialized enabled references datas.
juraj-google-style
def __mul__(self, right: torch.Tensor) -> Rigid: if not isinstance(right, torch.Tensor): raise TypeError('The other multiplicand must be a Tensor') new_rots = self._rots * right new_trans = self._trans * right[..., None] return Rigid(new_rots, new_trans)
Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid. Args: right: The tensor multiplicand Returns: The product
github-repos
def _maybe_cast_inputs(self, inputs, input_list=None): if not input_list: input_list = nest.flatten(inputs) compute_dtype_object = self._compute_dtype_object should_autocast = self._autocast and compute_dtype_object and compute_dtype_object.is_floating if should_autocast and any(map(self._should_cast_single_input, input_list)): return nest.map_structure(self._cast_single_input, inputs) else: return inputs
Maybe casts the inputs to the compute dtype. If self._compute_dtype is floating-point, and self_autocast is True, floating-point inputs are casted to self._compute_dtype. Args: inputs: Input tensor, or structure of input tensors. input_list: Flat list of input tensors. Returns: `inputs`, but tensors may have been casted to self._compute_dtype
github-repos
def _shannon_radii_from_cn(species_list, cn_roman, radius_to_compare=0): shannon_radii = [] for s in species_list: try: radius = s.get_shannon_radius(cn_roman) shannon_radii.append({'species': s, 'radius': radius, 'radii_diff': (radius - radius_to_compare)}) except KeyError: pass return shannon_radii
Utility func to get Shannon radii for a particular coordination number. As the Shannon radii depends on charge state and coordination number, species without an entry for a particular coordination number will be skipped. Args: species_list (list): A list of Species to get the Shannon radii for. cn_roman (str): The coordination number as a roman numeral. See Specie.get_shannon_radius for more details. radius_to_compare (float, optional): If set, the data will be returned with a "radii_diff" key, containing the difference between the shannon radii and this radius. Returns: (list of dict): The Shannon radii for all Species in species. Formatted as a list of dictionaries, with the keys: - "species": The species with charge state. - "radius": The Shannon radius for the species. - "radius_diff": The difference between the Shannon radius and the radius_to_compare optional argument.
codesearchnet
def _merge_with(self, other: 'DynamicRaggedShape') -> 'DynamicRaggedShape': max_num_row_partitions = max(self.num_row_partitions, other.num_row_partitions) a = self._with_num_row_partitions(max_num_row_partitions) b = other._with_num_row_partitions(max_num_row_partitions) new_row_partitions = [rp_a._merge_precomputed_encodings(rp_b) for rp_a, rp_b in zip(a._row_partitions, b._row_partitions)] new_dtype = b.dtype if a.dtype == dtypes.int32 else dtypes.int64 new_static_inner_shape = a._static_inner_shape.merge_with(b._static_inner_shape) new_inner_shape = a._inner_shape return DynamicRaggedShape(new_row_partitions, new_inner_shape, new_dtype, True, new_static_inner_shape)
Merge two shapes that are equal modulo num_row_partitions. The resulting num_row_partitions is the maximum of the two num_row_partitions. Args: other: a DynamicRaggedShape representing the same shape with a possibly different number of row partitions. Returns: A DynamicRaggedShape with the same shape and the maximum of the num_row_partitions of the two shapes.
github-repos
def get_interpolated_value(self, x): if (len(self.ydim) == 1): return get_linear_interpolated_value(self.x, self.y, x) else: return [get_linear_interpolated_value(self.x, self.y[(:, k)], x) for k in range(self.ydim[1])]
Returns an interpolated y value for a particular x value. Args: x: x value to return the y value for Returns: Value of y at x
codesearchnet
def _MakeTimestamp(self, start=None, end=None): mysql_unsigned_bigint_max = 18446744073709551615 ts_start = int(start or 0) if end is None: ts_end = mysql_unsigned_bigint_max else: ts_end = int(end) if ts_start == 0 and ts_end == mysql_unsigned_bigint_max: return None else: return (ts_start, ts_end)
Create a timestamp using a start and end time. Args: start: Start timestamp. end: End timestamp. Returns: A tuple (start, end) of converted timestamps or None for all time.
juraj-google-style
def run_bidirectional_blast(reference, other_genome, dbtype, outdir=''): if (dbtype == 'nucl'): command = 'blastn' elif (dbtype == 'prot'): command = 'blastp' else: raise ValueError('dbtype must be "nucl" or "prot"') (r_folder, r_name, r_ext) = utils.split_folder_and_path(reference) (g_folder, g_name, g_ext) = utils.split_folder_and_path(other_genome) run_makeblastdb(infile=reference, dbtype=dbtype, outdir=r_folder) run_makeblastdb(infile=other_genome, dbtype=dbtype, outdir=g_folder) r_vs_g = (((r_name + '_vs_') + g_name) + '_blast.out') r_vs_g = op.join(outdir, r_vs_g) if (op.exists(r_vs_g) and (os.stat(r_vs_g).st_size != 0)): log.debug('{} vs {} BLAST already run'.format(r_name, g_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, reference, op.join(g_folder, g_name), r_vs_g) log.debug('Running: {}'.format(cmd)) retval = subprocess.call(cmd, shell=True) if (retval == 0): log.debug('BLASTed {} vs {}'.format(g_name, r_name)) else: log.error('Error running {}, exit code {}'.format(command, retval)) g_vs_r = (((g_name + '_vs_') + r_name) + '_blast.out') g_vs_r = op.join(outdir, g_vs_r) if (op.exists(g_vs_r) and (os.stat(g_vs_r).st_size != 0)): log.debug('{} vs {} BLAST already run'.format(g_name, r_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, other_genome, op.join(r_folder, r_name), g_vs_r) log.debug('Running: {}'.format(cmd)) retval = subprocess.call(cmd, shell=True) if (retval == 0): log.debug('BLASTed {} vs {}'.format(g_name, r_name)) else: log.error('Error running {}, exit code {}'.format(command, retval)) return (r_vs_g, g_vs_r)
BLAST a genome against another, and vice versa. This function requires BLAST to be installed, do so by running: sudo apt install ncbi-blast+ Args: reference (str): path to "reference" genome, aka your "base strain" other_genome (str): path to other genome which will be BLASTed to the reference dbtype (str): "nucl" or "prot" - what format your genome files are in outdir (str): path to folder where BLAST outputs should be placed Returns: Paths to BLAST output files. (reference_vs_othergenome.out, othergenome_vs_reference.out)
codesearchnet
def gill_king(mat, eps=1e-16): if (not scipy.sparse.issparse(mat)): mat = numpy.asfarray(mat) assert numpy.allclose(mat, mat.T) size = mat.shape[0] mat_diag = mat.diagonal() gamma = abs(mat_diag).max() off_diag = abs((mat - numpy.diag(mat_diag))).max() delta = (eps * max((gamma + off_diag), 1)) beta = numpy.sqrt(max(gamma, (off_diag / size), eps)) lowtri = _gill_king(mat, beta, delta) return lowtri
Gill-King algorithm for modified cholesky decomposition. Args: mat (numpy.ndarray): Must be a non-singular and symmetric matrix. If sparse, the result will also be sparse. eps (float): Error tolerance used in algorithm. Returns: (numpy.ndarray): Lower triangular Cholesky factor. Examples: >>> mat = [[4, 2, 1], [2, 6, 3], [1, 3, -.004]] >>> lowtri = gill_king(mat) >>> print(numpy.around(lowtri, 4)) [[2. 0. 0. ] [1. 2.2361 0. ] [0.5 1.118 1.2264]] >>> print(numpy.around(numpy.dot(lowtri, lowtri.T), 4)) [[4. 2. 1. ] [2. 6. 3. ] [1. 3. 3.004]]
codesearchnet
def _CreateOutputFileHandles(self, output_type): gzip_filehandle_parent = tempfile.NamedTemporaryFile(suffix=output_type) gzip_filehandle = gzip.GzipFile(gzip_filehandle_parent.name, "wb", self.GZIP_COMPRESSION_LEVEL, gzip_filehandle_parent) self.temp_output_trackers[output_type] = TempOutputTracker( output_type=output_type, gzip_filehandle=gzip_filehandle, gzip_filehandle_parent=gzip_filehandle_parent) return self.temp_output_trackers[output_type]
Creates a new gzipped output tempfile for the output type. We write to JSON data to gzip_filehandle to get compressed data. We hold a reference to the original filehandle (gzip_filehandle_parent) so we can pass the gzip data to bigquery. Args: output_type: string of export type to be used in filename. e.g. ExportedFile Returns: A TempOutputTracker object
juraj-google-style
async def info(self): stat = self._items.stat() return {'indx': self._items.index(), 'metrics': self._metrics.index(), 'stat': stat}
Returns information about the CryoTank instance. Returns: dict: A dict containing items and metrics indexes.
codesearchnet
def compute(self, x_arr, y_arr): return np.linalg.norm(x_arr - y_arr, axis=-1)
Compute distance. Args: x_arr: `np.ndarray` of vectors. y_arr: `np.ndarray` of vectors. Retruns: `np.ndarray` of distances.
juraj-google-style
def _unary_op(cls, x: 'TensorFluent', op: Callable[([tf.Tensor], tf.Tensor)], dtype: tf.DType) -> 'TensorFluent': x = x.cast(dtype) t = op(x.tensor) scope = x.scope.as_list() batch = x.batch return TensorFluent(t, scope, batch=batch)
Returns a TensorFluent for the unary `op` applied to fluent `x`. Args: x: The input fluent. op: The unary operation. dtype: The output's data type. Returns: A TensorFluent wrapping the unary operator's output.
codesearchnet
def DownloadPqlResultToList(self, pql_query, values=None): results = [] self._PageThroughPqlSet(pql_query, results.append, values) return results
Downloads the results of a PQL query to a list. Args: pql_query: str a statement filter to apply (the query should not include the limit or the offset) [optional] values: A dict of python objects or a list of raw SOAP values to bind to the pql_query. Returns: a list of lists with the first being the header row and each subsequent list being a row of results.
codesearchnet
def is_unknown(input, model_file=None, model_proto=None, name=None): return _gen_sentencepiece_processor_op.sentencepiece_get_piece_type( input, model_file=model_file, model_proto=model_proto, name=name, piece_type=0)
Returns true if input id is unknown piece. Args: input: An arbitrary tensor of int32. model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. Either `model_file` or `model_proto` must be set. name: The name argument that is passed to the op function. Returns: A tensor of bool with the same shape as input.
juraj-google-style
def get_labels_encoder(self, data_dir): label_filepath = os.path.join(data_dir, self.vocab_filename) return text_encoder.TokenTextEncoder(label_filepath)
Builds encoder for the given class labels. Args: data_dir: data directory Returns: An encoder for class labels.
juraj-google-style
def define_simulation_graph(batch_env, algo_cls, config): step = tf.Variable(0, False, dtype=tf.int32, name='global_step') is_training = tf.placeholder(tf.bool, name='is_training') should_log = tf.placeholder(tf.bool, name='should_log') do_report = tf.placeholder(tf.bool, name='do_report') force_reset = tf.placeholder(tf.bool, name='force_reset') algo = algo_cls(batch_env, step, is_training, should_log, config) (done, score, summary) = tools.simulate(batch_env, algo, should_log, force_reset) message = 'Graph contains {} trainable variables.' tf.logging.info(message.format(tools.count_weights())) return tools.AttrDict(locals())
Define the algorithm and environment interaction. Args: batch_env: In-graph environments object. algo_cls: Constructor of a batch algorithm. config: Configuration object for the algorithm. Returns: Object providing graph elements via attributes.
codesearchnet
def _build(self, inputs): if (self._axis is None): axis = list(range(1, inputs.shape.ndims)) else: axis = self._axis original_dtype = inputs.dtype if (original_dtype in [tf.float16, tf.bfloat16]): inputs = tf.cast(inputs, tf.float32) if (inputs.get_shape().ndims < 2): raise base.NotSupportedError('Layer normalization expects inputs of at least rank 2. Got inputs of rank {}.'.format(inputs.get_shape().ndims)) params_shape = inputs.get_shape()[(- 1):] if self._scale: if (self.GAMMA not in self._initializers): self._initializers[self.GAMMA] = create_gamma_initializer() self._gamma = tf.get_variable(self.GAMMA, shape=params_shape, dtype=inputs.dtype, initializer=self._initializers[self.GAMMA], partitioner=self._partitioners.get(self.GAMMA), regularizer=self._regularizers.get(self.GAMMA)) else: self._gamma = None if self._offset: if (self.BETA not in self._initializers): self._initializers[self.BETA] = create_beta_initializer() self._beta = tf.get_variable(self.BETA, shape=params_shape, dtype=inputs.dtype, initializer=self._initializers[self.BETA], partitioner=self._partitioners.get(self.BETA), regularizer=self._regularizers.get(self.BETA)) else: self._beta = None (mean, var) = tf.nn.moments(inputs, axis, keep_dims=True) normalized = tf.nn.batch_normalization(inputs, mean, var, self._beta, self._gamma, self._eps) if (original_dtype in [tf.float16, tf.bfloat16]): normalized = tf.cast(normalized, dtype=original_dtype) return normalized
Connects the LayerNorm module into the graph. Args: inputs: a Tensor of dimensionality >= 2. Returns: normalized: layer normalized outputs with same shape as inputs. Raises: base.NotSupportedError: If `inputs` has less than 2 dimensions.
codesearchnet
def __init__(self, augmented_graph_view: _AugmentedGraphView, options: save_options.SaveOptions): self.augmented_graph_view = augmented_graph_view self.options = options self._trackable_objects, self.node_paths, self.node_ids, self._slot_variables, self.object_names = checkpoint_util.objects_ids_and_slot_variables_and_paths(self.augmented_graph_view) untraced_functions = self.augmented_graph_view.untraced_functions if untraced_functions: logging.info('Found untraced functions such as %s while saving (showing %d of %d). These functions will not be directly callable after loading.', ', '.join(untraced_functions[:_NUM_DISPLAY_UNTRACED_FUNCTIONS]), min(_NUM_DISPLAY_UNTRACED_FUNCTIONS, len(untraced_functions)), len(untraced_functions)) self._initialize_save_and_restore_functions() self._initialize_nodes_and_concrete_functions() self.captured_tensor_node_ids = object_identity.ObjectIdentityDictionary()
Initializes a SaveableView. Args: augmented_graph_view: A GraphView object. options: A SaveOptions instance.
github-repos
def _get_trainable_state(self): trainable_state = weakref.WeakKeyDictionary() for layer in self._flatten_layers(): trainable_state[layer] = layer.trainable return trainable_state
Get the `trainable` state of each sublayer. Returns: A dict mapping all sublayers to their `trainable` value.
github-repos
def n_choose_k(n, k): if n == 0: return 0 return reduce(lambda x, y: x * y[0] / y[1], zip(range(n - k + 1, n + 1), range(1, k + 1)), 1)
Return the number of combinations for n choose k. Args: n (int): the total number of options . k (int): The number of elements. Returns: int: returns the binomial coefficient
juraj-google-style
def check_secret(self, secret): try: return hmac.compare_digest(secret, self.secret) except AttributeError: return secret == self.secret
Checks if the secret string used in the authentication attempt matches the "known" secret string. Some mechanisms will override this method to control how this comparison is made. Args: secret: The secret string to compare against what was used in the authentication attempt. Returns: True if the given secret matches the authentication attempt.
juraj-google-style
def _compute_sum_image(features, max_area_width, max_area_height=1, height=1, name=None): with tf.name_scope(name, default_name="compute_sum_image"): feature_shape = common_layers.shape_list(features) batch_size = feature_shape[0] length = feature_shape[-2] depth = feature_shape[-1] width = length features_2d = tf.reshape(features, [batch_size, height, width, depth]) width_cum = tf.cumsum(features_2d, axis=-2, name="compute_integral_h") integral_image = tf.cumsum(width_cum, axis=-3, name="compute_integral_v") padded_image = tf.pad( integral_image, [[0, 0], [1, 0], [1, 0], [0, 0]], constant_values=0) height_list = [] width_list = [] dst_images = [] src_images_diag = [] src_images_h = [] src_images_v = [] size_tensor = tf.ones_like(padded_image[:, :, :, 0], dtype=tf.int32) for area_height in range(max_area_height): for area_width in range(max_area_width): dst_images.append( tf.reshape( padded_image[:, area_height + 1:, area_width + 1:, :], [batch_size, -1, depth])) src_images_diag.append( tf.reshape( padded_image[:, :-area_height - 1, :-area_width - 1, :], [batch_size, -1, depth])) src_images_h.append( tf.reshape( padded_image[:, area_height + 1:, :-area_width - 1, :], [batch_size, -1, depth])) src_images_v.append( tf.reshape( padded_image[:, :-area_height - 1, area_width + 1:, :], [batch_size, -1, depth])) height_list.append( tf.reshape( size_tensor[:, area_height + 1:, area_width + 1:] *\ (area_height + 1), [batch_size, -1])) width_list.append( tf.reshape( size_tensor[:, area_height + 1:, area_width + 1:] *\ (area_width + 1), [batch_size, -1])) sum_image = tf.subtract( tf.concat(dst_images, axis=1) + tf.concat(src_images_diag, axis=1), tf.concat(src_images_v, axis=1) + tf.concat(src_images_h, axis=1)) area_heights = tf.expand_dims(tf.concat(height_list, axis=1), 2) area_widths = tf.expand_dims(tf.concat(width_list, axis=1), 2) return sum_image, area_heights, area_widths
Computes area sums for features. Args: features: a Tensor in a shape of [batch_size, height * width, depth]. max_area_width: the max width allowed for an area. max_area_height: the max height allowed for an area. height: the height of the image. name: the namescope. Returns: sum_image: A Tensor of shape [batch_size, num_areas, depth] area_heights: A Tensor of shape [batch_size, num_areas, 1] area_widths: A Tensor of shape [batch_size, num_areas, 1]
juraj-google-style
def labels_to_dataset(labels, label_mode, num_classes): label_ds = tf.data.Dataset.from_tensor_slices(labels) if label_mode == 'binary': label_ds = label_ds.map(lambda x: tf.expand_dims(tf.cast(x, 'float32'), axis=-1), num_parallel_calls=tf.data.AUTOTUNE) elif label_mode == 'categorical': label_ds = label_ds.map(lambda x: tf.one_hot(x, num_classes), num_parallel_calls=tf.data.AUTOTUNE) return label_ds
Create a `tf.data.Dataset` from the list/tuple of labels. Args: labels: list/tuple of labels to be converted into a `tf.data.Dataset`. label_mode: String describing the encoding of `labels`. Options are: - `"binary"` indicates that the labels (there can be only 2) are encoded as `float32` scalars with values 0 or 1 (e.g. for `binary_crossentropy`). - `"categorical"` means that the labels are mapped into a categorical vector. (e.g. for `categorical_crossentropy` loss). num_classes: number of classes of labels. Returns: A `tf.data.Dataset` instance.
github-repos
def _value_to_pb(value, proto_type): data_type_pb = getattr(google_dot_protobuf_dot_wrappers__pb2, proto_type)() ParseDict(value, data_type_pb) return data_type_pb
Convert a value to protobuf. e.g. BoolValue, Int32Value. Args: value (dict): A dict that needs to be converted to protobuf. proto_type (str): The type of the Protobuf. Returns: An instance of the specified protobuf.
juraj-google-style
def __init__(self, value=True, tag=enums.Tags.DEFAULT): super(Boolean, self).__init__(tag, type=enums.Types.BOOLEAN) self.logger = logging.getLogger(__name__) self.value = value self.length = self.LENGTH self.validate()
Create a Boolean object. Args: value (bool): The value of the Boolean. Optional, defaults to True. tag (Tags): An enumeration defining the tag of the Boolean object. Optional, defaults to Tags.DEFAULT.
juraj-google-style
def from_json_file(cls, file_name): with open(file_name) as json_data: config = json.load(json_data) return cls(config)
Construct OneViewClient using a json file. Args: file_name: json full path. Returns: OneViewClient:
codesearchnet
def _ReadUnionDataTypeDefinition(self, definitions_registry, definition_values, definition_name, is_member=False): return self._ReadDataTypeDefinitionWithMembers(definitions_registry, definition_values, data_types.UnionDefinition, definition_name, supports_conditions=False)
Reads an union data type definition. Args: definitions_registry (DataTypeDefinitionsRegistry): data type definitions registry. definition_values (dict[str, object]): definition values. definition_name (str): name of the definition. is_member (Optional[bool]): True if the data type definition is a member data type definition. Returns: UnionDefinition: union data type definition. Raises: DefinitionReaderError: if the definitions values are missing or if the format is incorrect.
codesearchnet
def reserve_ids(self, token, channel, quantity): quantity = str(quantity) url = self.url('{}/{}/reserve/{}/'.format(token, channel, quantity)) req = self.remote_utils.get_url(url) if (req.status_code is not 200): raise RemoteDataNotFoundError(('Invalid req: ' + req.status_code)) out = req.json() return [(out[0] + i) for i in range(out[1])]
Requests a list of next-available-IDs from the server. Arguments: quantity (int): The number of IDs to reserve Returns: int[quantity]: List of IDs you've been granted
codesearchnet
def metrics(self): collected_metrics = [] for layer in self._flatten_layers(): with layer._metrics_lock: collected_metrics.extend(layer._metrics) return collected_metrics
List of metrics added using the `add_metric()` API. Example: >>> input = tf.keras.layers.Input(shape=(3,)) >>> d = tf.keras.layers.Dense(2) >>> output = d(input) >>> d.add_metric(tf.reduce_max(output), name='max') >>> d.add_metric(tf.reduce_min(output), name='min') >>> [m.name for m in d.metrics] ['max', 'min'] Returns: A list of `Metric` objects.
github-repos
def drop_scored_calls(self, names): def _remove(calls, names): d = dict([(k, v) for (k, v) in calls.items() if (k not in names)]) return d if isinstance(names, str): names = [names] output = self.copy() output['scored_calls'] = output['scored_calls'].apply((lambda x: _remove(x, names))) return output
Take a name or list of scored call names and drop those from the scored calls Args: names (list): list of names to drop or a single string name to drop Returns: CellDataFrame: The CellDataFrame modified.
codesearchnet
def find_invalid_filenames(filenames, repository_root): errors = [] for filename in filenames: if not os.path.abspath(filename).startswith(repository_root): errors.append((filename, 'Error: File %s does not belong to ' 'repository %s' % (filename, repository_root))) if not os.path.exists(filename): errors.append((filename, 'Error: File %s does not exist' % (filename, ))) if os.path.isdir(filename): errors.append((filename, 'Error: %s is a directory. Directories are' ' not yet supported' % (filename, ))) return errors
Find files that does not exist, are not in the repo or are directories. Args: filenames: list of filenames to check repository_root: the absolute path of the repository's root. Returns: A list of errors.
juraj-google-style
def get_collection(self, uri=None, filter='', path=''): if not uri: uri = self._base_uri if filter: filter = self.make_query_filter(filter) filter = "?" + filter[1:] uri = "{uri}{path}{filter}".format(uri=uri, path=path, filter=filter) logger.debug('Get resource collection (uri = %s)' % uri) response = self._connection.get(uri) return self.get_members(response)
Retrieves a collection of resources. Use this function when the 'start' and 'count' parameters are not allowed in the GET call. Otherwise, use get_all instead. Optional filtering criteria may be specified. Args: filter (list or str): General filter/query string. path (str): path to be added with base URI Returns: Collection of the requested resource.
juraj-google-style
def join(self, basepath, *paths): if not basepath.startswith(S3FileSystem.S3_PREFIX): raise ValueError('Basepath %r must be S3 path.' % basepath) path = basepath for p in paths: path = path.rstrip('/') + '/' + p.lstrip('/') return path
Join two or more pathname components for the filesystem Args: basepath: string path of the first component of the path paths: path components to be added Returns: full path after combining all of the return nulled components
github-repos
def truncate(text, length=255): lines = [] i = 0 while (i < (len(text) - 1)): try: lines.append(text[i:(i + length)]) i += length except IndexError as e: lines.append(text[i:]) return lines
Splits the message into a list of strings of of length `length` Args: text (str): The text to be divided length (int, optional): The length of the chunks of text. \ Defaults to 255. Returns: list: Text divided into chunks of length `length`
codesearchnet
def deprecated_endpoints(*args): def deprecated_wrapper(func): if '_tf_deprecated_api_names' in func.__dict__: raise DeprecatedNamesAlreadySetError(f'Cannot set deprecated names for {func.__name__} to {args}. Deprecated names are already set to {func._tf_deprecated_api_names}.') func._tf_deprecated_api_names = args return func return deprecated_wrapper
Decorator for marking endpoints deprecated. This decorator does not print deprecation messages. TODO(annarev): eventually start printing deprecation warnings when @deprecation_endpoints decorator is added. Args: *args: Deprecated endpoint names. Returns: A function that takes symbol as an argument and adds _tf_deprecated_api_names to that symbol. _tf_deprecated_api_names would be set to a list of deprecated endpoint names for the symbol.
github-repos
def all_downstreams(self, node): nodes = [node] nodes_seen = set() i = 0 while i < len(nodes): downstreams = self.downstream(nodes[i]) for downstream_node in downstreams: if downstream_node not in nodes_seen: nodes_seen.add(downstream_node) nodes.append(downstream_node) i += 1 return [ node_ for node_ in self.topological_sort() if node_ in nodes_seen ]
Returns a list of all nodes ultimately downstream of the given node in the dependency graph, in topological order. Args: node (str): The node whose downstream nodes you want to find. Returns: list: A list of nodes that are downstream from the node.
juraj-google-style
def get_pipeline_path(pipeline_name, working_directory): logger.debug("starting") logger.debug(f"current directory is {working_directory}") pipeline_path = os.path.abspath(os.path.join( working_directory, 'pipelines', pipeline_name + '.yaml')) if os.path.isfile(pipeline_path): logger.debug(f"Found {pipeline_path}") else: logger.debug(f"{pipeline_name} not found in current " "directory/pipelines folder. Looking in pypyr install " "directory instead.") pypyr_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) logger.debug(f"pypyr installation directory is: {pypyr_dir}") pipeline_path = os.path.abspath(os.path.join( pypyr_dir, 'pipelines', pipeline_name + '.yaml')) if os.path.isfile(pipeline_path): logger.debug(f"Found {pipeline_path}") else: raise PipelineNotFoundError(f"{pipeline_name}.yaml not found in " f"either " f"{working_directory}/pipelines " f"or {pypyr_dir}/pipelines") logger.debug("done") return pipeline_path
Look for the pipeline in the various places it could be. First checks the cwd. Then checks pypyr/pipelines dir. Args: pipeline_name: string. Name of pipeline to find working_directory: string. Path in which to look for pipeline_name.yaml Returns: Absolute path to the pipeline_name.yaml file Raises: PipelineNotFoundError: if pipeline_name.yaml not found in working_dir or in {pypyr install dir}/pipelines.
juraj-google-style
def edit(self, customer_id, data={}, **kwargs): url = '{}/{}'.format(self.base_url, customer_id) return self.put_url(url, data, **kwargs)
Edit Customer information from given dict Returns: Customer Dict which was edited
codesearchnet
def __init__(self, filepath, eps=10, max_rows=None): self.eps_timer = itertools.cycle([max(0, delta) for delta in np.random.normal(1.0/float(eps), .5/float(eps), size=1000)]) self.log_reader = bro_log_reader.BroLogReader(filepath, tail=False) self.max_rows = max_rows
Initialization for the LiveSimulator Class Args: eps (int): Events Per Second that the simulator will emit events (default = 10) max_rows (int): The maximum number of rows to generate (default = None (go forever))
juraj-google-style
def show_fields(self, block=None): mapping = self._mapping() if (block is None): return mapping elif (block == 'top'): blocks = set() for key in mapping.keys(): blocks.add(key.split('.')[0]) block_map = {} for b in blocks: block_map[b] = 'object' else: block_map = {} for (key, value) in mapping.items(): if key.startswith(block): block_map[key] = value return block_map
Retrieve and return the mapping for the given metadata block. Arguments: block (str): The top-level field to fetch the mapping for (for example, ``"mdf"``), or the special values ``None`` for everything or ``"top"`` for just the top-level fields. **Default:** ``None``. index (str): The Search index to map. **Default:** The current index. Returns: dict: ``field:datatype`` pairs.
codesearchnet
def fn(x: list[Union[int, float]], y: Optional[Union[int, str]]=None): return x
Test function Args: x: The input y: Also the input
github-repos
def add_tile(self, address, tile): if (address in self._tiles): raise ArgumentError('Tried to add two tiles at the same address', address=address) self._tiles[address] = tile
Add a tile to handle all RPCs at a given address. Args: address (int): The address of the tile tile (RPCDispatcher): A tile object that inherits from RPCDispatcher
codesearchnet
def delete_endpoint_config(self, endpoint_config_name): LOGGER.info('Deleting endpoint configuration with name: {}'.format(endpoint_config_name)) self.sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
Delete an Amazon SageMaker endpoint configuration. Args: endpoint_config_name (str): Name of the Amazon SageMaker endpoint configuration to delete.
juraj-google-style
def get_schedule_distribution(schedule, global_step=None): interpolation, steps, pmfs = schedule if len(pmfs) == 1: return pmfs[0] if global_step is None: global_step = tf.train.get_or_create_global_step() if interpolation == 'step': interpolation_fn = step_interpolation elif interpolation == 'linear': interpolation_fn = linear_interpolation else: raise ValueError('Invalid interpolation strategy: %s' % interpolation) return tf.reshape( tf.py_func( func=lambda x: interpolation_fn(x, np.array(steps), np.array(pmfs)), inp=[global_step], Tout=tf.float32), [len(pmfs[0])])
Computes the pmf of a schedule given the global_step. Args: schedule: A schedule tuple, see encode_schedule for details. global_step: A scalar tensor, the step to query the schedule. Returns: A 1-D tensor of probs, the sampling distribution of the global_step.
juraj-google-style
def rationalize(flt: float, denominators: Set[int] = None) -> Fraction: if denominators is None: denominators = _DENOMINATORS frac = Fraction.from_float(flt).limit_denominator() if frac.denominator not in denominators: raise ValueError('Cannot rationalize') return frac
Convert a floating point number to a Fraction with a small denominator. Args: flt: A floating point number denominators: Collection of standard denominators. Default is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 Raises: ValueError: If cannot rationalize float
juraj-google-style
def __call__(self, name, value): super(ObjectTypeChecker, self).__call__(name, value)
Call method. Args: name (str): the value's name. value (str): the value to check. Raises: ValueError: if value is not type str.
juraj-google-style
def history(self, samples=500, pandas=True, stream="default"): node = "history" if stream == "default" else "events" query = gql( % node) response = self._exec(query, samples=samples) lines = [json.loads(line) for line in response['project']['run'][node]] if pandas: pandas = util.get_module("pandas") if pandas: lines = pandas.DataFrame.from_records(lines) else: print("Unable to load pandas, call history with pandas=False") return lines
Return history metrics for a run Args: samples (int, optional): The number of samples to return pandas (bool, optional): Return a pandas dataframe stream (str, optional): "default" for metrics, "system" for machine metrics
juraj-google-style
def _OpenPathSpec(self, path_specification, ascii_codepage='cp1252'): if not path_specification: return None file_entry = self._file_system.GetFileEntryByPathSpec(path_specification) if file_entry is None: return None file_object = file_entry.GetFileObject() if file_object is None: return None registry_file = dfwinreg_regf.REGFWinRegistryFile( ascii_codepage=ascii_codepage) try: registry_file.Open(file_object) except IOError as exception: logger.warning( 'Unable to open Windows Registry file with error: {0!s}'.format( exception)) file_object.close() return None return registry_file
Opens the Windows Registry file specified by the path specification. Args: path_specification (dfvfs.PathSpec): path specification. ascii_codepage (Optional[str]): ASCII string codepage. Returns: WinRegistryFile: Windows Registry file or None.
juraj-google-style
def unwrap(tensor): while isinstance(tensor, (PrettyTensor, Loss)): tensor = tensor.tensor return tensor
Returns the underlying tensor if tensor is wrapped or tensor. Args: tensor: The tensor to unwrap. Returns: Tensor or if it is a pretty tensor, the unwrapped version. Raises: ValueError: if tensor holds a sequence.
codesearchnet
def to_dict(self): return self._base(((key, (value.to_dict() if isinstance(value, AutoDict) else value)) for (key, value) in self.items()))
Recursively casts a AutoDict into a regular dictionary. All nested AutoDict values are also converted. Returns: dict: a copy of this dict without autovivification Example: >>> from ubelt.util_dict import AutoDict >>> auto = AutoDict() >>> auto[1] = 1 >>> auto['n1'] = AutoDict() >>> static = auto.to_dict() >>> assert not isinstance(static, AutoDict) >>> assert not isinstance(static['n1'], AutoDict)
codesearchnet
def get_course_video_ids_with_youtube_profile(course_ids=None, offset=None, limit=None): course_videos = (CourseVideo.objects.select_related('video') .prefetch_related('video__encoded_videos', 'video__encoded_videos__profile') .filter(video__encoded_videos__profile__profile_name='youtube') .order_by('id') .distinct()) if course_ids: course_videos = course_videos.filter(course_id__in=course_ids) course_videos = course_videos.values_list('course_id', 'video__edx_video_id') if limit is not None and offset is not None: course_videos = course_videos[offset: offset+limit] course_videos_with_yt_profile = [] for course_id, edx_video_id in course_videos: yt_profile = EncodedVideo.objects.filter( video__edx_video_id=edx_video_id, profile__profile_name='youtube' ).first() if yt_profile: course_videos_with_yt_profile.append(( course_id, edx_video_id, yt_profile.url )) return course_videos_with_yt_profile
Returns a list that contains all the course ids and video ids with the youtube profile Args: course_ids (list): valid course ids limit (int): batch records limit offset (int): an offset for selecting a batch Returns: (list): Tuples of course_id, edx_video_id and youtube video url
juraj-google-style
def push(self,message,message_type): super(Producer,self).send(message,message_type)
Send a reply message of the given type Args: - message: the message to publish - message_type: the type of message being sent
juraj-google-style
def constant(value, dtype=None, shape=None, name=None): if dtype is None: dtype = floatx() return constant_op.constant(value, dtype=dtype, shape=shape, name=name)
Creates a constant tensor. Args: value: A constant value (or list) dtype: The type of the elements of the resulting tensor. shape: Optional dimensions of resulting tensor. name: Optional name for the tensor. Returns: A Constant Tensor.
github-repos
def InitializeDownload(self, http_request, http=None, client=None): self.EnsureUninitialized() if ((http is None) and (client is None)): raise exceptions.UserError('Must provide client or http.') http = (http or client.http) if (client is not None): http_request.url = client.FinalizeTransferUrl(http_request.url) url = http_request.url if self.auto_transfer: end_byte = self.__ComputeEndByte(0) self.__SetRangeHeader(http_request, 0, end_byte) response = http_wrapper.MakeRequest((self.bytes_http or http), http_request) if (response.status_code not in self._ACCEPTABLE_STATUSES): raise exceptions.HttpError.FromResponse(response) self.__initial_response = response self.__SetTotal(response.info) url = response.info.get('content-location', response.request_url) if (client is not None): url = client.FinalizeTransferUrl(url) self._Initialize(http, url) if self.auto_transfer: self.StreamInChunks()
Initialize this download by making a request. Args: http_request: The HttpRequest to use to initialize this download. http: The httplib2.Http instance for this request. client: If provided, let this client process the final URL before sending any additional requests. If client is provided and http is not, client.http will be used instead.
codesearchnet
def render(self, trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array], batch: Optional[int] = None) -> None: non_fluents, initial_state, states, actions, interms, rewards = trajectories non_fluents = dict(non_fluents) states = dict((name, fluent[0]) for name, fluent in states) actions = dict((name, fluent[0]) for name, fluent in actions) rewards = rewards[0] idx = self._compiler.rddl.domain.state_fluent_ordering.index('location/1') start = initial_state[idx][0] g = non_fluents['GOAL/1'] path = states['location/1'] deltas = actions['move/1'] centers = non_fluents['DECELERATION_ZONE_CENTER/2'] decays = non_fluents['DECELERATION_ZONE_DECAY/1'] zones = [(x, y, d) for (x, y), d in zip(centers, decays)] self._ax1 = plt.gca() self._render_state_space() self._render_start_and_goal_positions(start, g) self._render_deceleration_zones(zones) self._render_state_action_trajectory(start, path, deltas) plt.title('Navigation', fontweight='bold') plt.legend(loc='lower right') plt.show()
Render the simulated state-action `trajectories` for Navigation domain. Args: stats: Performance statistics. trajectories: NonFluents, states, actions, interms and rewards. batch: Number of batches to render.
juraj-google-style
def from_frozen_graph(cls, graph_def_file, input_arrays, output_arrays, input_shapes=None): TFLiteConverterBase._set_original_model_type(conversion_metadata_fb.ModelType.TF_GRAPH_DEF) with _ops.Graph().as_default(): with _session.Session() as sess: if not gfile.Exists(graph_def_file): raise IOError("File '{0}' does not exist.".format(graph_def_file)) with gfile.GFile(graph_def_file, 'rb') as f: file_content = f.read() try: graph_def = _graph_pb2.GraphDef() graph_def.ParseFromString(file_content) except (_text_format.ParseError, DecodeError): try: print("Ignore 'tcmalloc: large alloc' warnings.") if not isinstance(file_content, str): file_content = file_content.decode('utf-8') graph_def = _graph_pb2.GraphDef() _text_format.Merge(file_content, graph_def) except (_text_format.ParseError, DecodeError): raise IOError("Unable to parse input file '{}'.".format(graph_def_file)) if sys.byteorder == 'big': bst.swap_tensor_content_in_graph_node(graph_def, 'little', 'big') load_model_in_session = True try: _import_graph_def(graph_def, name='') except _NotFoundError: load_model_in_session = False if load_model_in_session: if not _is_frozen_graph(sess): raise ValueError('Please freeze the graph using freeze_graph.py.') input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays) output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays) _set_tensor_shapes(input_tensors, input_shapes) return cls(sess.graph_def, input_tensors, output_tensors) else: if not input_shapes: raise ValueError('input_shapes must be defined for this model.') if set(input_arrays) != set(input_shapes.keys()): raise ValueError('input_shapes must contain a value for each item in input_array.') input_arrays_with_shape = [(name, input_shapes[name]) for name in input_arrays] return cls(graph_def, input_tensors=None, output_tensors=None, input_arrays_with_shape=input_arrays_with_shape, output_arrays=output_arrays)
Creates a TFLiteConverter class from a file containing a frozen GraphDef. Args: graph_def_file: Full filepath of file containing frozen GraphDef. input_arrays: List of input tensors to freeze graph with. output_arrays: List of output tensors to freeze graph with. input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) Returns: TFLiteConverter class. Raises: IOError: File not found. Unable to parse input file. ValueError: The graph is not frozen. input_arrays or output_arrays contains an invalid tensor name. input_shapes is not correctly defined when required
github-repos
def convert_argument(self, arg_name, arg_value): self._ensure_loaded() type_name = self.param_type(arg_name) if (type_name is None): return arg_value val = typeinfo.type_system.convert_to_type(arg_value, type_name) validators = self.annotated_params[arg_name].validators if (len(validators) == 0): return val type_obj = typeinfo.type_system.get_type(type_name) try: for (validator_name, extra_args) in validators: if (not hasattr(type_obj, validator_name)): raise ValidationError('Could not find validator specified for argument', argument=arg_name, validator_name=validator_name, type=str(type_obj), method=dir(type_obj)) validator = getattr(type_obj, validator_name) validator(val, *extra_args) except (ValueError, TypeError) as exc: raise ValidationError(exc.args[0], argument=arg_name, arg_value=val) return val
Given a parameter with type information, convert and validate it. Args: arg_name (str): The name of the argument to convert and validate arg_value (object): The value to convert and validate Returns: object: The converted value.
codesearchnet
def _compress_url(link): comment_re = re.compile(r'/comments/([A-Za-z\d]{2,})(?:/[^\s]+/([A-Za-z\d]+))?') message_re = re.compile(r'/message/messages/([A-Za-z\d]+)') matches = re.findall(comment_re, link) if len(matches) == 0: matches = re.findall(message_re, link) if len(matches) == 0: return None else: return 'm,' + matches[0] else: if matches[0][1] == '': return 'l,' + matches[0][0] else: return 'l,' + matches[0][0] + ',' + matches[0][1]
Convert a reddit URL into the short-hand used by usernotes. Arguments: link: a link to a comment, submission, or message (str) Returns a String of the shorthand URL
juraj-google-style
def rms(x): try: return (np.array(x) ** 2).mean() ** 0.5 except: x = np.array(dropna(x)) invN = 1.0 / len(x) return (sum(invN * (x_i ** 2) for x_i in x)) ** .5
Root Mean Square" Arguments: x (seq of float): A sequence of numerical values Returns: The square root of the average of the squares of the values math.sqrt(sum(x_i**2 for x_i in x) / len(x)) or return (np.array(x) ** 2).mean() ** 0.5 >>> rms([0, 2, 4, 4]) 3.0
juraj-google-style
def set(self, key, val): self._create_file_if_none_exists() with open(self.filename, 'r+b') as file_object: cache_pickle = pickle.load(file_object) cache_pickle[key] = val file_object.seek(0) pickle.dump(cache_pickle, file_object)
Sets a value in a key. Args: key (str): Key for the value. val: Value to set. Returns: Retrieved value.
codesearchnet
def isinf(x): if any_symbolic_tensors((x,)): return Isinf().symbolic_call(x) return backend.numpy.isinf(x)
Test element-wise for positive or negative infinity. Args: x: Input tensor. Returns: Output boolean tensor.
github-repos
def _broadcast_shape_helper(shape_x, shape_y): broadcasted_dims = reversed(list(itertools.zip_longest(reversed(shape_x.dims), reversed(shape_y.dims), fillvalue=tensor_shape.Dimension(1)))) return_dims = [] for dim_x, dim_y in broadcasted_dims: if dim_x.value is None or dim_y.value is None: if dim_x.value is not None and dim_x.value > 1: return_dims.append(dim_x) elif dim_y.value is not None and dim_y.value > 1: return_dims.append(dim_y) else: return_dims.append(None) elif dim_x.value == 1: return_dims.append(dim_y) elif dim_y.value == 1: return_dims.append(dim_x) elif dim_x.value == dim_y.value: return_dims.append(dim_x.merge_with(dim_y)) else: return None return return_dims
Helper functions for is_broadcast_compatible and broadcast_shape. Args: shape_x: A `TensorShape` shape_y: A `TensorShape` Returns: Returns None if the shapes are not broadcast compatible, a list of the broadcast dimensions otherwise.
github-repos
def create_table(cls, table_name, schema_fields, table_data): table_schema = bigquery.TableSchema() for field_def in schema_fields: field = bigquery.TableFieldSchema() field.name = field_def[0] field.type = field_def[1] if len(field_def) > 2: field.mode = field_def[2] if len(field_def) > 3: for subfield_def in field_def[3]: subfield = bigquery.TableFieldSchema() subfield.name = subfield_def[0] subfield.type = subfield_def[1] field.fields.append(subfield) table_schema.fields.append(field) table = bigquery.Table(tableReference=bigquery.TableReference(projectId=cls.project, datasetId=cls.dataset_id, tableId=table_name), schema=table_schema) request = bigquery.BigqueryTablesInsertRequest(projectId=cls.project, datasetId=cls.dataset_id, table=table) cls.bigquery_client.client.tables.Insert(request) cls.bigquery_client.insert_rows(cls.project, cls.dataset_id, table_name, table_data) return f'{cls.project}.{cls.dataset_id}.{table_name}'
Create a BigQuery table with the specified schema and data. Args: table_name: Name of the table to create schema_fields: List of field definitions in the format: (name, type, [mode, [subfields]]) table_data: List of dictionaries containing the data to insert Returns: Fully qualified table name (project.dataset.table)
github-repos
def resolve(self, host: str) -> ResolveResult: _logger.debug(__('Lookup address {0}.', host)) try: host = self.hook_dispatcher.call(PluginFunctions.resolve_dns, host ) or host except HookDisconnected: pass cache_key = (host, self._family) if self._cache and cache_key in self._cache: resolve_result = self._cache[cache_key] _logger.debug(__('Return by cache {0}.', resolve_result)) if self._rotate: resolve_result.rotate() return resolve_result address_infos = [] dns_infos = [] if not self.dns_python_enabled: families = () elif self._family == IPFamilyPreference.any: families = (socket.AF_INET, socket.AF_INET6) elif self._family == IPFamilyPreference.ipv4_only: families = (socket.AF_INET, ) else: families = (socket.AF_INET6, ) for family in families: datetime_now = datetime.datetime.utcnow() try: answer = yield from self._query_dns(host, family) except DNSNotFound: continue else: dns_infos.append(DNSInfo(datetime_now, answer.response.answer)) address_infos.extend(self._convert_dns_answer(answer)) if not address_infos: if self._family == IPFamilyPreference.any: family = socket.AF_UNSPEC elif self._family == IPFamilyPreference.ipv4_only: family = socket.AF_INET else: family = socket.AF_INET6 results = yield from self._getaddrinfo(host, family) address_infos.extend(self._convert_addrinfo(results)) _logger.debug(__('Resolved addresses: {0}.', address_infos)) resolve_result = ResolveResult(address_infos, dns_infos) if self._cache: self._cache[cache_key] = resolve_result self.event_dispatcher.notify(PluginFunctions.resolve_dns_result, host, resolve_result) if self._rotate: resolve_result.shuffle() return resolve_result
Resolve hostname. Args: host: Hostname. Returns: Resolved IP addresses. Raises: DNSNotFound if the hostname could not be resolved or NetworkError if there was an error connecting to DNS servers. Coroutine.
juraj-google-style
def __init__(self, option_strings, dest, copyright_text=None, nargs=None, **kwargs): if nargs is not None: raise ValueError('nargs not allowed for CopyRight') self.copyright = copyright_text super(CopyRight, self).__init__(option_strings, dest, nargs=0, **kwargs)
Initialize class and spawn self as Base Class w/o nargs Args: option_strings (list): list of str giving command line flags that call this action dest (str): namespace reference to value copyright_text (str): str to print nargs (str): number of args as special char or int **kwargs (various): optional arguments to pass to super call
juraj-google-style
def __init__(self, manager): self.manager = manager self._var_cache = dict((k, EnvironmentVariable(k, self)) for k in manager.parent_environ.iterkeys())
Creates an `EnvironmentDict`. Args: override_existing_lists (bool): If True, the first call to append or prepend will override the value in `environ` and effectively act as a setenv operation. If False, pre-existing values will be appended/prepended to as usual.
juraj-google-style
def circle(y_true, y_pred, ref_labels=None, ref_embeddings=None, remove_diagonal=True, gamma=80, margin=0.4): y_pred = ops.convert_to_tensor(y_pred) y_true = ops.cast(y_true, 'int32') ref_embeddings = y_pred if ref_embeddings is None else ops.convert_to_tensor(ref_embeddings) ref_labels = y_true if ref_labels is None else ops.cast(ref_labels, 'int32') optim_pos = margin optim_neg = 1 + margin delta_pos = margin delta_neg = 1 - margin pairwise_cosine_distances = 1 - ops.matmul(y_pred, ops.transpose(ref_embeddings)) pairwise_cosine_distances = ops.maximum(pairwise_cosine_distances, 0.0) positive_mask, negative_mask = build_pos_neg_masks(y_true, ref_labels, remove_diagonal=remove_diagonal) positive_mask = ops.cast(positive_mask, dtype=pairwise_cosine_distances.dtype) negative_mask = ops.cast(negative_mask, dtype=pairwise_cosine_distances.dtype) pos_weights = optim_pos + pairwise_cosine_distances pos_weights = pos_weights * positive_mask pos_weights = ops.maximum(pos_weights, 0.0) neg_weights = optim_neg - pairwise_cosine_distances neg_weights = neg_weights * negative_mask neg_weights = ops.maximum(neg_weights, 0.0) pos_dists = delta_pos - pairwise_cosine_distances neg_dists = delta_neg - pairwise_cosine_distances pos_wdists = -1 * gamma * pos_weights * pos_dists neg_wdists = gamma * neg_weights * neg_dists p_loss = ops.logsumexp(ops.where(positive_mask, pos_wdists, float('-inf')), axis=1) n_loss = ops.logsumexp(ops.where(negative_mask, neg_wdists, float('-inf')), axis=1) circle_loss = ops.softplus(p_loss + n_loss) backend.set_keras_mask(circle_loss, circle_loss > 0) return circle_loss
Computes the Circle loss. It is designed to minimize within-class distances and maximize between-class distances in L2 normalized embedding space. Args: y_true: Tensor with ground truth labels in integer format. y_pred: Tensor with predicted L2 normalized embeddings. ref_labels: Optional integer tensor with labels for reference embeddings. If `None`, defaults to `y_true`. ref_embeddings: Optional tensor with L2 normalized reference embeddings. If `None`, defaults to `y_pred`. remove_diagonal: Boolean, whether to remove self-similarities from positive mask. Defaults to `True`. gamma: Float, scaling factor for the loss. Defaults to `80`. margin: Float, relaxation factor for the loss. Defaults to `0.4`. Returns: Circle loss value.
github-repos
def draw_points(self, *points): point_array = ffi.new('SDL_Point[]', len(points)) for (i, p) in enumerate(points): point_array[i] = p._ptr[0] check_int_err(lib.SDL_RenderDrawPoints(self._ptr, point_array, len(points)))
Draw multiple points on the current rendering target. Args: *points (Point): The points to draw. Raises: SDLError: If an error is encountered.
codesearchnet
def launch(self): server = self._make_server() thread = threading.Thread(target=server.serve_forever, name='TensorBoard') thread.daemon = True thread.start() return server.get_url()
Python API for launching TensorBoard. This method is the same as main() except it launches TensorBoard in a separate permanent thread. The configure() method must be called first. Returns: The URL of the TensorBoard web server. :rtype: str
codesearchnet
def _get_parsed_args(command_name, doc, argv): _LOGGER.debug('Parsing docstring: with arguments %s.', doc, argv) args = docopt(doc, argv=argv) if command_name == settings.command: args[command_name] = True return args
Parse the docstring with docopt. Args: command_name: The name of the subcommand to parse. doc: A docopt-parseable string. argv: The list of arguments to pass to docopt during parsing. Returns: The docopt results dictionary. If the subcommand has the same name as the primary command, the subcommand value will be added to the dictionary.
juraj-google-style
def is_tensor_on_canonical_device(self, tensor_name): device = self.get_tensor_device(tensor_name) return not device or device == self.canonical_device
Whether the tensor is on the first (canonical) device. Tensors not assigned to a device are assumed to be on all devices, including the canonical device. Args: tensor_name: a string, name of a tensor in the graph. Returns: a boolean indicating whether the tensor is on the first device.
juraj-google-style
def enroll_user(cls, enterprise_customer, user, course_mode, *course_ids): (enterprise_customer_user, __) = EnterpriseCustomerUser.objects.get_or_create(enterprise_customer=enterprise_customer, user_id=user.id) enrollment_client = EnrollmentApiClient() succeeded = True for course_id in course_ids: try: enrollment_client.enroll_user_in_course(user.username, course_id, course_mode) except HttpClientError as exc: if cls.is_user_enrolled(user, course_id, course_mode): succeeded = True else: succeeded = False default_message = 'No error message provided' try: error_message = json.loads(exc.content.decode()).get('message', default_message) except ValueError: error_message = default_message logging.error('Error while enrolling user %(user)s: %(message)s', dict(user=user.username, message=error_message)) if succeeded: (__, created) = EnterpriseCourseEnrollment.objects.get_or_create(enterprise_customer_user=enterprise_customer_user, course_id=course_id) if created: track_enrollment('admin-enrollment', user.id, course_id) return succeeded
Enroll a single user in any number of courses using a particular course mode. Args: enterprise_customer: The EnterpriseCustomer which is sponsoring the enrollment user: The user who needs to be enrolled in the course course_mode: The mode with which the enrollment should be created *course_ids: An iterable containing any number of course IDs to eventually enroll the user in. Returns: Boolean: Whether or not enrollment succeeded for all courses specified
codesearchnet
def contextual_override(*, cascade: bool=False, override_attrs: bool=False, **variables) -> ContextManager[dict[str, ContextualOverride]]: vs = {} for k, v in variables.items(): if not isinstance(v, ContextualOverride): v = ContextualOverride(v, cascade, override_attrs) vs[k] = v return contextual_scope(_global_contextual_overrides, **vs)
Context manager to provide contextual values under a scope. Please be aware that contextual value override are per-thread. If you want to propagate the contextual value override to other threads, please obtain a wrapper function for a user function using `pg.with_contextual_override(func)`. Args: cascade: If True, this override will apply to both current scope and nested scope, meaning that this `pg.contextual_override` will take precedence over all nested `pg.contextual_override` on the overriden variables. override_attrs: If True, this override will apply to attributes that already have values. Otherwise overridden variables will only be used for contextual attributes whose values are not present. **variables: Key/values as override for contextual attributes. Returns: A dict of attribute names to their contextual overrides.
github-repos
def get_shared_file(self, sharekey=None): if not sharekey: raise Exception("You must specify a sharekey.") endpoint = '/api/sharedfile/{0}'.format(sharekey) data = self._make_request('GET', endpoint) return SharedFile.NewFromJSON(data)
Returns a SharedFile object given by the sharekey. Args: sharekey (str): Sharekey of the SharedFile you want to retrieve. Returns: SharedFile
juraj-google-style
def verify_ed25519_signature_cmdln(args=None, exception=SystemExit): args = args or sys.argv[1:] parser = argparse.ArgumentParser( description=) parser.add_argument('--pubkey', help='path to a base64-encoded ed25519 pubkey, optional') parser.add_argument('file_path') parser.add_argument('sig_path') opts = parser.parse_args(args) log = logging.getLogger('scriptworker') log.setLevel(logging.DEBUG) logging.basicConfig() pubkeys = {} if opts.pubkey: pubkeys['cmdln'] = [read_from_file(opts.pubkey)] pubkeys.update(dict(DEFAULT_CONFIG['ed25519_public_keys'])) contents = read_from_file(opts.file_path, file_type='binary') signature = read_from_file(opts.sig_path, file_type='binary') for key_type, seeds in pubkeys.items(): for seed in seeds: try: verify_ed25519_signature( ed25519_public_key_from_string(seed), contents, signature, "didn't work with {}".format(seed) ) log.info("Verified good with {} seed {} !".format( key_type, seed )) sys.exit(0) except ScriptWorkerEd25519Error: pass raise exception("This is not a valid signature!")
Verify an ed25519 signature from the command line. Args: args (list, optional): the commandline args to parse. If ``None``, use ``sys.argv[1:]``. Defaults to ``None``. exception (Exception, optional): the exception to raise on failure. Defaults to ``SystemExit``.
juraj-google-style
def visit_indexer(self, indexer: _evaluation.IndexerNode) -> _sql_data_types.Select: collection_result = self.visit(indexer.collection) index_result = self.visit(indexer.index) sql_alias = f'indexed_{collection_result.sql_alias}' return _sql_data_types.Select(select_part=_sql_data_types.RawExpression(f'element_at(COLLECT_LIST({collection_result.sql_alias}),{index_result.as_operand()} + 1)', collection_result.sql_data_type, _sql_alias=sql_alias), from_part=f'{collection_result.to_subquery()}', sql_dialect=_sql_data_types.SqlDialect.SPARK)
Translates a FHIRPath indexer expression to Spark SQL. Args: indexer: The `_Indexer` Expression node. Returns: A compiled Spark SQL expression.
github-repos
def Patch(self, request, global_params=None): config = self.GetMethodConfig('Patch') return self._RunMethod(config, request, global_params=global_params)
Updates a `WorkerPool`. Args: request: (CloudbuildProjectsLocationsWorkerPoolsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message.
github-repos
def solve(self): if self.assignments: return self.assignments self._complete() assignments = {var: self._get_nonfalse_values(var) for var in self.variables} ground_pivots = self.ground_truth.simplify(assignments).extract_pivots(assignments) for pivot, possible_values in ground_pivots.items(): if pivot in assignments: assignments[pivot] &= set(possible_values) something_changed = True while something_changed: something_changed = False and_terms = [] for var in self.variables: or_terms = [] for value in assignments[var].copy(): implication = self.implications[var][value].simplify(assignments) if implication is FALSE: assignments[var].remove(value) something_changed = True else: or_terms.append(implication) self.implications[var][value] = implication and_terms.append(Or(or_terms)) d = And(and_terms) for pivot, possible_values in d.extract_pivots(assignments).items(): if pivot in assignments: length_before = len(assignments[pivot]) assignments[pivot] &= set(possible_values) length_after = len(assignments[pivot]) something_changed |= length_before != length_after self.register_variable = pytd_utils.disabled_function self.implies = pytd_utils.disabled_function self.assignments = assignments return assignments
Solve the system of equations. Returns: An assignment, mapping strings (variables) to sets of strings (values).
github-repos
def delete_vm(access_token, subscription_id, resource_group, vm_name): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Compute/virtualMachines/', vm_name, '?api-version=', COMP_API]) return do_delete(endpoint, access_token)
Delete a virtual machine. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vm_name (str): Name of the virtual machine. Returns: HTTP response.
juraj-google-style