File size: 16,845 Bytes
dfced34 16fdcf4 dfced34 16fdcf4 dfced34 16fdcf4 dfced34 16fdcf4 dfced34 299744f dfced34 d4aacab 330ab17 dfced34 ec8f16b 8116cdb ec8f16b dfced34 30358a6 dfced34 299744f dfced34 8116cdb dfced34 b6b01c8 330ab17 dfced34 330ab17 dfced34 330ab17 dfced34 330ab17 dfced34 330ab17 dfced34 330ab17 dfced34 299744f dfced34 8116cdb dfced34 7e72cb6 dfced34 76fe695 dfced34 299744f dfced34 8116cdb e586f01 8116cdb dfced34 d4aacab 64541c9 330ab17 7895590 d4aacab 330ab17 dfced34 8116cdb 330ab17 8116cdb dfced34 d4aacab 3225696 8116cdb 3225696 dfced34 330ab17 dfced34 3225696 dfced34 8116cdb dfced34 a9fd16c 343ac16 dfced34 a815b7e dfced34 64541c9 dfced34 98ec642 dfced34 330ab17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import gzip
import logging
import os
import re
import shutil
import ssl
import urllib
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List
import datasets
import pandas as pd
from datasets import DatasetInfo
from pyfaidx import Fasta
from tqdm import tqdm
ssl._create_default_https_context = ssl._create_unverified_context
"""
--------------------------------------------------------------------------------------------
Reference Genome URLS:
-------------------------------------------------------------------------------------------
"""
H38_REFERENCE_GENOME_URL = (
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
)
"""
--------------------------------------------------------------------------------------------
Task Specific Handlers:
-------------------------------------------------------------------------------------------
"""
logger = logging.getLogger("multi_omics_transcript_expression")
logger.setLevel("INFO")
LABELS_V1 = [
"Adipose Tissue",
"Adrenal Gland",
"Bladder",
"Blood",
"Blood Vessel",
"Brain",
"Breast",
"Cervix Uteri",
"Colon",
"Esophagus",
"Fallopian Tube",
"Heart",
"Kidney",
"Liver",
"Lung",
"Muscle",
"Nerve",
"Ovary",
"Pancreas",
"Pituitary",
"Prostate",
"Salivary Gland",
"Skin",
"Small Intestine",
"Spleen",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
"Vagina",
]
LABELS_V2 = [
"Adipose_Subcutaneous",
"Adipose_Visceral (Omentum)",
"Adrenal Gland",
"Artery_Aorta",
"Artery_Coronary",
"Artery_Tibial",
"Bladder",
"Brain_Amygdala",
"Brain_Anterior cingulate cortex (BA24)",
"Brain_Caudate (basal ganglia)",
"Brain_Cerebellar Hemisphere",
"Brain_Cerebellum",
"Brain_Cortex",
"Brain_Frontal Cortex (BA9)",
"Brain_Hippocampus",
"Brain_Hypothalamus",
"Brain_Nucleus accumbens (basal ganglia)",
"Brain_Putamen (basal ganglia)",
"Brain_Spinal cord (cervical c-1)",
"Brain_Substantia nigra",
"Breast_Mammary Tissue",
"Cells_Cultured fibroblasts",
"Cells_EBV-transformed lymphocytes",
"Cervix_Ectocervix",
"Cervix_Endocervix",
"Colon_Sigmoid",
"Colon_Transverse",
"Esophagus_Gastroesophageal Junction",
"Esophagus_Mucosa",
"Esophagus_Muscularis",
"Fallopian Tube",
"Heart_Atrial Appendage",
"Heart_Left Ventricle",
"Kidney_Cortex",
"Kidney_Medulla",
"Liver",
"Lung",
"Minor Salivary Gland",
"Muscle_Skeletal",
"Nerve_Tibial",
"Ovary",
"Pancreas",
"Pituitary",
"Prostate",
"Skin_Not Sun Exposed (Suprapubic)",
"Skin_Sun Exposed (Lower leg)",
"Small Intestine_Terminal Ileum",
"Spleen",
"Stomach",
"Testis",
"Thyroid",
"Uterus",
"Vagina",
"Whole Blood",
]
# Add after LABELS_V2 definition
LABELS_LIGHT = [
"Adipose Tissue",
"Brain",
"Heart",
"Liver",
"Lung",
"Muscle",
"Pancreas",
"Skin",
]
class GenomicLRATaskHandler(ABC):
"""
Abstract method for the Genomic LRA task handlers. Each handler
"""
@abstractmethod
def __init__(self, **kwargs):
pass
@abstractmethod
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfo for the task
"""
pass
def split_generators(
self, dl_manager, cache_dir_root
) -> List[datasets.SplitGenerator]:
"""
Downloads required files using dl_manager and separates them by split.
"""
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"handler": self, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"handler": self, "split": "test"},
),
]
@abstractmethod
def generate_examples(self, split):
"""
A generator that yields examples for the specified split.
"""
pass
@staticmethod
def hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks just transferred [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
def download_and_extract_gz(self, file_url, cache_dir_root):
"""
Downloads and extracts a gz file into the given cache directory. Returns the full file path
of the extracted gz file.
Args:
file_url: url of the gz file to be downloaded and extracted.
cache_dir_root: Directory to extract file into.
"""
file_fname = Path(file_url).stem
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
if not os.path.exists(file_complete_path):
if not os.path.exists(file_complete_path + ".gz"):
os.makedirs(os.path.dirname(file_complete_path), exist_ok=True)
with tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
miniters=1,
desc=file_url.split("/")[-1],
) as t:
urllib.request.urlretrieve(
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
)
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
with open(file_complete_path, "wb") as file_out:
shutil.copyfileobj(file_in, file_out)
return file_complete_path
class TranscriptExpressionHandler(GenomicLRATaskHandler):
"""
Handler for the Transcript Expression task.
"""
DEFAULT_LENGTH = 200_000
DEFAULT_FILTER_OUT_LENGTH = 196_608
def __init__(
self,
sequence_length: int = DEFAULT_LENGTH,
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
expression_method: str = "read_counts_old",
light_version: bool = False,
**kwargs,
):
"""
Creates a new handler for the Transcript Expression Prediction Task.
Args:
sequence_length: Length of the sequence around the TSS_CAGE start site
light_version: If True, uses a smaller subset of tissues and fewer samples
"""
self.reference_genome = None
self.coordinate_csv_file = None
self.labels_csv_file = None
self.light_version = light_version
self.sequence_length = sequence_length
self.filter_out_sequence_length = filter_out_sequence_length
if self.filter_out_sequence_length is not None:
assert isinstance(self.filter_out_sequence_length, int)
assert (
self.sequence_length <= self.filter_out_sequence_length
), f"{self.sequence_length=} > {self.filter_out_sequence_length=}"
assert isinstance(self.sequence_length, int)
def get_info(self, description: str) -> DatasetInfo:
"""
Returns the DatasetInfor for the Transcript Expression dataset. Each example
includes a genomic sequence and a list of label values.
"""
features = datasets.Features(
{
# DNA sequence
"DNA": datasets.Value("string"),
# list of expression values in each tissue
"labels": datasets.Sequence(datasets.Value("float32")),
"m_t": datasets.Sequence(datasets.Value("float32")),
"sigma_t": datasets.Sequence(datasets.Value("float32")),
"m_g": datasets.Sequence(datasets.Value("float32")),
"sigma_g": datasets.Sequence(datasets.Value("float32")),
"labels_name": datasets.Sequence(datasets.Value("string")),
# chromosome number
"chromosome": datasets.Value(dtype="string"),
"RNA": datasets.Value("string"),
"five_prime_utr": datasets.Value("string"),
"coding_sequence": datasets.Value("string"),
"three_prime_utr": datasets.Value("string"),
"Protein": datasets.Value("string"),
"transcript_id": datasets.Value("string"),
"gene_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
)
def split_generators(self, dl_manager, cache_dir_root):
"""
Separates files by split and stores filenames in instance variables.
The Transcript Expression dataset requires the reference hg19 genome, coordinate
csv file,and label csv file to be saved.
"""
# Manually download the reference genome since there are difficulties when streaming
reference_genome_file = self.download_and_extract_gz(
H38_REFERENCE_GENOME_URL, cache_dir_root
)
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
self.df_csv_file = dl_manager.download_and_extract(
"transcript_expression/GTEx_final.csv"
)
self.normalization_values_csv_file = dl_manager.download_and_extract(
"transcript_expression/normalization_values.csv"
)
return super().split_generators(dl_manager, cache_dir_root)
def generate_examples(self, split):
"""
A generator which produces examples for the given split, each with a sequence
and the corresponding labels. The sequences are padded to the correct sequence
length and standardized before returning.
"""
df = pd.read_csv(self.df_csv_file)
df = df.loc[df["chr"] != "chrMT"]
# Use light version labels if specified
labels_name = LABELS_LIGHT if self.light_version else LABELS_V1
split_df = df.loc[df["split"] == split]
# For light version, take only a subset of the data
if self.light_version:
split_df = split_df.sample(n=min(1000, len(split_df)), random_state=42)
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
# Select appropriate columns based on version
label_columns = [f"m_t_{tissue}" for tissue in labels_name]
m_t = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"sigma_t_{tissue}" for tissue in labels_name]
sigma_t = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"m_g_{tissue}" for tissue in labels_name]
m_g = norm_values_df[label_columns].to_numpy().reshape(-1)
label_columns = [f"sigma_g_{tissue}" for tissue in labels_name]
sigma_g = norm_values_df[label_columns].to_numpy().reshape(-1)
key = 0
for idx, coordinates_row in split_df.iterrows():
negative_strand = coordinates_row["strand"] == "-"
if negative_strand:
start = coordinates_row["end"] - 1
else:
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
chromosome = coordinates_row["chr"]
labels_row = coordinates_row[labels_name]
padded_sequence = pad_sequence(
chromosome=self.reference_genome[chromosome],
start=start,
sequence_length=self.sequence_length,
negative_strand=negative_strand,
filter_out_sequence_length=self.filter_out_sequence_length,
)
if padded_sequence:
yield key, {
"transcript_id": coordinates_row["transcript_id_gtex"],
"gene_id": coordinates_row["gene_id_gtex"],
"labels_name": labels_name,
"labels": labels_row.to_numpy(),
"m_t": m_t,
"sigma_t": sigma_t,
"m_g": m_g,
"sigma_g": sigma_g,
"DNA": standardize_sequence(padded_sequence),
"chromosome": re.sub("chr", "", chromosome),
"RNA": coordinates_row["RNA"],
"five_prime_utr": coordinates_row["5UTR"],
"coding_sequence": coordinates_row["CDS"],
"three_prime_utr": coordinates_row["3UTR"],
"Protein": coordinates_row["Protein"],
}
key += 1
logger.info(f"filtering out {len(split_df)-key} " f"elements from the dataset")
"""
--------------------------------------------------------------------------------------------
Dataset loader:
-------------------------------------------------------------------------------------------
"""
_DESCRIPTION = """
Dataset for benchmark of genomic deep learning models.
"""
# define dataset configs
class GenomicsLRAConfig(datasets.BuilderConfig):
"""
BuilderConfig.
"""
def __init__(self, *args, **kwargs): # type: ignore
"""BuilderConfig for the location tasks dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__()
self.handler = TranscriptExpressionHandler(**kwargs)
# DatasetBuilder
class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
"""
Tasks to annotate human genome.
"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = GenomicsLRAConfig
def _info(self) -> DatasetInfo:
return self.config.handler.get_info(description=_DESCRIPTION)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Downloads data files and organizes it into train/test/val splits
"""
return self.config.handler.split_generators(dl_manager, self._cache_dir_root)
def _generate_examples(self, handler, split):
"""
Read data files and create examples(yield)
Args:
handler: The handler for the current task
split: A string in ['train', 'test', 'valid']
"""
yield from handler.generate_examples(split)
"""
--------------------------------------------------------------------------------------------
Global Utils:
-------------------------------------------------------------------------------------------
"""
def standardize_sequence(sequence: str):
"""
Standardizes the sequence by replacing all unknown characters with N and
converting to all uppercase.
Args:
sequence: genomic sequence to standardize
"""
pattern = "[^ATCG]"
# all characters to upper case
sequence = sequence.upper()
# replace all characters that are not A,T,C,G with N
sequence = re.sub(pattern, "N", sequence)
return sequence
def pad_sequence(
chromosome,
start,
sequence_length,
negative_strand=False,
filter_out_sequence_length=None,
):
"""
Extends a given sequence to length sequence_length. If
padding to the given length is outside the gene, returns
None.
Args:
chromosome: Chromosome from pyfaidx extracted Fasta.
start: Start index of original sequence.
sequence_length: Desired sequence length. If sequence length is odd, the
remainder is added to the end of the sequence.
end: End index of original sequence. If no end is specified, it creates a
centered sequence around the start index.
negative_strand: If negative_strand, returns the reverse compliment of the sequence
"""
pad = sequence_length // 2
end = start + pad + (sequence_length % 2)
start = start - pad
if filter_out_sequence_length is not None:
filter_out_pad = filter_out_sequence_length // 2
filter_out_end = start + filter_out_pad + (filter_out_sequence_length % 2)
filter_out_start = start - filter_out_pad
if filter_out_start < 0 or filter_out_end >= len(chromosome):
return
if start < 0 or end >= len(chromosome):
return
if negative_strand:
return chromosome[start:end].reverse.complement.seq
return chromosome[start:end].seq |