code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def prefer_static_value(x): static_x = tensor_util.constant_value(x) if static_x is not None: return static_x return x
Return static value of tensor `x` if available, else `x`. Args: x: `Tensor` (already converted). Returns: Numpy array (if static value is obtainable), else `Tensor`.
github-repos
def prod(self, vars_list: List[str]) -> 'TensorFluent': operand = self if (operand.dtype == tf.bool): operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_prod, operand, vars_list)
Returns the TensorFluent for the prod aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the prod aggregation function.
codesearchnet
def read_into(self, buffer, face, *, alignment=1, write_offset=0) -> None: if type(buffer) is Buffer: buffer = buffer.mglo return self.mglo.read_into(buffer, face, alignment, write_offset)
Read a face from the cubemap texture. Args: buffer (bytearray): The buffer that will receive the pixels. face (int): The face to read. Keyword Args: alignment (int): The byte alignment of the pixels. write_offset (int): The write offset.
juraj-google-style
def imcrop(img, bboxes, scale=1.0, pad_fill=None): chn = 1 if img.ndim == 2 else img.shape[2] if pad_fill is not None: if isinstance(pad_fill, (int, float)): pad_fill = [pad_fill for _ in range(chn)] assert len(pad_fill) == chn _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32) clipped_bbox = bbox_clip(scaled_bboxes, img.shape) patches = [] for i in range(clipped_bbox.shape[0]): x1, y1, x2, y2 = tuple(clipped_bbox[i, :]) if pad_fill is None: patch = img[y1:y2 + 1, x1:x2 + 1, ...] else: _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :]) if chn == 2: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1) else: patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn) patch = np.array( pad_fill, dtype=img.dtype) * np.ones( patch_shape, dtype=img.dtype) x_start = 0 if _x1 >= 0 else -_x1 y_start = 0 if _y1 >= 0 else -_y1 w = x2 - x1 + 1 h = y2 - y1 + 1 patch[y_start:y_start + h, x_start:x_start + w, ...] = img[y1:y1 + h, x1:x1 + w, ...] patches.append(patch) if bboxes.ndim == 1: return patches[0] else: return patches
Crop image patches. 3 steps: scale the bboxes -> clip bboxes -> crop and pad. Args: img (ndarray): Image to be cropped. bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes. scale (float, optional): Scale ratio of bboxes, the default value 1.0 means no padding. pad_fill (number or list): Value to be filled for padding, None for no padding. Returns: list or ndarray: The cropped image patches.
juraj-google-style
def dict_strip(d): _d = deepcopy(d) for k, v in iteritems(d): if isinstance(v, str): _d[k] = v.strip() elif isinstance(v, dict): _d[k] = dict_strip(v) return _d
Strips whitespace from the string values of the given dictionary (recursively). Args: d: A dictionary object. Returns: A new dictionary object, whose string values' whitespace has been stripped out.
juraj-google-style
def lock(self, key, client): self.key = key self.client = client
Set the key that will be used to ensure messages come from one party Args: key (string): The key used to validate future messages client (string): A string that will be returned to indicate who locked this device.
juraj-google-style
def instantiate_interface(virtual_iface, config, loop): if (virtual_iface == 'null'): return StandardDeviceServer(None, {}, loop=loop) conf = {} if ('interface' in config): conf = config['interface'] try: reg = ComponentRegistry() if virtual_iface.endswith('.py'): (_name, iface) = reg.load_extension(virtual_iface, class_filter=AbstractDeviceServer, unique=True) else: (_name, iface) = reg.load_extensions('iotile.device_server', name_filter=virtual_iface, class_filter=AbstractDeviceServer, unique=True) return iface(None, conf, loop=loop) except ArgumentError as err: print(('ERROR: Could not load device_server (%s): %s' % (virtual_iface, err.msg))) sys.exit(1)
Find a virtual interface by name and instantiate it Args: virtual_iface (string): The name of the pkg_resources entry point corresponding to the interface. It should be in group iotile.virtual_interface config (dict): A dictionary with a 'interface' key with the config info for configuring this virtual interface. This is optional. Returns: VirtualInterface: The instantiated subclass of VirtualInterface
codesearchnet
def exportData(self, datfile): def ampl_set(name, values): def format_entry(e): return repr(e).replace(' ', '') return 'set {0} := {1};'.format(name, ','.join((format_entry(e) for e in values))) def ampl_param(name, values): def format_entry(k, v): k = repr(k).strip('()').replace(' ', '') if (v == inf): v = 'Infinity' elif (v == (- inf)): v = '-Infinity' else: v = repr(v).strip('()').replace(' ', '') return '[{0}]{1}'.format(k, v) return 'param {0} := {1};'.format(name, ''.join((format_entry(k, v) for (k, v) in values.items()))) with open(datfile, 'w') as f: for (name, entity) in self.getSets(): values = entity.getValues().toList() print(ampl_set(name, values), file=f) for (name, entity) in self.getParameters(): if entity.isScalar(): print('param {} := {};'.format(name, entity.value()), file=f) else: values = entity.getValues().toDict() print(ampl_param(name, values), file=f)
Create a .dat file with the data that has been loaded. Args: datfile: Path to the file (Relative to the current working directory or absolute).
codesearchnet
def match_term(self, value, required=True, new_group=False): if self.initialized: if required: self._and_join(new_group) else: self._or_join(new_group) self._term(value) return self
Add a fulltext search term to the query. Warning: Do not use this method with any other query-building helpers. This method is only for building fulltext queries (in non-advanced mode). Using other helpers, such as ``match_field()``, will cause the query to run in advanced mode. If a fulltext term query is run in advanced mode, it will have unexpected results. Arguments: value (str): The term to match. required (bool): If ``True``, will add term with ``AND``. If ``False``, will use ``OR``. **Default:** ``True``. new_group (bool): If ``True``, will separate the term into a new parenthetical group. If ``False``, will not. **Default:** ``False``. Returns: SearchHelper: Self
codesearchnet
def validate( self, nanopub: Mapping[str, Any] ) -> Tuple[bool, List[Tuple[str, str]]]: (is_valid, messages) = validate_to_schema(nanopub, self.nanopub_schema) if not is_valid: return messages if nanopub["nanopub"]["type"]["name"].upper() == "BEL": bel_version = nanopub["nanopub"]["type"]["version"] else: is_valid = False return ( is_valid, f"Not a BEL Nanopub according to nanopub.type.name: {nanopub['nanopub']['type']['name']}", ) all_messages = [] bel_obj = bel.lang.belobj.BEL(bel_version, self.endpoint) for edge in nanopub["nanopub"]["edges"]: bel_statement = f"{edge['subject']} {edge['relation']} {edge['object']}" parse_obj = bel_obj.parse(bel_statement) if not parse_obj.valid: all_messages.extend( ( "ERROR", f"BEL statement parse error {parse_obj.error}, {parse_obj.err_visual}", ) ) for context in nanopub["nanopub"]["context"]: (is_valid, messages) = self.validate_context(context) all_messages.extend(messages) is_valid = True for _type, msg in all_messages: if _type == "ERROR": is_valid = False return (is_valid, all_messages)
Validates using the nanopub schema Args: nanopub (Mapping[str, Any]): nanopub dict Returns: Tuple[bool, List[Tuple[str, str]]]: bool: Is valid? Yes = True, No = False List[Tuple[str, str]]: Validation issues, empty if valid, tuple is ('ERROR|WARNING', msg) e.g. [('WARNING', "Context ID not found")]
juraj-google-style
def _PrintAnalysisStatusUpdateWindow(self, processing_status): if self._stdout_output_writer: self._ClearScreen() output_text = 'plaso - {0:s} version {1:s}\n\n'.format( self._tool_name, plaso.__version__) self._output_writer.Write(output_text) self._PrintAnalysisStatusHeader(processing_status) table_view = views.CLITabularTableView(column_names=[ 'Identifier', 'PID', 'Status', 'Memory', 'Events', 'Tags', 'Reports'], column_sizes=[23, 7, 15, 15, 15, 15, 0]) self._AddsAnalysisProcessStatusTableRow( processing_status.foreman_status, table_view) for worker_status in processing_status.workers_status: self._AddsAnalysisProcessStatusTableRow(worker_status, table_view) table_view.Write(self._output_writer) self._output_writer.Write('\n') if processing_status.aborted: self._output_writer.Write( 'Processing aborted - waiting for clean up.\n\n') if self._stdout_output_writer: sys.stdout.flush()
Prints an analysis status update in window mode. Args: processing_status (ProcessingStatus): processing status.
juraj-google-style
def learn(self, grad_arr, fix_opt_flag=False): if grad_arr.ndim > 3: grad_arr = grad_arr.reshape(( grad_arr.shape[0], grad_arr.shape[1], -1 )) delta_arr, grads_list = self.__lstm_model.back_propagation(self.__pred_arr, grad_arr) if fix_opt_flag is False: self.__lstm_model.optimize( grads_list, self.__learning_rate, 1 ) return delta_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. fix_opt_flag: If `False`, no optimization in this model will be done. Returns: `np.ndarray` of delta or gradients.
juraj-google-style
def available_writers(as_dict=False): writers = [] for writer_configs in configs_for_writer(): try: writer_info = read_writer_config(writer_configs) except (KeyError, IOError, yaml.YAMLError): LOG.warning('Could not import writer config from: %s', writer_configs) LOG.debug('Error loading YAML', exc_info=True) continue writers.append((writer_info if as_dict else writer_info['name'])) return writers
Available writers based on current configuration. Args: as_dict (bool): Optionally return writer information as a dictionary. Default: False Returns: List of available writer names. If `as_dict` is `True` then a list of dictionaries including additionally writer information is returned.
codesearchnet
def poke(exposes): def _poke(store, objname, obj, container, visited=None, _stack=None): try: sub_container = store.newContainer(objname, obj, container) except (SystemExit, KeyboardInterrupt): raise except: raise ValueError('generic poke not supported by store') for iobjname in exposes: try: iobj = getattr(obj, iobjname) except AttributeError: pass else: store.poke(iobjname, iobj, sub_container, visited=visited, _stack=_stack) return _poke
Default serializer factory. Arguments: exposes (iterable): attributes to serialized. Returns: callable: serializer (`poke` routine).
codesearchnet
def createDomains(tlds, nicks=None, nicksFile=None): domain_candidates = [] if (nicks != None): for n in nicks: for t in tlds: tmp = {'domain': (n + t['tld']), 'type': t['type'], 'tld': t['tld']} domain_candidates.append(tmp) elif (nicksFile != None): with open(nicksFile, 'r') as iF: nicks = iF.read().splitlines() for n in nicks: for t in tlds: tmp = {'domain': (n + t['tld']), 'type': t['type'], 'tld': t['tld']} domain_candidates.append(tmp) return domain_candidates
Method that globally permits to generate the domains to be checked. Args: ----- tlds: List of tlds. nicks: List of aliases. nicksFile: The filepath to the aliases file. Returns: -------- list: list of domains to be checked.
codesearchnet
def RemoveTransaction(self, tx): if (BC.Default() is None): return False if (not BC.Default().ContainsTransaction(tx.Hash)): return False if (tx.Hash.ToBytes() in self.MemPool): del self.MemPool[tx.Hash.ToBytes()] return True return False
Remove a transaction from the memory pool if it is found on the blockchain. Args: tx (neo.Core.TX.Transaction): instance. Returns: bool: True if successfully removed. False otherwise.
codesearchnet
def GetDateRange(self): start = self.start_date end = self.end_date for (date, (exception_type, _)) in self.date_exceptions.items(): if (exception_type == self._EXCEPTION_TYPE_REMOVE): continue if ((not start) or (date < start)): start = date if ((not end) or (date > end)): end = date if (start is None): start = end elif (end is None): end = start return (start, end)
Return the range over which this ServicePeriod is valid. The range includes exception dates that add service outside of (start_date, end_date), but doesn't shrink the range if exception dates take away service at the edges of the range. Returns: A tuple of "YYYYMMDD" strings, (start date, end date) or (None, None) if no dates have been given.
codesearchnet
def group(self, group_type=None, owner=None, **kwargs): group = None if (not group_type): return Group(self.tcex, None, None, owner=owner, **kwargs) name = kwargs.pop('name', None) group_type = group_type.upper() if (group_type == 'ADVERSARY'): group = Adversary(self.tcex, name, owner=owner, **kwargs) if (group_type == 'CAMPAIGN'): group = Campaign(self.tcex, name, owner=owner, **kwargs) if (group_type == 'DOCUMENT'): group = Document(self.tcex, name, kwargs.pop('file_name', None), owner=owner, **kwargs) if (group_type == 'EVENT'): group = Event(self.tcex, name, owner=owner, **kwargs) if (group_type == 'EMAIL'): group = Email(self.tcex, name, kwargs.pop('to', None), kwargs.pop('from_addr', None), kwargs.pop('subject', None), kwargs.pop('body', None), kwargs.pop('header', None), owner=owner, **kwargs) if (group_type == 'INCIDENT'): group = Incident(self.tcex, name, owner=owner, **kwargs) if (group_type == 'INTRUSION SET'): group = IntrusionSet(self.tcex, name, owner=owner, **kwargs) if (group_type == 'REPORT'): group = Report(self.tcex, name, owner=owner, **kwargs) if (group_type == 'SIGNATURE'): group = Signature(self.tcex, name, kwargs.pop('file_name', None), kwargs.pop('file_type', None), kwargs.pop('file_text', None), owner=owner, **kwargs) if (group_type == 'THREAT'): group = Threat(self.tcex, name, owner=owner, **kwargs) if (group_type == 'TASK'): group = Task(self.tcex, name, kwargs.pop('status', 'Not Started'), kwargs.pop('due_date', None), kwargs.pop('reminder_date', None), kwargs.pop('escalation_date', None), owner=owner, **kwargs) return group
Create the Group TI object. Args: owner: group_type: **kwargs: Return:
codesearchnet
def init_feed_dict(self): return self._init_feed_dict
Return the feed dictionary used when evaluating the `init_op`. Returns: A feed dictionary or `None`.
github-repos
def rmse(y, p): assert y.shape == p.shape return np.sqrt(mse(y, p))
Root Mean Squared Error (RMSE). Args: y (numpy.array): target p (numpy.array): prediction Returns: e (numpy.float64): RMSE
juraj-google-style
def get_tag_html(tag_id): tag_data = get_lazy_tag_data(tag_id) tag = tag_data['tag'] args = tag_data['args'] kwargs = tag_data['kwargs'] (lib, tag_name) = get_lib_and_tag_name(tag) args_str = '' if args: for arg in args: if isinstance(arg, six.string_types): args_str += "'{0}' ".format(arg) else: args_str += '{0} '.format(arg) kwargs_str = '' if kwargs: for (name, value) in kwargs.items(): if isinstance(value, six.string_types): kwargs_str += "{0}='{1}' ".format(name, value) else: kwargs_str += '{0}={1} '.format(name, value) html = '{{% load {lib} %}}{{% {tag_name} {args}{kwargs}%}}'.format(lib=lib, tag_name=tag_name, args=args_str, kwargs=kwargs_str) return html
Returns the Django HTML to load the tag library and render the tag. Args: tag_id (str): The tag id for the to return the HTML for.
codesearchnet
def __init__(self, pqc: tf.Tensor, qubits: List[cirq.GridQubit], symbol_names: tf.Tensor, value_layers_inputs: List[Union[tf.Variable, List[tf.Variable]]], value_layers: List[List[tf.keras.layers.Layer]], name: Union[None, str]=None): super().__init__(name=name) self._pqc = pqc self._qubits = sorted(qubits) self._symbol_names = symbol_names self._value_layers = value_layers self._value_layers_inputs = value_layers_inputs raw_bit_circuit = circuit_utils.bit_circuit(self.qubits) bit_symbol_names = list(sorted(tfq.util.get_circuit_symbols(raw_bit_circuit))) self._bit_symbol_names = tf.constant([str(x) for x in bit_symbol_names]) self._bit_circuit = tfq.convert_to_tensor([raw_bit_circuit])
Initializes a QuantumCircuit. Args: pqc: TFQ string representation of a parameterized quantum circuit. qubits: The qubits on which `pqc` acts. symbol_names: Strings which are used to specify the order in which the values in `self.symbol_values` should be placed inside of the circuit. value_layers_inputs: Inputs to the `value_layers` argument. value_layers: The concatenation of the layers in entry `i` yields a trainable map from `value_layers_inputs[i]` to the `i` entry in the list of intermediate values. The list of intermediate values is concatenated to yield the values to substitute into the circuit. name: Optional name for the model.
github-repos
def VerifyStructure(self, parser_mediator, lines): if self._VERIFICATION_REGEX.match(lines): return True return False
Verifies whether content corresponds to a Zsh extended_history file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. lines (str): one or more lines from the text file. Returns: bool: True if the line was successfully parsed.
juraj-google-style
def __init__(self, _args): super(TcExInit, self).__init__(_args) self.base_url = ( 'https: ).format(self.args.branch)
Initialize Class properties. Args: _args (namespace): The argparser args Namespace.
juraj-google-style
def _CheckMacOSPaths(self, filename, artifact_definition, source, paths): result = True paths_with_private = [] paths_with_symbolic_link_to_private = [] for path in paths: path_lower = path.lower() path_segments = path_lower.split(source.separator) if not path_segments: logging.warning(( 'Empty path defined by artifact definition: {0:s} in file: ' '{1:s}').format(artifact_definition.name, filename)) result = False elif len(path_segments) == 1: continue elif path_segments[1] in self._MACOS_PRIVATE_SUB_PATHS: paths_with_symbolic_link_to_private.append(path) elif path_segments[1] == 'private' and len(path_segments) >= 2: if path_segments[2] in self._MACOS_PRIVATE_SUB_PATHS: paths_with_private.append(path) else: logging.warning(( 'Unsupported private path: {0:s} defined by artifact definition: ' '{1:s} in file: {2:s}').format( path, artifact_definition.name, filename)) result = False for private_path in paths_with_private: if private_path[8:] not in paths_with_symbolic_link_to_private: logging.warning(( 'Missing symbolic link: {0:s} for path: {1:s} defined by artifact ' 'definition: {2:s} in file: {3:s}').format( private_path[8:], private_path, artifact_definition.name, filename)) result = False for path in paths_with_symbolic_link_to_private: private_path = '/private{0:s}'.format(path) if private_path not in paths_with_private: logging.warning(( 'Missing path: {0:s} for symbolic link: {1:s} defined by artifact ' 'definition: {2:s} in file: {3:s}').format( private_path, path, artifact_definition.name, filename)) result = False return result
Checks if the paths are valid MacOS paths. Args: filename (str): name of the artifacts definition file. artifact_definition (ArtifactDefinition): artifact definition. source (SourceType): source definition. paths (list[str]): paths to validate. Returns: bool: True if the MacOS paths is valid.
juraj-google-style
def num_samples(self, sr=None): native_sr = self.sampling_rate num_samples = units.seconds_to_sample(self.duration, native_sr) if sr is not None: ratio = float(sr) / native_sr num_samples = int(np.ceil(num_samples * ratio)) return num_samples
Return the number of samples. Args: sr (int): Calculate the number of samples with the given sampling-rate. If None use the native sampling-rate. Returns: int: Number of samples
juraj-google-style
def np_doc_only(np_fun_name, np_fun=None): np_fun_name, np_fun = _prepare_np_fun_name_and_fun(np_fun_name, np_fun) def decorator(f): f.__doc__ = _np_doc_helper(f, np_fun, np_fun_name=np_fun_name) return f return decorator
Attachs numpy docstring to a function. This differs from np_doc in that it doesn't check for a match in signature. Args: np_fun_name: name for the np_fun symbol. At least one of np_fun or np_fun_name shoud be set. np_fun: (optional) the numpy function whose docstring will be used. Returns: A function decorator that attaches the docstring from `np_fun` to the decorated function.
github-repos
def expand(self, url): expand_url = f'{self.api_url}v3/expand' params = { 'shortUrl': url, 'access_token': self.api_key, 'format': 'txt', } response = self._get(expand_url, params=params) if response.ok: return response.text.strip() raise ExpandingErrorException(response.content)
Expand implementation for Bit.ly Args: url: the URL you want to shorten Returns: A string containing the expanded URL Raises: ExpandingErrorException: If the API Returns an error as response
juraj-google-style
def simple_stack(self, opcode=None): if opcode is not None: return (frame_state.SimpleFrame(opcode),) elif self.frame: return (frame_state.SimpleFrame(self.frame.current_opcode),) else: return ()
Get a stack of simple frames. Args: opcode: Optionally, an opcode to create a stack for. Returns: If an opcode is provided, a stack with a single frame at that opcode. Otherwise, the VM's current stack converted to simple frames.
github-repos
def json(cls, message): if (type(message) is OrderedDict): pprint(dict(message)) else: pprint(message)
Print a nice JSON output Args: message: the message to print
codesearchnet
def sketch_fasta(fasta_path, outdir): genome_name = genome_name_from_fasta_path(fasta_path) outpath = os.path.join(outdir, genome_name) args = ['mash', 'sketch', '-o', outpath, fasta_path] logging.info('Running Mash sketch with command: %s', ' '.join(args)) p = Popen(args) p.wait() sketch_path = outpath + '.msh' assert os.path.exists(sketch_path), 'Mash sketch for genome {} was not created at {}'.format( genome_name, sketch_path) return sketch_path
Create a Mash sketch from an input fasta file Args: fasta_path (str): input fasta file path. Genome name in fasta filename outdir (str): output directory path to write Mash sketch file to Returns: str: output Mash sketch file path
juraj-google-style
def _Aff4Read(aff4_obj, offset, length): length = (length or (_Aff4Size(aff4_obj) - offset)) aff4_obj.Seek(offset) return aff4_obj.Read(length)
Reads contents of given AFF4 file. Args: aff4_obj: An AFF4 stream instance to retrieve contents for. offset: An offset to start the reading from. length: A number of bytes to read. Reads the whole file if 0. Returns: Contents of specified AFF4 stream. Raises: TypeError: If `aff4_obj` is not an instance of AFF4 stream.
codesearchnet
def build_relative_position(query_layer, key_layer, bucket_size: int=-1, max_position: int=-1): query_size = query_layer.size(-2) key_size = key_layer.size(-2) q_ids = torch.arange(query_size, dtype=torch.long, device=query_layer.device) k_ids = torch.arange(key_size, dtype=torch.long, device=key_layer.device) rel_pos_ids = q_ids[:, None] - k_ids[None, :] if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids.to(torch.long) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids
Build relative position according to the query and key We assume the absolute position of query \(P_q\) is range from (0, query_size) and the absolute position of key \(P_k\) is range from (0, key_size), The relative positions from query to key is \(R_{q \rightarrow k} = P_q - P_k\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position device (`torch.device`): the device on which tensors will be created. Return: `torch.LongTensor`: A tensor with shape [1, query_size, key_size]
github-repos
def open(self, mode='r', encoding=None): access_type = self._get_access_type(mode) if access_type == 't' and encoding is not None and encoding != self.encoded_with: warnings.warn('Attempting to decode %s as "%s", but encoding is declared as "%s"' % (self, encoding, self.encoded_with)) if encoding is None: encoding = self.encoded_with buffer = io.BytesIO(self._contents) if access_type == 'b': return buffer else: return io.TextIOWrapper(buffer, encoding=encoding)
Return file-like object Args: mode (str): access mode (only reading modes are supported) encoding (str): text decoding method for text access (default: system default) Returns: io.BytesIO OR io.TextIOWrapper: buffer accessing the file as bytes or characters
juraj-google-style
def __init__(self, platform, device): self._platform = platform self._device = device if (self._platform, self._device) not in _context_cache: context = cl.Context([device]) _context_cache[(self._platform, self._device)] = context self._context = _context_cache[(self._platform, self._device)] self._queue = cl.CommandQueue(self._context, device=device)
Storage unit for an OpenCL environment. Args: platform (pyopencl platform): An PyOpenCL platform. device (pyopencl device): An PyOpenCL device
juraj-google-style
def rt_is_equiv_dense(rt): return math_ops.reduce_all([math_ops.equal(math_ops.reduce_variance(math_ops.cast(row_lens, backend.floatx())), constant_op.constant([0.0])) for row_lens in rt.nested_row_lengths()])
Returns true if this RaggedTensor has the same row_lengths across all ragged dimensions and thus can be converted to a dense tensor without loss of information. Args: rt: RaggedTensor.
github-repos
def execute_before(self, sensor_graph, scope_stack): parent = scope_stack[-1] alloc = parent.allocator connect_stream = alloc.allocate_stream(DataStream.UnbufferedType, attach=True) disconnect_stream = alloc.allocate_stream(DataStream.UnbufferedType, attach=True) latch_stream = alloc.allocate_stream(DataStream.ConstantType, attach=True) latch_on_stream = alloc.allocate_stream(DataStream.ConstantType, attach=True) latch_off_stream = alloc.allocate_stream(DataStream.ConstantType, attach=True) sensor_graph.add_node(u"({} always) => {} using copy_latest_a".format(user_connected, connect_stream)) sensor_graph.add_node(u"({} always) => {} using copy_latest_a".format(user_disconnected, disconnect_stream)) sensor_graph.add_node(u"({} always && {} when value=={}) => {} using copy_latest_a".format(latch_on_stream, connect_stream, self.slot_id.address, latch_stream)) sensor_graph.add_node(u"({} always && {} when value=={}) => {} using copy_latest_a".format(latch_off_stream, disconnect_stream, self.slot_id.address, latch_stream)) sensor_graph.add_constant(latch_on_stream, 1) sensor_graph.add_constant(latch_off_stream, 0) sensor_graph.add_constant(latch_stream, 0) new_scope = GatedClockScope(sensor_graph, scope_stack, (latch_stream, InputTrigger(u'value', u'==', 1))) new_scope.add_identifier('connect', connect_stream) new_scope.add_identifier('disconnect', disconnect_stream) scope_stack.append(new_scope)
Execute statement before children are executed. Args: sensor_graph (SensorGraph): The sensor graph that we are building or modifying scope_stack (list(Scope)): A stack of nested scopes that may influence how this statement allocates clocks or other stream resources.
juraj-google-style
def simulate(self, action): with tf.name_scope("environment/simulate"): if action.dtype in (tf.float16, tf.float32, tf.float64): action = tf.check_numerics(action, "action") def step(action): step_response = self._batch_env.step(action) if len(step_response) == 3: (observ, reward, done) = step_response else: (observ, reward, done, _) = step_response return (observ, reward.astype(np.float32), done) observ, reward, done = tf.py_func( step, [action], [self.observ_dtype, tf.float32, tf.bool], name="step") reward = tf.check_numerics(reward, "reward") reward.set_shape((len(self),)) done.set_shape((len(self),)) with tf.control_dependencies([self._observ.assign(observ)]): return tf.identity(reward), tf.identity(done)
Step the batch of environments. The results of the step can be accessed from the variables defined below. Args: action: Tensor holding the batch of actions to apply. Returns: Operation.
juraj-google-style
def rewrite_filters_in_optional_blocks(ir_blocks): new_ir_blocks = [] optional_context_depth = 0 for block in ir_blocks: new_block = block if isinstance(block, CoerceType): raise AssertionError(u'Found a CoerceType block after all such blocks should have been lowered to Filter blocks: {}'.format(ir_blocks)) elif (isinstance(block, Traverse) and block.optional): optional_context_depth += 1 elif (isinstance(block, Backtrack) and block.optional): optional_context_depth -= 1 if (optional_context_depth < 0): raise AssertionError(u'Reached negative optional context depth for blocks: {}'.format(ir_blocks)) elif (isinstance(block, Filter) and (optional_context_depth > 0)): null_check = BinaryComposition(u'=', LocalField('@this'), NullLiteral) new_block = Filter(BinaryComposition(u'||', null_check, block.predicate)) else: pass new_ir_blocks.append(new_block) return new_ir_blocks
In optional contexts, add a check for null that allows non-existent optional data through. Optional traversals in Gremlin represent missing optional data by setting the current vertex to null until the exit from the optional scope. Therefore, filtering and type coercions (which should have been lowered into filters by this point) must check for null before applying their filtering predicates. Since missing optional data isn't filtered, the new filtering predicate should be "(it == null) || existing_predicate". Args: ir_blocks: list of IR blocks to lower into Gremlin-compatible form Returns: new list of IR blocks with this lowering step applied
codesearchnet
def find_slot(self, wanted, slots=None): for slot in self.find_slots(wanted, slots): return slot return None
Searches the given slots or, if not given, active hotbar slot, hotbar, inventory, open window in this order. Args: wanted: function(Slot) or Slot or itemID or (itemID, metadata) Returns: Optional[Slot]: The first slot containing the item or None if not found.
codesearchnet
def find_executable(executable): logger = logging.getLogger(__name__) logger.debug("Checking executable '%s'...", executable) executable_path = _find_executable(executable) found = (executable_path is not None) if found: logger.debug("Executable '%s' found: '%s'", executable, executable_path) else: logger.debug("Executable '%s' not found", executable) return executable_path
Finds executable in PATH Returns: string or None
codesearchnet
def build_hpo_term(hpo_info): try: hpo_id = hpo_info['hpo_id'] except KeyError: raise KeyError("Hpo terms has to have a hpo_id") LOG.debug("Building hpo term %s", hpo_id) try: description = hpo_info['description'] except KeyError: raise KeyError("Hpo terms has to have a description") hpo_obj = HpoTerm( hpo_id = hpo_id, description = description ) hgnc_ids = hpo_info.get('genes', set()) if hgnc_ids: hpo_obj['genes'] = list(hgnc_ids) return hpo_obj
Build a hpo_term object Check that the information is correct and add the correct hgnc ids to the array of genes. Args: hpo_info(dict) Returns: hpo_obj(scout.models.HpoTerm): A dictionary with hpo information
juraj-google-style
def __init__(self, usage=None, data=None): super(TransactionAttribute, self).__init__() self.Usage = usage self.Data = data
Create an instance. Args: usage (neo.Core.TX.TransactionAttribute.TransactionAttributeUsage): data (bytes):
juraj-google-style
def ParseArguments(args): try: (opts, filenames) = getopt.getopt(args, '', ['help', 'output=', 'verbose=', 'counting=', 'filter=', 'root=', 'linelength=', 'extensions=']) except getopt.GetoptError: PrintUsage('Invalid arguments.') verbosity = _VerboseLevel() output_format = _OutputFormat() filters = '' counting_style = '' for (opt, val) in opts: if opt == '--help': PrintUsage(None) elif opt == '--output': if val not in ('emacs', 'vs7', 'eclipse'): PrintUsage('The only allowed output formats are emacs, vs7 and eclipse.') output_format = val elif opt == '--verbose': verbosity = int(val) elif opt == '--filter': filters = val if not filters: PrintCategories() elif opt == '--counting': if val not in ('total', 'toplevel', 'detailed'): PrintUsage('Valid counting options are total, toplevel, and detailed') counting_style = val elif opt == '--root': global _root _root = val elif opt == '--linelength': global _line_length try: _line_length = int(val) except ValueError: PrintUsage('Line length must be digits.') elif opt == '--extensions': global _valid_extensions try: _valid_extensions = set(val.split(',')) except ValueError: PrintUsage('Extensions must be comma seperated list.') if not filenames: PrintUsage('No files were specified.') _SetOutputFormat(output_format) _SetVerboseLevel(verbosity) _SetFilters(filters) _SetCountingStyle(counting_style) return filenames
Parses the command line arguments. This may set the output format and verbosity level as side-effects. Args: args: The command line arguments: Returns: The list of filenames to lint.
juraj-google-style
def make_timebar(progress=0, duration=0): duration_string = api_music.duration_to_string(duration) if duration <= 0: return "---" time_counts = int(round((progress / duration) * TIMEBAR_LENGTH)) if time_counts > TIMEBAR_LENGTH: time_counts = TIMEBAR_LENGTH if duration > 0: bar = "│" + (TIMEBAR_PCHAR * time_counts) + (TIMEBAR_ECHAR * (TIMEBAR_LENGTH - time_counts)) + "│" time_bar = "{} {}".format(bar, duration_string) else: time_bar = duration_string return time_bar
Makes a new time bar string Args: progress: How far through the current song we are (in seconds) duration: The duration of the current song (in seconds) Returns: timebar (str): The time bar string
juraj-google-style
def ensure_mingw_drive(win32_path): (win32_drive, _path) = splitdrive(win32_path) mingw_drive = ('/' + win32_drive[:(- 1)].lower()) mingw_path = (mingw_drive + _path) return mingw_path
r""" replaces windows drives with mingw style drives Args: win32_path (str): CommandLine: python -m utool.util_path --test-ensure_mingw_drive Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> win32_path = r'C:/Program Files/Foobar' >>> result = ensure_mingw_drive(win32_path) >>> print(result) /c/Program Files/Foobar
codesearchnet
def _refresh_grpc(operations_stub, operation_name): request_pb = operations_pb2.GetOperationRequest(name=operation_name) return operations_stub.GetOperation(request_pb)
Refresh an operation using a gRPC client. Args: operations_stub (google.longrunning.operations_pb2.OperationsStub): The gRPC operations stub. operation_name (str): The name of the operation. Returns: google.longrunning.operations_pb2.Operation: The operation.
juraj-google-style
def list(self): self._initialize_list() interested = True response = self._cloudFormation.list_stacks() print('Stack(s):') while interested: if ('StackSummaries' in response): for stack in response['StackSummaries']: stack_status = stack['StackStatus'] if (stack_status != 'DELETE_COMPLETE'): print(' [{}] - {}'.format(stack['StackStatus'], stack['StackName'])) next_token = response.get('NextToken', None) if next_token: response = self._cloudFormation.list_stacks(NextToken=next_token) else: interested = False return True
List the existing stacks in the indicated region Args: None Returns: True if True Todo: Figure out what could go wrong and take steps to hanlde problems.
codesearchnet
def convert_tensorflow(nlp: Pipeline, opset: int, output: Path): if not is_tf_available(): raise Exception('Cannot convert because TF is not installed. Please install tensorflow first.') print("/!\\ Please note TensorFlow doesn't support exporting model > 2Gb /!\\") try: import tensorflow as tf import tf2onnx from tf2onnx import __version__ as t2ov print(f'Using framework TensorFlow: {tf.version.VERSION}, tf2onnx: {t2ov}') input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, 'tf') nlp.model.predict(tokens.data) input_signature = [tf.TensorSpec.from_tensor(tensor, name=key) for key, tensor in tokens.items()] model_proto, _ = tf2onnx.convert.from_keras(nlp.model, input_signature, opset=opset, output_path=output.as_posix()) except ImportError as e: raise Exception(f'Cannot import {e.name} required to convert TF model to ONNX. Please install {e.name} first. {e}')
Export a TensorFlow backed pipeline to ONNX Intermediate Representation (IR) Args: nlp: The pipeline to be exported opset: The actual version of the ONNX operator set to use output: Path where will be stored the generated ONNX model Notes: TensorFlow cannot export model bigger than 2GB due to internal constraint from TensorFlow
github-repos
def parse_content_type(headers: MutableMapping) -> Tuple[Optional[str], str]: content_type = headers.get("content-type") if not content_type: return None, "utf-8" else: type_, parameters = cgi.parse_header(content_type) encoding = parameters.get("charset", "utf-8") return type_, encoding
Find content-type and encoding of the response Args: headers: Response headers Returns: :py:class:`tuple` (content-type, encoding)
juraj-google-style
def encode(self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray]=None, position_ids: Optional[jnp.ndarray]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, train: bool=False, params: Optional[dict]=None, dropout_rng: PRNGKey=None): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) rngs = {} if dropout_rng is not None: rngs['dropout'] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply({'params': params or self.params}, input_ids=jnp.array(input_ids, dtype='i4'), attention_mask=jnp.array(attention_mask, dtype='i4'), position_ids=jnp.array(position_ids, dtype='i4'), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward)
Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```
github-repos
def decode(pieces, sequence_length, model_file=None, model_proto=None, reverse=False, name=None): return _gen_sentencepiece_processor_op.sentencepiece_decode(pieces, sequence_length, model_file=model_file, model_proto=model_proto, reverse=reverse, name=name)
Decode pieces into postprocessed text. Args: pieces: A 2D int32 or string tensor [batch_size x max_length] of encoded sequences. sequence_length: A 1D int32 tensor [batch_size] representing the length of pieces. model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. Either `model_file` or `model_proto` must be set. reverse: Reverses the tokenized sequence (Default = false) name: The name argument that is passed to the op function. Returns: text: A 1D string tensor of decoded string.
codesearchnet
def send_message(channel_id, message): channel = client.get_channel(channel_id) if channel is None: logger.info("{} is not a channel".format(channel_id)) return data = datatools.get_data() if not data["discord"]["servers"][channel.server.id][modulename]["activated"]: logger.info("This module has been disabled in {} ({})".format(channel.server.name, channel.server.id)) try: runcoro(client.send_message(channel, message)) except Exception as e: logger.exception(e)
Send a message to a channel Args: channel_id (str): The id of the channel to send the message to message (str): The message to send to the channel
juraj-google-style
def count_moves_in_game_range(self, game_begin, game_end): rows = self.bt_table.read_rows( ROWCOUNT_PREFIX.format(game_begin), ROWCOUNT_PREFIX.format(game_end), filter_=bigtable_row_filters.ColumnRangeFilter( METADATA, MOVE_COUNT, MOVE_COUNT)) return sum([int(r.cell_value(METADATA, MOVE_COUNT)) for r in rows])
Count the total moves in a game range. Args: game_begin: integer, starting game game_end: integer, ending game Uses the `ct_` keyspace for rapid move summary.
juraj-google-style
def format(self, compact: bool=False, verbose: bool=True, root_indent: int=0, **kwargs) -> str:
Formats this object into a string representation. Args: compact: If True, this object will be formatted into a single line. verbose: If True, this object will be formatted with verbosity. Subclasses should define `verbosity` on their own. root_indent: The start indent level for this object if the output is a multi-line string. **kwargs: Subclass specific keyword arguments. Returns: A string of formatted object.
github-repos
def scale(self, width: int, height: int) -> None: lib.TCOD_image_scale(self.image_c, width, height) (self.width, self.height) = (width, height)
Scale this Image to the new width and height. Args: width (int): The new width of the Image after scaling. height (int): The new height of the Image after scaling.
codesearchnet
def generate_name(self, name_format=DEFAULT_FILE_NAME_FORMAT): if (len(self.segments) > 0): return (self.segments[0].points[0].time.strftime(name_format) + '.gpx') else: return 'EmptyTrack'
Generates a name for the track The name is generated based on the date of the first point of the track, or in case it doesn't exist, "EmptyTrack" Args: name_format (str, optional): Name formar to give to the track, based on its start time. Defaults to DEFAULT_FILE_NAME_FORMAT Returns: str
codesearchnet
def _remove_curly_braces(text): current_pos = 0 depth = 0 ret = "" for match in re.finditer("[{}]", text): if depth == 0: ret += text[current_pos:match.start()] depth += 1 if text[match.start()] == "{" else -1 current_pos = match.end() if depth != 0: pass else: ret += text[current_pos:] return ret
Remove everything in curly braces. Curly braces may be nested, so we keep track of depth. Args: text: a string Returns: a string
juraj-google-style
def dump_migration_session_state(raw): class BlockStyle(str): pass class SessionDumper(yaml.SafeDumper): pass def str_block_formatter(dumper, data): return dumper.represent_scalar(u'tag:yaml.org,2002:str', data, style='|') SessionDumper.add_representer(BlockStyle, str_block_formatter) raw = deepcopy(raw) for step in raw: step['output'] = BlockStyle(step['output']) step['traceback'] = BlockStyle(step['traceback']) return yaml.dump(raw, Dumper=SessionDumper)
Serialize a migration session state to yaml using nicer formatting Args: raw: object to serialize Returns: string (of yaml) Specifically, this forces the "output" member of state step dicts (e.g. state[0]['output']) to use block formatting. For example, rather than this: - migration: [app, migration_name] output: "line 1\nline2\nline3" You get this: - migration: [app, migration_name] output: | line 1 line 2 line 3
codesearchnet
def find_all(self, kw: YangIdentifier, pref: YangIdentifier = None) -> List["Statement"]: return [c for c in self.substatements if c.keyword == kw and c.prefix == pref]
Return the list all substatements with the given keyword and prefix. Args: kw: Statement keyword (local part for extensions). pref: Keyword prefix (``None`` for built-in statements).
juraj-google-style
def _set_root(self, request): if request.state_root: root = request.state_root else: head = self._get_chain_head() root = head.state_root_hash try: self._tree.set_merkle_root(root) except KeyError as e: LOGGER.debug('Unable to find root "%s" in database', e) raise _ResponseFailed(self._status.NO_ROOT) return root
Sets the root of the merkle tree, returning any head id used. Note: This method will fail if `_tree` has not been set Args: request (object): The parsed protobuf request object Returns: str: the state root of the head block used to specify the root Raises: ResponseFailed: Failed to set the root if the merkle tree
codesearchnet
def assert_proper_iterable(values): unintentional_iterables = (tensor_lib.Tensor, sparse_tensor.SparseTensor, np.ndarray) + compat.bytes_or_text_types if isinstance(values, unintentional_iterables): raise TypeError('Expected argument "values" to be a "proper" iterable. Found: %s' % type(values)) if not hasattr(values, '__iter__'): raise TypeError('Expected argument "values" to be iterable. Found: %s' % type(values))
Static assert that values is a "proper" iterable. `Ops` that expect iterables of `Tensor` can call this to validate input. Useful since `Tensor`, `ndarray`, byte/text type are all iterables themselves. Args: values: Object to be checked. Raises: TypeError: If `values` is not iterable or is one of `Tensor`, `SparseTensor`, `np.array`, `tf.compat.bytes_or_text_types`.
github-repos
def create_from_json(cls, json_data): block = Block() block_info = json_data["block_info"] block.block_id = block_info["block_id"] block.num_bins = block_info["num_bins"] if "num_bins" in block_info else None block.property_type = block_info["property_type"] if "property_type" in block_info else None block.meta = json_data["meta"] if "meta" in json_data else None block.component_results = _create_component_results(json_data, "block_info") return block
Deserialize block json data into a Block object Args: json_data (dict): The json data for this block Returns: Block object
juraj-google-style
def complete_acquaintance_strategy(qubit_order: Sequence[ops.Qid], acquaintance_size: int=0) -> circuits.Circuit: if (acquaintance_size < 0): raise ValueError('acquaintance_size must be non-negative.') elif (acquaintance_size == 0): return circuits.Circuit(device=UnconstrainedAcquaintanceDevice) if (acquaintance_size > len(qubit_order)): return circuits.Circuit(device=UnconstrainedAcquaintanceDevice) if (acquaintance_size == len(qubit_order)): return circuits.Circuit.from_ops(acquaint(*qubit_order), device=UnconstrainedAcquaintanceDevice) strategy = circuits.Circuit.from_ops((acquaint(q) for q in qubit_order), device=UnconstrainedAcquaintanceDevice) for size_to_acquaint in range(2, (acquaintance_size + 1)): expose_acquaintance_gates(strategy) replace_acquaintance_with_swap_network(strategy, qubit_order, size_to_acquaint) return strategy
Returns an acquaintance strategy capable of executing a gate corresponding to any set of at most acquaintance_size qubits. Args: qubit_order: The qubits on which the strategy should be defined. acquaintance_size: The maximum number of qubits to be acted on by an operation. Returns: An circuit capable of implementing any set of k-local operation.
codesearchnet
def workflow_stages(self) -> List[WorkflowStage]: workflow_stages = [] stages = DB.get_hash_value(self.key, 'workflow_stages') for index in range(len(ast.literal_eval(stages))): workflow_stages.append(WorkflowStage(self.id, index)) return workflow_stages
Return list of workflow stages. Returns: dict, resources of a specified pb
codesearchnet
async def create_artifact(context, path, target_path, content_type, content_encoding, storage_type='s3', expires=None): payload = {'storageType': storage_type, 'expires': (expires or get_expiration_arrow(context).isoformat()), 'contentType': content_type} args = [get_task_id(context.claim_task), get_run_id(context.claim_task), target_path, payload] tc_response = (await context.temp_queue.createArtifact(*args)) skip_auto_headers = [aiohttp.hdrs.CONTENT_TYPE] loggable_url = get_loggable_url(tc_response['putUrl']) log.info('uploading {path} to {url}...'.format(path=path, url=loggable_url)) with open(path, 'rb') as fh: async with async_timeout.timeout(context.config['artifact_upload_timeout']): async with context.session.put(tc_response['putUrl'], data=fh, headers=_craft_artifact_put_headers(content_type, content_encoding), skip_auto_headers=skip_auto_headers, compress=False) as resp: log.info('create_artifact {}: {}'.format(path, resp.status)) response_text = (await resp.text()) log.info(response_text) if (resp.status not in (200, 204)): raise ScriptWorkerRetryException('Bad status {}'.format(resp.status))
Create an artifact and upload it. This should support s3 and azure out of the box; we'll need some tweaking if we want to support redirect/error artifacts. Args: context (scriptworker.context.Context): the scriptworker context. path (str): the path of the file to upload. target_path (str): content_type (str): Content type (MIME type) of the artifact. Values can be found via scriptworker.artifacts.guess_content_type_and_encoding() content_encoding (str): Encoding (per mimetypes' library) of the artifact. None is for no encoding. Values can be found via scriptworker.artifacts.guess_content_type_and_encoding() storage_type (str, optional): the taskcluster storage type to use. Defaults to 's3' expires (str, optional): datestring of when the artifact expires. Defaults to None. Raises: ScriptWorkerRetryException: on failure.
codesearchnet
def _get_batches_of_transformed_samples(self, index_array): raise NotImplementedError
Gets a batch of transformed samples. Args: index_array: Array of sample indices to include in batch. Returns: A batch of transformed samples.
github-repos
def send(msg_type, send_async=False, *args, **kwargs): message = message_factory(msg_type, *args, **kwargs) try: if send_async: message.send_async() else: message.send() except MessageSendError as e: err_exit('Unable to send message: ', e)
Constructs a message class and sends the message. Defaults to sending synchronously. Set send_async=True to send asynchronously. Args: :msg_type: (str) the type of message to send, i.e. 'Email' :send_async: (bool) default is False, set True to send asynchronously. :kwargs: (dict) keywords arguments that are required for the various message types. See docstrings for each type. i.e. help(messages.Email), help(messages.Twilio), etc. Example: >>> kwargs = { from_: 'me@here.com', to: 'you@there.com', auth: 'yourPassword', subject: 'Email Subject', body: 'Your message to send', attachments: ['filepath1', 'filepath2'], } >>> messages.send('email', **kwargs) Message sent...
codesearchnet
def create_model(text_in, timesteps, phase): with pt.defaults_scope(activation_fn=tf.nn.relu, l2loss=1e-05): with tf.device('/cpu:0'): embedded = text_in.embedding_lookup(CHARS, [EMBEDDING_SIZE]) lstm = embedded.cleave_sequence(timesteps).sequence_lstm(LOWER).sequence_lstm(UPPER) return lstm.squash_sequence().dropout(keep_prob=0.8, phase=phase).fully_connected(CHARS, activation_fn=None)
Creates a 2 layer LSTM model with dropout. Args: text_in: The input text as ASCII ordinals in a Tensor. timesteps: The number of timesteps in the sequence. phase: Phase controls whether or not dropout is active. In training mode we want to perform dropout, but in test we want to disable it. Returns: The logits.
codesearchnet
def update(self, resource, id_or_uri): return self._client.update(resource=resource, uri=id_or_uri)
Updates a registered Device Manager. Args: resource (dict): Object to update. id_or_uri: Can be either the Device manager ID or URI. Returns: dict: The device manager resource.
codesearchnet
def get_hostname(url): if (url not in URLHelper.__cache): URLHelper.__cache[url] = urlparse(url) parts = URLHelper.__cache[url].netloc.split('.') if (len(parts) == 1): return parts[0] else: return '.'.join(parts[(- 2):(- 1)])
Get the hostname of the given URL. Args: url (str): The URL to get the hostname from. Returns: str: The hostname
codesearchnet
def __batch_update(self, train_events, test_events, n_epoch): for epoch in range(n_epoch): if n_epoch != 1: np.random.shuffle(train_events) for e in train_events: self.rec.update(e, batch_train=True) MPR = self.__batch_evaluate(test_events) if self.debug: logger.debug('epoch %2d: MPR = %f' % (epoch + 1, MPR))
Batch update called by the fitting method. Args: train_events (list of Event): Positive training events. test_events (list of Event): Test events. n_epoch (int): Number of epochs for the batch training.
juraj-google-style
def similar(self, **kwargs): path = self._get_id_path('similar') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the similar TV series for a specific TV series id. Args: page: (optional) Minimum value of 1. Expected value is an integer. language: (optional) ISO 639-1 code. append_to_response: (optional) Comma separated, any TV method. Returns: A dict respresentation of the JSON returned from the API.
codesearchnet
def check_valid_cpc_status(method, uri, cpc): status = cpc.properties.get('status', None) if (status is None): return valid_statuses = ['active', 'service-required', 'degraded', 'exceptions'] if (status not in valid_statuses): if uri.startswith(cpc.uri): raise ConflictError(method, uri, reason=1, message='The operation cannot be performed because the targeted CPC {} has a status that is not valid for the operation: {}'.format(cpc.name, status)) else: raise ConflictError(method, uri, reason=6, message='The operation cannot be performed because CPC {} hosting the targeted resource has a status that is not valid for the operation: {}'.format(cpc.name, status))
Check that the CPC is in a valid status, as indicated by its 'status' property. If the Cpc object does not have a 'status' property set, this function does nothing (in order to make the mock support easy to use). Raises: ConflictError with reason 1: The CPC itself has been targeted by the operation. ConflictError with reason 6: The CPC is hosting the resource targeted by the operation.
codesearchnet
def _get_arg_parser(func, types, args_and_defaults, delimiter_chars): _LOG.debug("Creating ArgumentParser for '%s'", func.__name__) (description, arg_help) = _prepare_doc( func, [x for (x, _) in args_and_defaults], delimiter_chars) parser = argparse.ArgumentParser(description=description) for ((arg, default), arg_type) in zip_longest(args_and_defaults, types): help_msg = arg_help[arg] if default is NoDefault: arg_type = arg_type or identity_type if arg_type == bool: _LOG.debug("Adding optional flag %s.%s", func.__name__, arg) parser.add_argument("--%s" % arg, default=True, required=False, action="store_false", help="%s. Defaults to True if not specified" % help_msg) else: _LOG.debug("Adding positional argument %s.%s", func.__name__, arg) parser.add_argument(arg, help=help_msg, type=arg_type) else: if default is None and arg_type is None: raise ParseThisError("To use default value of 'None' you need " "to specify the type of the argument '{}' " "for the method '{}'" .format(arg, func.__name__)) arg_type = arg_type or type(default) if arg_type == bool: action = "store_false" if default else "store_true" _LOG.debug("Adding optional flag %s.%s", func.__name__, arg) parser.add_argument("--%s" % arg, help=help_msg, default=default, action=action) else: _LOG.debug( "Adding optional argument %s.%s", func.__name__, arg) parser.add_argument("--%s" % arg, help=help_msg, default=default, type=arg_type) return parser
Return an ArgumentParser for the given function. Arguments are defined from the function arguments and their associated defaults. Args: func: function for which we want an ArgumentParser types: types to which the command line arguments should be converted to args_and_defaults: list of 2-tuples (arg_name, arg_default) delimiter_chars: characters used to separate the parameters from their help message in the docstring
juraj-google-style
def coarse_grain(G, ncg): if ncg <= 1: return G G = numpy.asarray(G) nbin, remainder = divmod(G.shape[-1], ncg) if remainder != 0: nbin += 1 return numpy.transpose([ numpy.sum(G[..., i:i+ncg], axis=-1) / G[..., i:i+ncg].shape[-1] for i in numpy.arange(0, ncg * nbin, ncg) ])
Coarse-grain last index of array ``G``. Bin the last index of array ``G`` in bins of width ``ncg``, and replace each bin by its average. Return the binned results. Args: G: Array to be coarse-grained. ncg: Bin width for coarse-graining.
juraj-google-style
def parse_flux_bounds(entry): lower_bound = None upper_bound = None for parameter in entry.kinetic_law_reaction_parameters: pid, name, value, units = parameter if pid == 'UPPER_BOUND' or name == 'UPPER_BOUND': upper_bound = value elif pid == 'LOWER_BOUND' or name == 'LOWER_BOUND': lower_bound = value return lower_bound, upper_bound
Return flux bounds for reaction entry. Detect flux bounds that are specified using the non-standardized kinetic law parameters which are used by many pre-FBC SBML models. The flux bounds are returned as a pair of lower, upper bounds. The returned bound is None if undefined. Args: entry: :class:`SBMLReactionEntry`.
juraj-google-style
def _probe_characteristics_finished(self, result): handle = result['context']['handle'] conn_id = result['context']['connection_id'] conndata = self._get_connection(handle, 'preparing') if (conndata is None): self._logger.info('Connection disconnected before probe_char... finished, conn_id=%d', conn_id) return callback = conndata['callback'] if (result['result'] is False): conndata['failed'] = True conndata['failure_reason'] = 'Could not probe GATT characteristics' self.disconnect_async(conn_id, self._on_connection_failed) return services = result['return_value']['services'] if (TileBusService not in services): conndata['failed'] = True conndata['failure_reason'] = 'TileBus service not present in GATT services' self.disconnect_async(conn_id, self._on_connection_failed) return conndata['chars_done_time'] = time.time() service_time = (conndata['services_done_time'] - conndata['connect_time']) char_time = (conndata['chars_done_time'] - conndata['services_done_time']) total_time = (service_time + char_time) conndata['state'] = 'connected' conndata['services'] = services conndata['parser'] = IOTileReportParser(report_callback=self._on_report, error_callback=self._on_report_error) conndata['parser'].context = conn_id del conndata['disconnect_handler'] with self.count_lock: self.connecting_count -= 1 self._logger.info('Total time to connect to device: %.3f (%.3f enumerating services, %.3f enumerating chars)', total_time, service_time, char_time) callback(conndata['connection_id'], self.id, True, None)
Callback when BLE adapter has finished probing services and characteristics for a device Args: result (dict): Result from the probe_characteristics command
codesearchnet
def process_response(self, req, resp, resource): if isinstance(resp.body, dict): try: resp.body = json.dumps(resp.body) except(nameError): resp.status = falcon.HTTP_500
Post-processing of the response (after routing). Args: req: Request object. resp: Response object. resource: Resource object to which the request was routed. May be None if no route was found for the request.
juraj-google-style
def parse_individual(sample): ind_info = {} if ('sample_id' not in sample): raise PedigreeError("One sample is missing 'sample_id'") sample_id = sample['sample_id'] if ('sex' not in sample): raise PedigreeError(("Sample %s is missing 'sex'" % sample_id)) sex = sample['sex'] if (sex not in REV_SEX_MAP): log.warning("'sex' is only allowed to have values from {}".format(', '.join(list(REV_SEX_MAP.keys())))) raise PedigreeError(('Individual %s has wrong formated sex' % sample_id)) if ('phenotype' not in sample): raise PedigreeError(("Sample %s is missing 'phenotype'" % sample_id)) phenotype = sample['phenotype'] if (phenotype not in REV_PHENOTYPE_MAP): log.warning("'phenotype' is only allowed to have values from {}".format(', '.join(list(REV_PHENOTYPE_MAP.keys())))) raise PedigreeError(('Individual %s has wrong formated phenotype' % sample_id)) ind_info['individual_id'] = sample_id ind_info['display_name'] = sample.get('sample_name', sample['sample_id']) ind_info['sex'] = sex ind_info['phenotype'] = phenotype ind_info['father'] = sample.get('father') ind_info['mother'] = sample.get('mother') ind_info['confirmed_parent'] = sample.get('confirmed_parent') ind_info['confirmed_sex'] = sample.get('confirmed_sex') ind_info['predicted_ancestry'] = sample.get('predicted_ancestry') bam_file = sample.get('bam_path') if bam_file: ind_info['bam_file'] = bam_file mt_bam = sample.get('mt_bam') if mt_bam: ind_info['mt_bam'] = mt_bam analysis_type = sample.get('analysis_type') if analysis_type: ind_info['analysis_type'] = analysis_type ind_info['capture_kits'] = ([sample.get('capture_kit')] if ('capture_kit' in sample) else []) vcf2cytosure = sample.get('vcf2cytosure') if vcf2cytosure: ind_info['vcf2cytosure'] = vcf2cytosure tumor_type = sample.get('tumor_type') if tumor_type: ind_info['tumor_type'] = tumor_type tumor_mutational_burden = sample.get('tmb') if tumor_mutational_burden: ind_info['tmb'] = tumor_mutational_burden msi = sample.get('msi') if msi: ind_info['msi'] = msi tumor_purity = sample.get('tumor_purity') if tumor_purity: ind_info['tumor_purity'] = tumor_purity return ind_info
Parse individual information Args: sample (dict) Returns: { 'individual_id': str, 'father': str, 'mother': str, 'display_name': str, 'sex': str, 'phenotype': str, 'bam_file': str, 'vcf2cytosure': str, 'analysis_type': str, 'capture_kits': list(str), }
codesearchnet
def get_or_generate_vocabulary(data_dir, tmp_dir, data_prefix, max_page_size_exp, approx_vocab_size=32768, strip=True): num_pages_for_vocab_generation = (approx_vocab_size vocab_file = vocab_filename(approx_vocab_size, strip) def my_generator(data_prefix): 'Line generator for vocab.' count = 0 for page in corpus_page_generator(all_corpus_files(data_prefix)[::(- 1)], tmp_dir, max_page_size_exp): revisions = page['revisions'] if revisions: text = get_text(revisions[(- 1)], strip=strip) (yield text) count += 1 if ((count % 100) == 0): tf.logging.info(('reading pages for vocab %d' % count)) if (count > num_pages_for_vocab_generation): break return generator_utils.get_or_generate_vocab_inner(data_dir, vocab_file, approx_vocab_size, my_generator(data_prefix))
Get or generate the vocabulary. Args: data_dir: a string tmp_dir: a string data_prefix: a string max_page_size_exp: an integer approx_vocab_size: an integer strip: a boolean Returns: a TextEncoder
codesearchnet
def _format_src_url(self, path, caller_system): path = ('%s/%s' % (self._endpoint, self.relpath(path))) if (caller_system is not self): try: path = ('%s?%s' % (path, self._storage_parameters['sas_token'])) except KeyError: pass return path
Ensure path is absolute and use the correct URL format for use with cross Azure storage account copy function. Args: path (str): Path or URL. caller_system (pycosio.storage.azure._AzureBaseSystem subclass): System calling this method (Can be another Azure system). Returns: str: URL.
codesearchnet
def HandleSimpleResponses( self, timeout_ms=None, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._AcceptResponses(b'OKAY', info_cb, timeout_ms=timeout_ms)
Accepts normal responses from the device. Args: timeout_ms: Timeout in milliseconds to wait for each response. info_cb: Optional callback for text sent from the bootloader. Returns: OKAY packet's message.
juraj-google-style
def check_array_lengths(inputs, targets, weights=None): def is_tensor_or_composite_tensor(x): return tensor_util.is_tf_type(x) or is_composite_or_composite_value(x) def set_of_lengths(x): if x is None: return {} else: return set([y.shape[0] for y in x if y is not None and (not is_tensor_or_composite_tensor(y))]) set_x = set_of_lengths(inputs) set_y = set_of_lengths(targets) set_w = set_of_lengths(weights) if len(set_x) > 1: raise ValueError('All input arrays (x) should have the same number of samples. Got array shapes: ' + str([x.shape for x in inputs])) if len(set_y) > 1: raise ValueError('All target arrays (y) should have the same number of samples. Got array shapes: ' + str([y.shape for y in targets])) if set_x and set_y and (list(set_x)[0] != list(set_y)[0]): raise ValueError('Input arrays should have the same number of samples as target arrays. Found ' + str(list(set_x)[0]) + ' input samples and ' + str(list(set_y)[0]) + ' target samples.') if len(set_w) > 1: raise ValueError('All sample_weight arrays should have the same number of samples. Got array shapes: ' + str([w.shape for w in weights])) if set_y and set_w and (list(set_y)[0] != list(set_w)[0]): raise ValueError('Sample_weight arrays should have the same number of samples as target arrays. Got ' + str(list(set_y)[0]) + ' input samples and ' + str(list(set_w)[0]) + ' target samples.')
Does user input validation for numpy arrays. Args: inputs: list of Numpy arrays of inputs. targets: list of Numpy arrays of targets. weights: list of Numpy arrays of sample weights. Raises: ValueError: in case of incorrectly formatted data.
github-repos
def users(self, proc): ret = {} if (self.first_column in ['USER', 'UID']): for row in self.data: if (proc == row[self.command_name]): if (row[self.first_column] not in ret): ret[row[self.first_column]] = [] ret[row[self.first_column]].append(row['PID']) return ret
Searches for all users running a given command. Returns: dict: each username as a key to a list of PIDs (as strings) that are running the given process. ``{}`` if neither ``USER`` nor ``UID`` is found or ``proc`` is not found. .. note:: 'proc' must match the entire command and arguments.
codesearchnet
def check_channel(fcn): def wrapper(*args, **kwargs): if (not isinstance(args[1], ChannelResource)): raise RuntimeError('resource must be an instance of intern.resource.boss.ChannelResource.') if (not args[1].cutout_ready): raise PartialChannelResourceError('ChannelResource not fully initialized. Use intern.remote.BossRemote.get_channel({}, {}, {})'.format(args[1].name, args[1].coll_name, args[1].exp_name)) return fcn(*args, **kwargs) return wrapper
Decorator that ensures a valid channel passed in. Args: fcn (function): Function that has a ChannelResource as its second argument. Returns: (function): Wraps given function with one that checks for a valid channel.
codesearchnet
def bessel_i0(x, name=None): with ops.name_scope(name, 'bessel_i0', [x]): return gen_special_math_ops.bessel_i0(x)
Computes the Bessel i0 function of `x` element-wise. Modified Bessel function of order 0. It is preferable to use the numerically stabler function `i0e(x)` instead. >>> tf.math.special.bessel_i0([-1., -0.5, 0.5, 1.]).numpy() array([1.26606588, 1.06348337, 1.06348337, 1.26606588], dtype=float32) Args: x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`, `float32`, `float64`. name: A name for the operation (optional). Returns: A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`. @compatibility(scipy) Equivalent to scipy.special.i0 @end_compatibility
github-repos
def differential(P, Q): P, Q = Poly(P), Poly(Q) if not chaospy.poly.is_decomposed(Q): differential(chaospy.poly.decompose(Q)).sum(0) if Q.shape: return Poly([differential(P, q) for q in Q]) if Q.dim>P.dim: P = chaospy.poly.setdim(P, Q.dim) else: Q = chaospy.poly.setdim(Q, P.dim) qkey = Q.keys[0] A = {} for key in P.keys: newkey = numpy.array(key) - numpy.array(qkey) if numpy.any(newkey<0): continue A[tuple(newkey)] = P.A[key]*numpy.prod([fac(key[i], \ exact=True)/fac(newkey[i], exact=True) \ for i in range(P.dim)]) return Poly(B, P.dim, P.shape, P.dtype)
Polynomial differential operator. Args: P (Poly): Polynomial to be differentiated. Q (Poly): Polynomial to differentiate by. Must be decomposed. If polynomial array, the output is the Jacobian matrix.
juraj-google-style
def _extract_namespace_ast_node(self, desc): if ((len(desc) == 0) or (not isinstance(desc[0], AstNamespace))): if self._debug: self._logger.info('Description: %r', desc) raise InvalidSpec('First declaration in a stone must be a namespace. Possibly caused by preceding errors.', desc[0].lineno, desc[0].path) for item in desc[1:]: if isinstance(item, AstNamespace): raise InvalidSpec('Only one namespace declaration per file.', item[0].lineno, item[0].path) return desc.pop(0)
Checks that the namespace is declared first in the spec, and that only one namespace is declared. Args: desc (List[stone.stone.parser.ASTNode]): All AST nodes in a spec file in the order they were defined. Return: stone.frontend.ast.AstNamespace: The namespace AST node.
codesearchnet
def modify_lattice(self, new_lattice): self._lattice = new_lattice for site in self._sites: site.lattice = new_lattice
Modify the lattice of the structure. Mainly used for changing the basis. Args: new_lattice (Lattice): New lattice
codesearchnet
def FindEnumTypeByName(self, full_name): full_name = _NormalizeFullyQualifiedName(full_name) if (full_name not in self._enum_descriptors): self.FindFileContainingSymbol(full_name) return self._enum_descriptors[full_name]
Loads the named enum descriptor from the pool. Args: full_name: The full name of the enum descriptor to load. Returns: The enum descriptor for the named type.
codesearchnet
def run_board(args): init_config(args) from backend.collector import CollectorService service = CollectorService(args.logdir, args.reload_interval, standalone=False, log_level=args.log_level) service.run() logger.info(('Try to start automlboard on port %s\n' % args.port)) command = [os.path.join(root_path, 'manage.py'), 'runserver', ('0.0.0.0:%s' % args.port), '--noreload'] execute_from_command_line(command)
Run main entry for AutoMLBoard. Args: args: args parsed from command line
codesearchnet
async def game(self, short_name, *, id=None, text=None, parse_mode=(), link_preview=True, geo=None, period=60, contact=None, game=False, buttons=None): result = types.InputBotInlineResultGame(id=(id or ''), short_name=short_name, send_message=(await self._message(text=text, parse_mode=parse_mode, link_preview=link_preview, geo=geo, period=period, contact=contact, game=game, buttons=buttons))) if (id is None): result.id = hashlib.sha256(bytes(result)).hexdigest() return result
Creates a new inline result of game type. Args: short_name (`str`): The short name of the game to use.
codesearchnet
def save_array_types(self, fname): type_defs = {'arrays': sorted(list(self.array_types))} with open(fname, 'wt') as fh: pprint(type_defs, stream=fh)
Save array type registry to a file Args: fname (str): Name of file to save array database to
juraj-google-style
def encode_bqm_as_qp(solver, linear, quadratic): active = active_qubits(linear, quadratic) nan = float('nan') lin = [uniform_get(linear, qubit, 0 if qubit in active else nan) for qubit in solver._encoding_qubits] lin = base64.b64encode(struct.pack('<' + ('d' * len(lin)), *lin)) quad = [quadratic.get((q1,q2), 0) + quadratic.get((q2,q1), 0) for (q1,q2) in solver._encoding_couplers if q1 in active and q2 in active] quad = base64.b64encode(struct.pack('<' + ('d' * len(quad)), *quad)) return { 'format': 'qp', 'lin': lin.decode('utf-8'), 'quad': quad.decode('utf-8') }
Encode the binary quadratic problem for submission to a given solver, using the `qp` format for data. Args: solver (:class:`dwave.cloud.solver.Solver`): The solver used. linear (dict[variable, bias]/list[variable, bias]): Linear terms of the model. quadratic (dict[(variable, variable), bias]): Quadratic terms of the model. Returns: encoded submission dictionary
juraj-google-style
def unbroadcast_tfe_to(tensor, shape): axis = utils.create_unbroadcast_axis(shape, shape_as_list(tensor)) return tf.reshape(tf.reduce_sum(tensor, axis=axis), shape)
Reverse the broadcasting operation. See utils.py. Args: tensor: A Tensor. shape: A shape that could have been broadcasted to the shape of tensor. Returns: Tensor with dimensions summed to match `shape`.
juraj-google-style
def id_to_piece(input, model_file=None, model_proto=None, name=None): return _gen_sentencepiece_processor_op.sentencepiece_id_to_piece(input, model_file=model_file, model_proto=model_proto, name=name)
Converts vocabulary id into piece. Args: input: An arbitrary tensor of int32. model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. Either `model_file` or `model_proto` must be set. name: The name argument that is passed to the op function. Returns: A tensor of string with the same shape as input.
codesearchnet
def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(RevokeResponsePayload, self).read( istream, kmip_version=kmip_version ) tstream = BytearrayStream(istream.read(self.length)) self.unique_identifier = attributes.UniqueIdentifier() self.unique_identifier.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate()
Read the data encoding the RevokeResponsePayload object and decode it into its constituent parts. Args: istream (Stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0.
juraj-google-style
def variant_export_lines(store, case_obj, variants_query): export_variants = [] for variant in variants_query: variant_line = [] position = variant['position'] change = variant['reference']+'>'+variant['alternative'] variant_line.append(variant['rank_score']) variant_line.append(variant['chromosome']) variant_line.append(position) variant_line.append(change) variant_line.append('_'.join([str(position), change])) gene_list = variant.get('genes') gene_ids = [] gene_names = [] hgvs_c = [] if len(gene_list) > 0: for gene_obj in gene_list: hgnc_id = gene_obj['hgnc_id'] gene_name = gene(store, hgnc_id)['symbol'] gene_ids.append(hgnc_id) gene_names.append(gene_name) hgvs_nucleotide = '-' transcripts_list = gene_obj.get('transcripts') for transcript_obj in transcripts_list: if transcript_obj.get('is_canonical') and transcript_obj.get('is_canonical') is True: hgvs_nucleotide = str(transcript_obj.get('coding_sequence_name')) hgvs_c.append(hgvs_nucleotide) variant_line.append(';'.join( str(x) for x in gene_ids)) variant_line.append(';'.join( str(x) for x in gene_names)) variant_line.append(';'.join( str(x) for x in hgvs_c)) else: while i < 4: variant_line.append('-') i = i+1 variant_gts = variant['samples'] for individual in case_obj['individuals']: for variant_gt in variant_gts: if individual['individual_id'] == variant_gt['sample_id']: variant_line.append(variant_gt['allele_depths'][0]) variant_line.append(variant_gt['allele_depths'][1]) variant_line.append(variant_gt['genotype_quality']) variant_line = [str(i) for i in variant_line] export_variants.append(",".join(variant_line)) return export_variants
Get variants info to be exported to file, one list (line) per variant. Args: store(scout.adapter.MongoAdapter) case_obj(scout.models.Case) variants_query: a list of variant objects, each one is a dictionary Returns: export_variants: a list of strings. Each string of the list corresponding to the fields of a variant to be exported to file, separated by comma
juraj-google-style
def save(f, arr, vocab): itr = iter(vocab) (word, idx) = next(itr) _write_line(f, arr[idx], word) for (word, idx) in itr: f.write(b'\n') _write_line(f, arr[idx], word)
Save word embedding file. Args: f (File): File to write the vectors. File should be open for writing ascii. arr (numpy.array): Numpy array with ``float`` dtype. vocab (iterable): Each element is pair of a word (``bytes``) and ``arr`` index (``int``). Word should be encoded to str apriori.
codesearchnet