Commit
·
8116cdb
1
Parent(s):
9ddea85
fix
Browse files
multi_omics_transcript_expression.py
CHANGED
@@ -154,7 +154,8 @@ class GenomicLRATaskHandler(ABC):
|
|
154 |
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
|
155 |
),
|
156 |
datasets.SplitGenerator(
|
157 |
-
name=datasets.Split.VALIDATION,
|
|
|
158 |
),
|
159 |
]
|
160 |
|
@@ -219,8 +220,8 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
219 |
Handler for the Transcript Expression task.
|
220 |
"""
|
221 |
|
222 |
-
DEFAULT_LENGTH =
|
223 |
-
DEFAULT_FILTER_OUT_LENGTH =
|
224 |
|
225 |
def __init__(
|
226 |
self,
|
@@ -238,7 +239,6 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
238 |
coordinate_csv_file: The csv file that stores the coordinates and filename of the target
|
239 |
labels_csv_file: The csv file that stores the labels with one sample per row.
|
240 |
sequence_length: Sequence length for this handler.
|
241 |
-
expression_method: To specify if user wants to use TPMs instead of read
|
242 |
counts.
|
243 |
"""
|
244 |
self.reference_genome = None
|
@@ -246,7 +246,6 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
246 |
self.labels_csv_file = None
|
247 |
self.sequence_length = sequence_length
|
248 |
self.filter_out_sequence_length = filter_out_sequence_length
|
249 |
-
self.expression_method = expression_method
|
250 |
|
251 |
if filter_out_sequence_length is not None:
|
252 |
assert isinstance(filter_out_sequence_length, int)
|
@@ -266,6 +265,10 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
266 |
"DNA": datasets.Value("string"),
|
267 |
# list of expression values in each tissue
|
268 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
|
|
|
|
|
|
|
|
269 |
"labels_name": datasets.Sequence(datasets.Value("string")),
|
270 |
# chromosome number
|
271 |
"chromosome": datasets.Value(dtype="string"),
|
@@ -297,18 +300,12 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
297 |
)
|
298 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
"transcript_expression/GTEx_v1_multiomics.csv"
|
307 |
-
)
|
308 |
-
elif self.expression_method == "read_counts":
|
309 |
-
self.df_csv_file = dl_manager.download_and_extract(
|
310 |
-
"transcript_expression/GTEx_read_counts_multiomics.csv"
|
311 |
-
)
|
312 |
|
313 |
return super().split_generators(dl_manager, cache_dir_root)
|
314 |
|
@@ -324,12 +321,18 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
324 |
|
325 |
split_df = df.loc[df["split"] == split]
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
key = 0
|
328 |
for idx, coordinates_row in split_df.iterrows():
|
329 |
negative_strand = coordinates_row["strand"] == "-"
|
330 |
|
331 |
if negative_strand:
|
332 |
-
start =
|
333 |
else:
|
334 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
335 |
|
@@ -342,12 +345,17 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
342 |
negative_strand=negative_strand,
|
343 |
filter_out_sequence_length=self.filter_out_sequence_length,
|
344 |
)
|
|
|
345 |
if padded_sequence:
|
346 |
yield key, {
|
347 |
-
"transcript_id":coordinates_row["transcript_id_gtex"],
|
348 |
-
"gene_id":coordinates_row["gene_id_gtex"],
|
349 |
"labels_name": labels_name,
|
350 |
"labels": labels_row.to_numpy(),
|
|
|
|
|
|
|
|
|
351 |
"DNA": standardize_sequence(padded_sequence),
|
352 |
"chromosome": re.sub("chr", "", chromosome),
|
353 |
"RNA": coordinates_row["RNA"],
|
|
|
154 |
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
|
155 |
),
|
156 |
datasets.SplitGenerator(
|
157 |
+
name=datasets.Split.VALIDATION,
|
158 |
+
gen_kwargs={"handler": self, "split": "test"},
|
159 |
),
|
160 |
]
|
161 |
|
|
|
220 |
Handler for the Transcript Expression task.
|
221 |
"""
|
222 |
|
223 |
+
DEFAULT_LENGTH = 200_000
|
224 |
+
DEFAULT_FILTER_OUT_LENGTH = 196_608
|
225 |
|
226 |
def __init__(
|
227 |
self,
|
|
|
239 |
coordinate_csv_file: The csv file that stores the coordinates and filename of the target
|
240 |
labels_csv_file: The csv file that stores the labels with one sample per row.
|
241 |
sequence_length: Sequence length for this handler.
|
|
|
242 |
counts.
|
243 |
"""
|
244 |
self.reference_genome = None
|
|
|
246 |
self.labels_csv_file = None
|
247 |
self.sequence_length = sequence_length
|
248 |
self.filter_out_sequence_length = filter_out_sequence_length
|
|
|
249 |
|
250 |
if filter_out_sequence_length is not None:
|
251 |
assert isinstance(filter_out_sequence_length, int)
|
|
|
265 |
"DNA": datasets.Value("string"),
|
266 |
# list of expression values in each tissue
|
267 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
268 |
+
"m_t": datasets.Sequence(datasets.Value("float32")),
|
269 |
+
"sigma_t": datasets.Sequence(datasets.Value("float32")),
|
270 |
+
"m_g": datasets.Sequence(datasets.Value("float32")),
|
271 |
+
"sigma_g": datasets.Sequence(datasets.Value("float32")),
|
272 |
"labels_name": datasets.Sequence(datasets.Value("string")),
|
273 |
# chromosome number
|
274 |
"chromosome": datasets.Value(dtype="string"),
|
|
|
300 |
)
|
301 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
302 |
|
303 |
+
self.df_csv_file = dl_manager.download_and_extract(
|
304 |
+
"transcript_expression/GTEx_final_tpm_multiomics_fix.csv"
|
305 |
+
)
|
306 |
+
self.normalization_values_csv_file = dl_manager.download_and_extract(
|
307 |
+
"transcript_expression/normalization_values.csv"
|
308 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
return super().split_generators(dl_manager, cache_dir_root)
|
311 |
|
|
|
321 |
|
322 |
split_df = df.loc[df["split"] == split]
|
323 |
|
324 |
+
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
|
325 |
+
m_t = norm_values_df["m_t"]
|
326 |
+
sigma_t = norm_values_df["sigma_t"]
|
327 |
+
m_g = norm_values_df["m_g"]
|
328 |
+
sigma_g = norm_values_df["sigma_g"]
|
329 |
+
|
330 |
key = 0
|
331 |
for idx, coordinates_row in split_df.iterrows():
|
332 |
negative_strand = coordinates_row["strand"] == "-"
|
333 |
|
334 |
if negative_strand:
|
335 |
+
start = coordinates_row["end"] - 1
|
336 |
else:
|
337 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
338 |
|
|
|
345 |
negative_strand=negative_strand,
|
346 |
filter_out_sequence_length=self.filter_out_sequence_length,
|
347 |
)
|
348 |
+
fdsjog
|
349 |
if padded_sequence:
|
350 |
yield key, {
|
351 |
+
"transcript_id": coordinates_row["transcript_id_gtex"],
|
352 |
+
"gene_id": coordinates_row["gene_id_gtex"],
|
353 |
"labels_name": labels_name,
|
354 |
"labels": labels_row.to_numpy(),
|
355 |
+
"m_t": m_t.to_numpy(),
|
356 |
+
"sigma_t": sigma_t.to_numpy(),
|
357 |
+
"m_g": m_g.to_numpy(),
|
358 |
+
"sigma_g": sigma_g.to_numpy(),
|
359 |
"DNA": standardize_sequence(padded_sequence),
|
360 |
"chromosome": re.sub("chr", "", chromosome),
|
361 |
"RNA": coordinates_row["RNA"],
|