code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A__ : Dict= open # noqa: we just need to have a builtin inside this module to test it properly
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = 11 UpperCamelCase__ = int('1' + '0' * digit_len ) for num in range(snake_case__ , snake_case__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(snake_case__ , snake_case__ ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 UpperCamelCase__ = 10 return solutions def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 2 ) -> int: """simple docstring""" UpperCamelCase__ = 1.0 for fraction in fraction_list(snake_case__ ): UpperCamelCase__ = Fraction(snake_case__ ) result *= frac.denominator / frac.numerator return int(snake_case__ ) if __name__ == "__main__": print(solution())
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE , n - 1 ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase__ = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE , index + 1 ) if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter integers separated by spaces: """) A__ : list[int]= [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" from math import pow def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCamelCase__ = int(pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCamelCase__ = backtrack( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , current_number + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCamelCase__ = backtrack( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , current_number + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_sum, solutions_count def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = set(__a ), [start] while stack: UpperCamelCase__ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored A__ : List[str]= { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = args.pruning_method UpperCamelCase__ = args.threshold UpperCamelCase__ = args.model_name_or_path.rstrip('/' ) UpperCamelCase__ = args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) UpperCamelCase__ = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) UpperCamelCase__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCamelCase__ = tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: UpperCamelCase__ = tensor print(F'Copied layer {name}' ) elif "bias" in name: UpperCamelCase__ = tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": UpperCamelCase__ = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[F'{prefix_}mask_scores'] UpperCamelCase__ = TopKBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[F'{prefix_}mask_scores'] UpperCamelCase__ = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCamelCase__ = name[:-6] UpperCamelCase__ = model[F'{prefix_}mask_scores'] UpperCamelCase__ = -0.1, 1.1 UpperCamelCase__ = torch.sigmoid(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = s * (r - l) + l UpperCamelCase__ = s_bar.clamp(min=0.0 , max=1.0 ) UpperCamelCase__ = tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: UpperCamelCase__ = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE ) , F'bertarized_{os.path.basename(SCREAMING_SNAKE_CASE )}' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): shutil.copytree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F'\nCreated folder {target_model_path}' ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) A__ : Optional[int]= parser.parse_args() main(args)
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = os.path.join(args.tf_model_dir , 'parameters.json' ) UpperCamelCase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('.pt' ): UpperCamelCase__ = args.output + '''.pt''' UpperCamelCase__ = OrderedDict() with tf.device('/CPU:0' ): UpperCamelCase__ = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): UpperCamelCase__ = int(key_name[9] ) elif key_name.startswith('pasts/out' ): UpperCamelCase__ = 8 UpperCamelCase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/moe' ): UpperCamelCase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/softmlp/kernel' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): UpperCamelCase__ = key_name[-9:-7] for i in range(16 ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) UpperCamelCase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/mlp' ): UpperCamelCase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p1/bias' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p2/kernel' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p2/bias' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/ln' ): UpperCamelCase__ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/g' ): UpperCamelCase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/att' ): UpperCamelCase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): UpperCamelCase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase__ = state[:, 0, :, :] UpperCamelCase__ = state[:, 1, :, :] UpperCamelCase__ = state[:, 2, :, :] UpperCamelCase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/o/kernel' ): UpperCamelCase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player UpperCamelCase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/an' ): UpperCamelCase__ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): UpperCamelCase__ = '''model.blocks.%d.self_attn.norm.bias''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('/g' ): UpperCamelCase__ = '''model.blocks.%d.self_attn.norm.weight''' % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): UpperCamelCase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] UpperCamelCase__ = '''model.%s.weight''' % nlayer UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('model/wte' ): UpperCamelCase__ = '''lm_head.weight''' UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/wob' ): UpperCamelCase__ = '''final_logits_bias''' UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = state.reshape((1, -1) ) UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": UpperCamelCase__ = '''model.last_project.weight''' UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": UpperCamelCase__ = '''model.last_project.bias''' UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": A__ : Dict= argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") A__ : Any= parser.parse_args() convert_tf_gptsan_to_pt(args)
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A__ : Union[str, Any]= list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A__ : List[str]= [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") A__ : Union[str, Any]= [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") A__ : str= [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") A__ : List[Any]= [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") A__ : List[str]= len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Tuple= get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A__ : Dict= 25_00_04 A__ : Union[str, Any]= 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCamelCase ( lowerCamelCase__ , unittest.TestCase ): a : Optional[int] =MBartaaTokenizer a : List[str] =MBartaaTokenizerFast a : Tuple =True a : str =True def SCREAMING_SNAKE_CASE__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = MBartaaTokenizer(__lowerCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = '''<s>''' UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__lowerCamelCase ) , 1054 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = MBartaaTokenizer(__lowerCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__lowerCamelCase ) UpperCamelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__lowerCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = {'''input_ids''': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCamelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(__lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): a : List[str] ="""facebook/mbart-large-50-one-to-many-mmt""" a : str =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] a : Optional[int] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] a : Any =[EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> int: UpperCamelCase__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) UpperCamelCase__ = 1 return cls def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) UpperCamelCase__ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase__ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) UpperCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __lowerCamelCase ) UpperCamelCase__ = 10 UpperCamelCase__ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase__ = MBartaaTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors='pt' ) UpperCamelCase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) UpperCamelCase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors='pt' ) UpperCamelCase__ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors='pt' ) UpperCamelCase__ = targets['''input_ids'''] UpperCamelCase__ = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: # A mock response for an HTTP head request to emulate server down UpperCamelCase__ = mock.Mock() UpperCamelCase__ = 500 UpperCamelCase__ = {} UpperCamelCase__ = HTTPError UpperCamelCase__ = {} # Download this model to make sure it's in the cache. UpperCamelCase__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowercase ) as mock_head: UpperCamelCase__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down UpperCamelCase__ = mock.Mock() UpperCamelCase__ = 500 UpperCamelCase__ = {} UpperCamelCase__ = HTTPError UpperCamelCase__ = {} # Download this model to make sure it's in the cache. UpperCamelCase__ = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowercase ) as mock_head: UpperCamelCase__ = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase__ = tempfile.mktemp() with open(_lowercase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _lowercase ) UpperCamelCase__ = AlbertTokenizer.from_pretrained(_lowercase ) finally: os.remove(_lowercase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _lowercase ) UpperCamelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # This test is for deprecated behavior and can be removed in v5 UpperCamelCase__ = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class __lowerCamelCase ( unittest.TestCase ): a : int =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> Union[str, Any]: UpperCamelCase__ = TOKEN HfFolder.save_token(_lowercase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(_lowercase , 'vocab.txt' ) with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizer(_lowercase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase , repo_id='test-tokenizer' , push_to_hub=_lowercase , use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(_lowercase , 'vocab.txt' ) with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizer(_lowercase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowercase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_lowercase , use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(_lowercase , 'vocab.txt' ) with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase__ = CustomTokenizer(_lowercase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase__ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(_lowercase , 'vocab.txt' ) with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) UpperCamelCase__ = CustomTokenizerFast.from_pretrained(_lowercase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase__ = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase__ = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=_lowercase , trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase__ = Trie() UpperCamelCase__ = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowercase , ['AB', 'C'] )
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "cpu" , SCREAMING_SNAKE_CASE = None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) UpperCamelCase__ = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ = src_path torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ : Tuple= { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any]= ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str]= [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict= ["LayoutLMv3FeatureExtractor"] A__ : Dict= ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys A__ : Dict= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): a : str =BertJapaneseTokenizer a : List[Any] =False a : Optional[Any] =True def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: super().setUp() UpperCamelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、世界。" UpperCamelCase__ = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: UpperCamelCase__ = self.get_input_output_texts(snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.tokenizer_class(self.vocab_file ) UpperCamelCase__ = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(snake_case_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(snake_case_ ) UpperCamelCase__ = "こんにちは、世界。\nこんばんは、世界。" UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase__ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case_ , 'wb' ) as handle: pickle.dump(snake_case_ , snake_case_ ) with open(snake_case_ , 'rb' ) as handle: UpperCamelCase__ = pickle.load(snake_case_ ) UpperCamelCase__ = tokenizer_new.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: try: UpperCamelCase__ = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: try: UpperCamelCase__ = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = MecabTokenizer(do_lower_case=snake_case_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: try: UpperCamelCase__ = MecabTokenizer( do_lower_case=snake_case_ , normalize_text=snake_case_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = MecabTokenizer(normalize_text=snake_case_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(snake_case_ ) UpperCamelCase__ = "こんにちは、世界。\nこんばんは、世界。" UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase__ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case_ , 'wb' ) as handle: pickle.dump(snake_case_ , snake_case_ ) with open(snake_case_ , 'rb' ) as handle: UpperCamelCase__ = pickle.load(snake_case_ ) UpperCamelCase__ = tokenizer_new.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = SudachiTokenizer(do_lower_case=snake_case_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = SudachiTokenizer(normalize_text=snake_case_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = SudachiTokenizer(trim_whitespace=snake_case_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(snake_case_ ) UpperCamelCase__ = "こんにちは、世界。\nこんばんは、世界。" UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase__ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(snake_case_ , 'wb' ) as handle: pickle.dump(snake_case_ , snake_case_ ) with open(snake_case_ , 'rb' ) as handle: UpperCamelCase__ = pickle.load(snake_case_ ) UpperCamelCase__ = tokenizer_new.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = JumanppTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = JumanppTokenizer(normalize_text=snake_case_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = JumanppTokenizer(trim_whitespace=snake_case_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] UpperCamelCase__ = {} for i, token in enumerate(snake_case_ ): UpperCamelCase__ = i UpperCamelCase__ = WordpieceTokenizer(vocab=snake_case_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) UpperCamelCase__ = tokenizer.subword_tokenizer UpperCamelCase__ = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(snake_case_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) UpperCamelCase__ = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(snake_case_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) UpperCamelCase__ = tokenizer.encode('ありがとう。' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode('どういたしまして。' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): a : str =BertJapaneseTokenizer a : Union[str, Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: super().setUp() UpperCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[Any]: UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、世界。" UpperCamelCase__ = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) UpperCamelCase__ = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( snake_case_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCamelCase__ = {} for i, token in enumerate(snake_case_ ): UpperCamelCase__ = i UpperCamelCase__ = CharacterTokenizer(vocab=snake_case_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) UpperCamelCase__ = tokenizer.encode('ありがとう。' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode('どういたしまして。' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = "cl-tohoku/bert-base-japanese" UpperCamelCase__ = AutoTokenizer.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = "cl-tohoku/bert-base-japanese" with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(snake_case_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) UpperCamelCase__ = "bert-base-cased" with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(snake_case_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "x" , SCREAMING_SNAKE_CASE = 10**-10 , SCREAMING_SNAKE_CASE = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = symbols(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = lambdify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase__ = lambdify(_SCREAMING_SNAKE_CASE , diff(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = starting_point while True: if diff_function(_SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ = prev_guess - multiplicity * func(_SCREAMING_SNAKE_CASE ) / diff_function( _SCREAMING_SNAKE_CASE ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A__ : Union[str, Any]= logging.get_logger(__name__) A__ : List[str]= OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A__ : List[str]= _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase__ = model_type_to_module_name(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , '__name__' , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase__ = importlib.import_module('transformers' ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , **SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" UpperCamelCase__ = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class __lowerCamelCase : def __init__( self ) -> List[str]: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = kwargs.pop('config' , snake_case_ ) UpperCamelCase__ = kwargs.pop('trust_remote_code' , snake_case_ ) UpperCamelCase__ = True UpperCamelCase__ = ImageProcessingMixin.get_image_processor_dict(snake_case_ , **snake_case_ ) UpperCamelCase__ = config_dict.get('image_processor_type' , snake_case_ ) UpperCamelCase__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase__ = config_dict.pop('feature_extractor_type' , snake_case_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCamelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCamelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.image_processor_type`` UpperCamelCase__ = getattr(snake_case_ , 'image_processor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase__ = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCamelCase__ = image_processor_class_from_name(snake_case_ ) UpperCamelCase__ = image_processor_auto_map is not None UpperCamelCase__ = image_processor_class is not None or type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase__ = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: UpperCamelCase__ = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) UpperCamelCase__ = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case_ , **snake_case_ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase__ = IMAGE_PROCESSOR_MAPPING[type(snake_case_ )] return image_processor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> str: IMAGE_PROCESSOR_MAPPING.register(snake_case_ , snake_case_ )
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A__ : Dict= """sshleifer/bart-tiny-random""" A__ : Any= """patrickvonplaten/t5-tiny-random""" @require_torch class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return AutoConfig.from_pretrained(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCamelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: with self.assertRaises(UpperCamelCase__ ): create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=UpperCamelCase__ , d=UpperCamelCase__ )
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__( self , snake_case_ ) -> Optional[int]: UpperCamelCase__ = data UpperCamelCase__ = None UpperCamelCase__ = None def lowerCAmelCase_( ) -> TreeNode: """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) UpperCamelCase__ = input('Enter the value of the root node: ' ).strip().lower() UpperCamelCase__ = queue.Queue() UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = q.get() UpperCamelCase__ = F'Enter the left node of {node_found.data}: ' UpperCamelCase__ = input(SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = left_node q.put(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = F'Enter the right node of {node_found.data}: ' UpperCamelCase__ = input(SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = right_node q.put(SCREAMING_SNAKE_CASE ) raise def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = queue.Queue() q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = queue.Queue() q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = [] while not q.empty(): UpperCamelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = [] UpperCamelCase__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = n.left # end of while means current node doesn't have left child UpperCamelCase__ = stack.pop() # start to traverse its right child UpperCamelCase__ = n.right def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = [] UpperCamelCase__ = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = n.left UpperCamelCase__ = stack.pop() print(n.data , end=',' ) UpperCamelCase__ = n.right def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ , UpperCamelCase__ = [], [] UpperCamelCase__ = node stacka.append(SCREAMING_SNAKE_CASE ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCamelCase__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char UpperCamelCase__ , UpperCamelCase__ = divmod(width - len(SCREAMING_SNAKE_CASE ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A__ : Union[str, Any]= build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : int= {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Any= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A__= { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __lowerCamelCase ( __UpperCAmelCase ): a : Dict ="""facebook/nllb-200-distilled-600M""" a : Tuple =( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) a : Optional[Any] ="""translator""" a : Any =AutoTokenizer a : Any =AutoModelForSeqaSeqLM a : Dict =LANGUAGE_CODES a : Dict =["""text""", """text""", """text"""] a : Dict =["""text"""] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) UpperCamelCase__ = self.lang_to_code[src_lang] UpperCamelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase_ , return_tensors='pt' , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Tuple: return self.model.generate(**lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase_ )
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" A__ : Any= """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ A__ : Any= [{"""type""": """code""", """content""": INSTALL_CONTENT}] A__ : Any= { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = args.log_outputs UpperCamelCase__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCamelCase__ = load_metric('wer' ) UpperCamelCase__ = load_metric('cer' ) # compute metrics UpperCamelCase__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCamelCase__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCamelCase__ = F'WER: {wer_result}\nCER: {cer_result}' print(UpperCAmelCase__ ) with open(F'{dataset_id}_eval_results.txt' , 'w' ) as f: f.write(UpperCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase__ = F'log_{dataset_id}_predictions.txt' UpperCamelCase__ = F'log_{dataset_id}_targets.txt' with open(UpperCAmelCase__ , 'w' ) as p, open(UpperCAmelCase__ , 'w' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): p.write(F'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCAmelCase__ , with_indices=UpperCAmelCase__ ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase__ = re.sub(UpperCAmelCase__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCamelCase__ = ' '.join(text.split(UpperCAmelCase__ ) ) return text def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=UpperCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase__ = feature_extractor.sampling_rate # resample audio UpperCamelCase__ = dataset.cast_column('audio' , Audio(sampling_rate=UpperCAmelCase__ ) ) # load eval pipeline if args.device is None: UpperCamelCase__ = 0 if torch.cuda.is_available() else -1 UpperCamelCase__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase__ = prediction['text'] UpperCamelCase__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCamelCase__ = dataset.map(UpperCAmelCase__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": A__ : int= argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `\'en\'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `\'test\'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) A__ : List[Any]= parser.parse_args() main(args)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" from functools import lru_cache def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> set: """simple docstring""" UpperCamelCase__ = 2 UpperCamelCase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase__ ) if n > 1: factors.add(UpperCAmelCase__ ) return factors @lru_cache def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return len(unique_prime_factors(UpperCAmelCase__ ) ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return len(set(UpperCAmelCase__ ) ) in (0, 1) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" UpperCamelCase__ = 2 while True: # Increment each value of a generated range UpperCamelCase__ = [base + i for i in range(UpperCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase__ = [upf_len(UpperCAmelCase__ ) for x in group] checker.append(UpperCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 4 ) -> int: """simple docstring""" UpperCamelCase__ = run(UpperCAmelCase__ ) return results[0] if len(UpperCAmelCase__ ) else None if __name__ == "__main__": print(solution())
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A__ : Tuple= logging.get_logger(__name__) A__ : Optional[Any]= { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowerCamelCase ( _a ): a : Dict ="""umt5""" a : List[Any] =["""past_key_values"""] def __init__( self , snake_case_=25_0112 , snake_case_=512 , snake_case_=64 , snake_case_=1024 , snake_case_=8 , snake_case_=None , snake_case_=6 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gated-gelu" , snake_case_=True , snake_case_=True , snake_case_="T5Tokenizer" , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=0 , **snake_case_ , ) -> Optional[int]: super().__init__( is_encoder_decoder=snake_case_ , tokenizer_class=snake_case_ , tie_word_embeddings=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_layers UpperCamelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase__ = num_heads UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = feed_forward_proj UpperCamelCase__ = use_cache UpperCamelCase__ = self.feed_forward_proj.split('-' ) UpperCamelCase__ = act_info[-1] UpperCamelCase__ = act_info[0] == 'gated' if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCamelCase__ = 'gelu_new' @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return self.d_model @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return self.num_heads @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return self.num_layers class __lowerCamelCase ( _a ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase__ = 'past_encoder_sequence + sequence' UpperCamelCase__ = {0: 'batch'} UpperCamelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return 13 @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: return 5E-4
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = [] for line in lines: UpperCamelCase__ = re.sub(r'#.*' , '' , SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '\n'.join(SCREAMING_SNAKE_CASE ) # Make a hash from all this code UpperCamelCase__ = full_str.encode('utf-8' ) return shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching A__ : Tuple= { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A__ : int= { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A__ : int= {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name A__ : Dict[str, List[str]]= {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 4 , snake_case_=32 * 6 , snake_case_=4 , snake_case_=32 , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = is_training UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = num_queries UpperCamelCase__ = num_channels UpperCamelCase__ = min_size UpperCamelCase__ = max_size UpperCamelCase__ = num_labels UpperCamelCase__ = mask_feature_size def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) UpperCamelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) UpperCamelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() UpperCamelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() UpperCamelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = output.encoder_hidden_states UpperCamelCase__ = output.pixel_decoder_hidden_states UpperCamelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ) -> Tuple: with torch.no_grad(): UpperCamelCase__ = MaskFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = MaskFormerForInstanceSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(snake_case_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) UpperCamelCase__ = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a : Optional[int] =(MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a : Dict =( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a : Union[str, Any] =False a : Optional[Any] =False a : Union[str, Any] =False a : Optional[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = MaskFormerModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowerCamelCase__ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ = MaskFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = (self.model_tester.min_size,) * 2 UpperCamelCase__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } UpperCamelCase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase__ ) UpperCamelCase__ = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) UpperCamelCase__ = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) UpperCamelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A__ : Optional[int]= 1E-4 def lowerCAmelCase_( ) -> List[str]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowerCamelCase__ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) UpperCamelCase__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**lowerCamelCase__ ) UpperCamelCase__ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) UpperCamelCase__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] UpperCamelCase__ = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) UpperCamelCase__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] UpperCamelCase__ = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase__ = inputs['''pixel_values'''].to(lowerCamelCase__ ) UpperCamelCase__ = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] UpperCamelCase__ = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCamelCase__ = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not is_accelerate_available(): return method UpperCamelCase__ = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case_ ) < version.parse('0.17.0' ): return method def wrapper(self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *snake_case_ , **snake_case_ ) return wrapper
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () A__ : str= np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). A__ : int= [0, 25, 50] A__ : str= [25, 50, 75] A__ : Any= fuzz.membership.trimf(X, abca) A__ : int= fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. A__ : Optional[int]= np.ones(75) A__ : Dict= np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) A__ : Optional[int]= fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) A__ : Any= fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) A__ : int= fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) A__ : List[Any]= fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] A__ : str= young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) A__ : Any= young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] A__ : List[Any]= fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] A__ : int= fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A__ : Dict= DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A__ : List[str]= """main""" # Default branch name A__ : List[str]= """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) A__ : Dict= """aaaaaaa""" # This commit does not exist, so we should 404. A__ : Optional[Any]= """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes A__ : Union[str, Any]= """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowerCAmelCase_( ) -> str: """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCAmelCase_( ) -> List[str]: """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class __lowerCamelCase ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.assertEqual(find_labels(snake_case_ ) , ['labels'] ) self.assertEqual(find_labels(snake_case_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case_ ) , ['start_positions', 'end_positions'] ) class __lowerCamelCase ( _a ): pass self.assertEqual(find_labels(snake_case_ ) , ['labels'] ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> str: self.assertEqual(find_labels(snake_case_ ) , ['labels'] ) self.assertEqual(find_labels(snake_case_ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case_ ) , ['start_positions', 'end_positions'] ) class __lowerCamelCase ( _a ): pass self.assertEqual(find_labels(snake_case_ ) , ['labels'] ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: self.assertEqual(find_labels(snake_case_ ) , [] ) self.assertEqual(find_labels(snake_case_ ) , [] ) self.assertEqual(find_labels(snake_case_ ) , [] ) class __lowerCamelCase ( _a ): pass self.assertEqual(find_labels(snake_case_ ) , [] )
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCamelCase ( snake_case__ , snake_case__ , snake_case__ ): @register_to_config def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = False , ) -> List[str]: super().__init__() UpperCamelCase__ = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase__ = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase__ = False UpperCamelCase__ = nn.Dropout(p=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = TaConfig( vocab_size=_SCREAMING_SNAKE_CASE , d_model=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE , feed_forward_proj=_SCREAMING_SNAKE_CASE , is_decoder=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , ) UpperCamelCase__ = nn.ModuleList() for lyr_num in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase__ = TaBlock(_SCREAMING_SNAKE_CASE ) self.encoders.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = TaLayerNorm(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = nn.Dropout(p=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.token_embedder(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = encoder_input_tokens.shape[1] UpperCamelCase__ = torch.arange(_SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device ) x += self.position_encoding(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self.dropout_pre(_SCREAMING_SNAKE_CASE ) # inverted the attention mask UpperCamelCase__ = encoder_input_tokens.size() UpperCamelCase__ = self.get_extended_attention_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for lyr in self.encoders: UpperCamelCase__ = lyr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ = self.layer_norm(_SCREAMING_SNAKE_CASE ) return self.dropout_post(_SCREAMING_SNAKE_CASE ), encoder_inputs_mask
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : Optional[int]= get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): '''simple docstring''' a : Tuple =XLMRobertaTokenizer a : Dict =XLMRobertaTokenizerFast a : Tuple =True a : Optional[int] =True def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = XLMRobertaTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = '<pad>' UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case_ ) , 1002 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = XLMRobertaTokenizer(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(snake_case_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCamelCase__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it save with the same files self.assertSequenceEqual(snake_case_ , snake_case_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(snake_case_ , legacy_format=snake_case_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(snake_case_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(snake_case_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(snake_case_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case_ , snake_case_ ) ) shutil.rmtree(snake_case_ ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case_ , f.name ) UpperCamelCase__ = XLMRobertaTokenizer(f.name , keep_accents=snake_case_ ) UpperCamelCase__ = pickle.dumps(snake_case_ ) pickle.loads(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = 'I was born in 92000, and this is falsé.' UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) UpperCamelCase__ = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase__ = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(snake_case_ ) UpperCamelCase__ = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = 'Hello World!' UpperCamelCase__ = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCamelCase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: # fmt: off UpperCamelCase__ = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) UpperCamelCase__ = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ): # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if "metadata" in layer: UpperCamelCase__ = layer.split('metadata' ) UpperCamelCase__ = ''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: UpperCamelCase__ = layer.split('kvstore' ) UpperCamelCase__ = ''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: UpperCamelCase__ = layer.split('/' ) UpperCamelCase__ = '/'.join(split_layer[:-1] ) UpperCamelCase__ = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase__ = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: UpperCamelCase__ = 'file' else: UpperCamelCase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = rename_keys(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {} for k, v in current_block.items(): UpperCamelCase__ = v UpperCamelCase__ = new_current_block torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = convert_file_size_to_int(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: UpperCamelCase__ = serialization.msgpack_restore(fp.read() )['optimizer']['target'] UpperCamelCase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='/' ) UpperCamelCase__ = {} for layer in checkpoint_info.keys(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: UpperCamelCase__ = content else: UpperCamelCase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase__ , UpperCamelCase__ = rename_base_flax_keys(tuple(key.split('/' ) ) , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '/'.join(SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase__ = {} UpperCamelCase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = weights_name.replace( '.bin' , F'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) # len(sharded_state_dicts):05d} UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = shard for key in shard: UpperCamelCase__ = shard_file # Add the metadata UpperCamelCase__ = {'total_size': total_size} UpperCamelCase__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A__ : int= parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase_( ) -> Union[str, Any]: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase__ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) UpperCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) UpperCamelCase__ = TaTokenizer.from_pretrained('t5-small' ) UpperCamelCase__ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=False , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=19 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = EsmForProteinFolding(config=snake_case_ ).float() model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Tuple =False a : List[str] =(EsmForProteinFolding,) if is_torch_available() else () a : Optional[Any] =() a : List[str] ={} if is_torch_available() else {} a : Optional[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = EsmFoldModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) @unittest.skip('Does not support attention outputs' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold only has one output format.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('ESMFold does not support input chunking.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass @require_torch class __lowerCamelCase ( _a ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase__ = model(snake_case_ )['positions'] UpperCamelCase__ = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case_ , atol=1E-4 ) )
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ) -> Any: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = mask_ratio UpperCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFViTMAEModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = TFViTMAEForPreTraining(snake_case_ ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches UpperCamelCase__ = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTMAEForPreTraining(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) UpperCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : int =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a : List[str] ={"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a : List[Any] =False a : str =False a : Dict =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = TFViTMAEModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) UpperCamelCase__ = outputs_dict[0].numpy() UpperCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case_ ): UpperCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): UpperCamelCase__ = v.numpy() else: UpperCamelCase__ = np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = prepare_numpy_arrays(snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: # make masks reproducible np.random.seed(2 ) UpperCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ = tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ = tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , '_keras_serializable' , snake_case_ ) } UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase__ = main_layer_class(snake_case_ ) UpperCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase__ = tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) UpperCamelCase__ = model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case_ , 'keras_model.h5' ) model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) UpperCamelCase__ = model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase__ = outputs.last_hidden_state.numpy() UpperCamelCase__ = 0 else: UpperCamelCase__ = outputs.logits.numpy() UpperCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = model_class.from_pretrained(snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase__ = after_outputs['last_hidden_state'].numpy() UpperCamelCase__ = 0 else: UpperCamelCase__ = after_outputs['logits'].numpy() UpperCamelCase__ = 0 UpperCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) UpperCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase__ = model_class.from_config(model.config ) UpperCamelCase__ = new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase__ = new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCamelCase__ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ = ViTMAEConfig() UpperCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) # verify the logits UpperCamelCase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 )
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__ : Any= logging.getLogger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : a : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a : Optional[str] =field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : Optional[str] =field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a : Optional[str] =field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : a : str =field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) a : str =field(metadata={"""help""": """Should contain the data files for the task."""} ) a : int =field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a : bool =field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCAmelCase_( ) -> List[Any]: """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: UpperCamelCase__ = processors[data_args.task_name]() UpperCamelCase__ = processor.get_labels() UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: UpperCamelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator UpperCamelCase__ = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) return results def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A__ : Tuple= (7_20, 12_80) # Height, Width A__ : Tuple= (0.4, 0.6) # if height or width lower than this scale, drop it. A__ : str= 1 / 1_00 A__ : int= """""" A__ : List[str]= """""" A__ : Optional[int]= """""" A__ : str= 2_50 def lowerCAmelCase_( ) -> None: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for index in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = update_image_and_anno( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase__ = random_chars(32 ) UpperCamelCase__ = path.split(os.sep )[-1].rsplit('.' , 1 )[0] UpperCamelCase__ = F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(F'{file_root}.jpg' , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) UpperCamelCase__ = [] for anno in new_annos: UpperCamelCase__ = anno[3] - anno[1] UpperCamelCase__ = anno[4] - anno[2] UpperCamelCase__ = anno[1] + width / 2 UpperCamelCase__ = anno[2] + height / 2 UpperCamelCase__ = F'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(SCREAMING_SNAKE_CASE ) with open(F'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[list, list]: """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '*.txt' ) ): UpperCamelCase__ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(SCREAMING_SNAKE_CASE ) as in_file: UpperCamelCase__ = in_file.readlines() UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , F'{label_name}.jpg' ) UpperCamelCase__ = [] for obj_list in obj_lists: UpperCamelCase__ = obj_list.rstrip('\n' ).split(' ' ) UpperCamelCase__ = float(obj[1] ) - float(obj[3] ) / 2 UpperCamelCase__ = float(obj[2] ) - float(obj[4] ) / 2 UpperCamelCase__ = float(obj[1] ) + float(obj[3] ) / 2 UpperCamelCase__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE ) labels.append(SCREAMING_SNAKE_CASE ) return img_paths, labels def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" UpperCamelCase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCamelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase__ = int(scale_x * output_size[1] ) UpperCamelCase__ = int(scale_y * output_size[0] ) UpperCamelCase__ = [] UpperCamelCase__ = [] for i, index in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = all_annos[index] UpperCamelCase__ = cva.imread(SCREAMING_SNAKE_CASE ) if i == 0: # top-left UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) UpperCamelCase__ = img for bbox in img_annos: UpperCamelCase__ = bbox[1] * scale_x UpperCamelCase__ = bbox[2] * scale_y UpperCamelCase__ = bbox[3] * scale_x UpperCamelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) UpperCamelCase__ = img for bbox in img_annos: UpperCamelCase__ = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase__ = bbox[2] * scale_y UpperCamelCase__ = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase__ = img for bbox in img_annos: UpperCamelCase__ = bbox[1] * scale_x UpperCamelCase__ = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase__ = bbox[3] * scale_x UpperCamelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCamelCase__ = cva.resize( SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase__ = img for bbox in img_annos: UpperCamelCase__ = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase__ = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase__ = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCamelCase__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase__ = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("""DONE ✅""")
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" from PIL import Image def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Image: """simple docstring""" UpperCamelCase__ = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(SCREAMING_SNAKE_CASE ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 A__ : List[str]= change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A__ : Dict= get_tests_dir("""fixtures""") A__ : str= get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") A__ : Any= get_tests_dir("""fixtures/dummy-config.json""") class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ ).to_dict() config_dict.pop('feature_extractor_type' ) UpperCamelCase__ = WavaVecaFeatureExtractor(**snake_case_ ) # save in new folder model_config.save_pretrained(snake_case_ ) config.save_pretrained(snake_case_ ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ ) # make sure private variable is not incorrectly saved UpperCamelCase__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: with self.assertRaisesRegex( snake_case_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: with self.assertRaisesRegex( snake_case_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: with self.assertRaisesRegex( snake_case_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case_ ): UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case_ ): UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=snake_case_ ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=snake_case_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case_ ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ , trust_remote_code=snake_case_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: try: AutoConfig.register('custom' , snake_case_ ) AutoFeatureExtractor.register(snake_case_ , snake_case_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case_ ): AutoFeatureExtractor.register(snake_case_ , snake_case_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ = CustomFeatureExtractor.from_pretrained(snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case_ ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: class __lowerCamelCase ( _a ): a : Any =True try: AutoConfig.register('custom' , snake_case_ ) AutoFeatureExtractor.register(snake_case_ , snake_case_ ) # If remote code is not set, the default is to use local UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=snake_case_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=snake_case_ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(snake_case_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( _a ): a : str =["""image_processor""", """tokenizer"""] a : List[str] ="""ViltImageProcessor""" a : Union[str, Any] =("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Any: UpperCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCamelCase__ = kwargs.pop('feature_extractor' ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) UpperCamelCase__ = self.image_processor def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: UpperCamelCase__ = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask UpperCamelCase__ = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Optional[Any]: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" A__ : Union[str, Any]= tuple[float, float, float] A__ : Dict= tuple[float, float, float] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Vectorad: """simple docstring""" UpperCamelCase__ = end_pointa[0] - end_pointa[0] UpperCamelCase__ = end_pointa[1] - end_pointa[1] UpperCamelCase__ = end_pointa[2] - end_pointa[2] return (x, y, z) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Vectorad: """simple docstring""" UpperCamelCase__ = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return tuple(round(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 10 ) -> bool: """simple docstring""" UpperCamelCase__ = create_vector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = create_vector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" from collections import Counter from timeit import timeit def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" ) -> bool: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return True UpperCamelCase__ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCamelCase__ = {} for character in lower_case_input_str: UpperCamelCase__ = character_freq_dict.get(SCREAMING_SNAKE_CASE , 0 ) + 1 UpperCamelCase__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" ) -> None: """simple docstring""" print('\nFor string = ' , SCREAMING_SNAKE_CASE , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(SCREAMING_SNAKE_CASE ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(SCREAMING_SNAKE_CASE ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": A__ : List[str]= input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) A__ : Dict= can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder A__= """__DUMMY_TRANSFORMERS_USER__""" A__= """Dummy User""" A__= """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""" A__= """https://hub-ci.huggingface.co""" A__= CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" A__= CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" A__= Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def lowerCAmelCase_( ) -> Optional[Any]: """simple docstring""" return HfApi(endpoint=SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" def _cleanup_repo(SCREAMING_SNAKE_CASE ): hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = F'repo_txt_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = F'repo_zipped_txt_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = F'repo_zipped_img_data-{int(time.time() * 10E3 )}' UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A__ : List[str]= logging.get_logger(__name__) A__ : List[str]= { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : Union[str, Any] ="""t5""" a : str =["""past_key_values"""] a : Dict ={"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , snake_case_=3_2128 , snake_case_=512 , snake_case_=64 , snake_case_=2048 , snake_case_=6 , snake_case_=None , snake_case_=8 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="relu" , snake_case_=True , snake_case_=True , snake_case_=0 , snake_case_=1 , **snake_case_ , ) -> List[str]: UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_layers UpperCamelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase__ = num_heads UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = feed_forward_proj UpperCamelCase__ = use_cache UpperCamelCase__ = self.feed_forward_proj.split('-' ) UpperCamelCase__ = act_info[-1] UpperCamelCase__ = act_info[0] == 'gated' if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase__ = 'gelu_new' super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , ) class __lowerCamelCase ( _a ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase__ = 'past_encoder_sequence + sequence' UpperCamelCase__ = {0: 'batch'} UpperCamelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction='inputs' ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 13
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
from collections.abc import Iterable from typing import Any class __lowerCamelCase : def __init__( self , snake_case_ = None ) -> Tuple: UpperCamelCase__ = value UpperCamelCase__ = None # Added in order to delete a node easier UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class __lowerCamelCase : def __init__( self , snake_case_ = None ) -> List[str]: UpperCamelCase__ = root def __str__( self ) -> str: return str(self.root ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if new_children is not None: # reset its kids UpperCamelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case_ ): # If it is the right children UpperCamelCase__ = new_children else: UpperCamelCase__ = new_children else: UpperCamelCase__ = new_children def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE__ ( self ) -> bool: return self.root is None def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = Node(snake_case_ ) # create a new Node if self.empty(): # if Tree is empty UpperCamelCase__ = new_node # set its root else: # Tree is not empty UpperCamelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCamelCase__ = new_node # We insert the new node in a leaf break else: UpperCamelCase__ = parent_node.left else: if parent_node.right is None: UpperCamelCase__ = new_node break else: UpperCamelCase__ = parent_node.right UpperCamelCase__ = parent_node def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ ) -> None: for value in values: self.__insert(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: UpperCamelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCamelCase__ = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ = None ) -> Node | None: if node is None: if self.root is None: return None UpperCamelCase__ = self.root if not self.empty(): while node.right is not None: UpperCamelCase__ = node.right return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ = None ) -> Node | None: if node is None: UpperCamelCase__ = self.root if self.root is None: return None if not self.empty(): UpperCamelCase__ = self.root while node.left is not None: UpperCamelCase__ = node.left return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = self.search(snake_case_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case_ , snake_case_ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case_ , node.left ) else: UpperCamelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCamelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if node: self.inorder(snake_case_ , node.left ) arr.append(node.value ) self.inorder(snake_case_ , node.right ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = [] self.inorder(snake_case_ , snake_case_ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" UpperCamelCase__ = [] if curr_node is not None: UpperCamelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase_( ) -> None: """simple docstring""" UpperCamelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCamelCase__ = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A__ : Optional[int]= object() # For specifying empty leaf dict `{}` A__ : Optional[Any]= object() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): UpperCamelCase__ = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" def replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def lowerCAmelCase_( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P('mp' , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = _get_partition_rules() UpperCamelCase__ = _replacement_rules(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} UpperCamelCase__ = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( _a ): a : str =(UnCLIPScheduler,) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Tuple: UpperCamelCase__ = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**snake_case_ ) return config def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=snake_case_ , prev_timestep=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type='fixed_small_log' ) UpperCamelCase__ = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type='learned_range' ) UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=snake_case_ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=snake_case_ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=snake_case_ ) - -0.0_010_011 < 1E-5 def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual UpperCamelCase__ = model(snake_case_ , snake_case_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(25 ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(snake_case_ ): # 1. predict noise residual UpperCamelCase__ = model(snake_case_ , snake_case_ ) if i + 1 == timesteps.shape[0]: UpperCamelCase__ = None else: UpperCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step( snake_case_ , snake_case_ , snake_case_ , prev_timestep=snake_case_ , generator=snake_case_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : Tuple= { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowerCamelCase ( _a ): a : List[str] ="""beit""" def __init__( self , snake_case_=8192 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=224 , snake_case_=16 , snake_case_=3 , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.1 , snake_case_=0.1 , snake_case_=True , snake_case_=[3, 5, 7, 11] , snake_case_=[1, 2, 3, 6] , snake_case_=True , snake_case_=0.4 , snake_case_=256 , snake_case_=1 , snake_case_=False , snake_case_=255 , **snake_case_ , ) -> Any: super().__init__(**snake_case_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = use_mask_token UpperCamelCase__ = use_absolute_position_embeddings UpperCamelCase__ = use_relative_position_bias UpperCamelCase__ = use_shared_relative_position_bias UpperCamelCase__ = layer_scale_init_value UpperCamelCase__ = drop_path_rate UpperCamelCase__ = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase__ = out_indices UpperCamelCase__ = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase__ = use_auxiliary_head UpperCamelCase__ = auxiliary_loss_weight UpperCamelCase__ = auxiliary_channels UpperCamelCase__ = auxiliary_num_convs UpperCamelCase__ = auxiliary_concat_input UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" from maths.prime_check import is_prime def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if not head: return True # split the list to two parts UpperCamelCase__ , UpperCamelCase__ = head.next, head while fast and fast.next: UpperCamelCase__ = fast.next.next UpperCamelCase__ = slow.next UpperCamelCase__ = slow.next UpperCamelCase__ = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase__ = None while second: UpperCamelCase__ = second.next UpperCamelCase__ = node UpperCamelCase__ = second UpperCamelCase__ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase__ = node.next UpperCamelCase__ = head.next return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = head while fast and fast.next: UpperCamelCase__ , UpperCamelCase__ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase__ = [slow.val] while slow.next: UpperCamelCase__ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase__ = cur.next return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCamelCase__ = {} UpperCamelCase__ = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = [pos] UpperCamelCase__ = head.next pos += 1 UpperCamelCase__ = pos - 1 UpperCamelCase__ = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE ) % 2 != 0: middle += 1 else: UpperCamelCase__ = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup A__ : str= { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "dhaka" , SCREAMING_SNAKE_CASE = 5 ) -> int: """simple docstring""" UpperCamelCase__ = min(SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! UpperCamelCase__ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } UpperCamelCase__ = requests.get('https://www.google.com/search' , params=SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = BeautifulSoup(html.text , 'html.parser' ) UpperCamelCase__ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) UpperCamelCase__ = json.dumps(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = json.loads(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 UpperCamelCase__ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE ): if index >= max_images: return index UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) UpperCamelCase__ = urllib.request.build_opener() UpperCamelCase__ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = F'query_{query.replace(" " , "_" )}' if not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE , F'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: A__ : Tuple= download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("""Please provide a search term.""") raise
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" from __future__ import annotations A__ : Dict= tuple[int, int, int] A__ : List[str]= tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase A__ : Union[str, Any]= """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- A__ : List[Any]= """EGZWVONAHDCLFQMSIPJBYUKXTR""" A__ : List[Any]= """FOBHMDKEXQNRAULPGSJVTYICZW""" A__ : Union[str, Any]= """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- A__ : Optional[Any]= { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- A__ : Any= """RMDJXFUWGISLHVTCQNKYPBEZOA""" A__ : Optional[int]= """SGLCPQWZHKXAREONTFBVIYJUDM""" A__ : Tuple= """HVSICLTYKQUBXDWAJZOMFGPREN""" A__ : Dict= """RZWQHFMVDBKICJLNTUXAGYPSOE""" A__ : int= """LFKIJODBEGAMQPXVUHYSTCZRWN""" A__ : str= """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(SCREAMING_SNAKE_CASE ) )) < 3: UpperCamelCase__ = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotpos if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE ) # Validates string and returns dict UpperCamelCase__ = _plugboard(SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> dict[str, str]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Plugboard setting isn\'t type string ({type(SCREAMING_SNAKE_CASE )})' raise TypeError(SCREAMING_SNAKE_CASE ) elif len(SCREAMING_SNAKE_CASE ) % 2 != 0: UpperCamelCase__ = F'Odd number of symbols ({len(SCREAMING_SNAKE_CASE )})' raise Exception(SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique UpperCamelCase__ = set() for i in pbstring: if i not in abc: UpperCamelCase__ = F'\'{i}\' not in list of symbols' raise Exception(SCREAMING_SNAKE_CASE ) elif i in tmppbl: UpperCamelCase__ = F'Duplicate symbol ({i})' raise Exception(SCREAMING_SNAKE_CASE ) else: tmppbl.add(SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary UpperCamelCase__ = {} for j in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 , 2 ): UpperCamelCase__ = pbstring[j + 1] UpperCamelCase__ = pbstring[j] return pb def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE = "" , ) -> str: """simple docstring""" UpperCamelCase__ = text.upper() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = _validator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , plugb.upper() ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotor_position UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCamelCase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCamelCase__ = plugboard[symbol] # rotor ra -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCamelCase__ = reflector[symbol] # 2nd rotors UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCamelCase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Tuple= """This is my Python script that emulates the Enigma machine from WWII.""" A__ : Optional[int]= (1, 1, 1) A__ : List[str]= """pictures""" A__ : Optional[int]= (rotora, rotora, rotora) A__ : Optional[Any]= enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: debug_launcher(test_ops.main )
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[int]= { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int]= ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int]= [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any]= [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A__ : Any= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="resnet50" , snake_case_=3 , snake_case_=32 , snake_case_=3 , snake_case_=True , snake_case_=True , ) -> Any: UpperCamelCase__ = parent UpperCamelCase__ = out_indices if out_indices is not None else [4] UpperCamelCase__ = stage_names UpperCamelCase__ = out_features UpperCamelCase__ = backbone UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = is_training def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = TimmBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( _a , _a , _a , unittest.TestCase ): a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Any ={"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a : Optional[Any] =False a : Any =False a : Any =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = TimmBackboneModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 'resnet18' UpperCamelCase__ = 'microsoft/resnet-18' UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ , out_indices=[1, 2, 3] ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('Safetensors is not supported by timm.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase__ = self.all_model_classes[0] UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase__ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase__ = copy.deepcopy(snake_case_ ) UpperCamelCase__ = None UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase__ = copy.deepcopy(snake_case_ ) UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ )
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : int= logging.get_logger(__name__) A__ : Dict= torch.device("""cpu""") def lowerCAmelCase_( ) -> List[str]: """simple docstring""" UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = dct.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = val def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = [] for k in state_dict.keys(): UpperCamelCase__ = k if ".pwconv" in k: UpperCamelCase__ = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: UpperCamelCase__ = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: UpperCamelCase__ = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: UpperCamelCase__ = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: UpperCamelCase__ = k_new.split('.' ) if ls[2].isdigit(): UpperCamelCase__ = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: UpperCamelCase__ = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase__ = [3, 3, 6, 4] UpperCamelCase__ = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCamelCase__ = [3, 3, 9, 6] UpperCamelCase__ = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCamelCase__ = [4, 3, 10, 5] UpperCamelCase__ = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCamelCase__ = [4, 4, 12, 6] UpperCamelCase__ = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): UpperCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) UpperCamelCase__ = checkpoint UpperCamelCase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model UpperCamelCase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) # prepare test inputs UpperCamelCase__ = prepare_img() UpperCamelCase__ = ViTImageProcessor.from_pretrained('preprocessor_config' ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models UpperCamelCase__ = get_expected_output(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") A__ : List[Any]= parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" import math def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 0.1 ) -> int: """simple docstring""" UpperCamelCase__ = 3 UpperCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = get_failure_array(SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern UpperCamelCase__ , UpperCamelCase__ = 0, 0 # index into text, pattern while i < len(SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ = failure[j - 1] continue i += 1 return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = [0] UpperCamelCase__ = 0 UpperCamelCase__ = 1 while j < len(SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ = failure[i - 1] continue j += 1 failure.append(SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) A__ : Dict= """abc1abc12""" A__ : int= """alskfjaldsabc1abc1abc12k23adsfabcabc""" A__ : Any= """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A__ : Optional[Any]= """ABABX""" A__ : Union[str, Any]= """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) A__ : List[str]= """AAAB""" A__ : Tuple= """ABAAAAAB""" assert kmp(pattern, text) # Test 4) A__ : Any= """abcdabcy""" A__ : Dict= """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) A__ : str= """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } UpperCamelCase__ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case_ ) , x.transpose() ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ ) , np.asarray(transpose(snake_case_ ) ) ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case_ , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.reshape(snake_case_ , (4, 3) ) ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.reshape(snake_case_ , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.asarray(reshape(snake_case_ , (4, 3) ) ) ) ) UpperCamelCase__ = np.random.randn(3 , 4 , 5 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.asarray(reshape(snake_case_ , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.squeeze(snake_case_ ) ) ) UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.squeeze(snake_case_ , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = np.random.randn(1 , 3 , 4 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = np.random.randn(1 , 3 , 4 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) ) UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = np.random.randn(1 , 3 , 4 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.asarray(squeeze(snake_case_ ) ) ) ) UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.asarray(squeeze(snake_case_ , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.expand_dims(snake_case_ , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = torch.tensor(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = tf.constant(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = np.random.randn(3 , 4 ) UpperCamelCase__ = jnp.array(snake_case_ ) self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.asarray(expand_dims(snake_case_ , axis=1 ) ) ) )
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) A__ : Dict= logging.getLogger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='utf_8' ) as f: UpperCamelCase__ = csv.reader(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = [] for dataset in encoded_datasets: UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCamelCase__ = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCamelCase__ = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) UpperCamelCase__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase__ = with_conta UpperCamelCase__ = with_conta UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) - 1 UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) - 1 UpperCamelCase__ = with_conta UpperCamelCase__ = with_conta UpperCamelCase__ = mc_label UpperCamelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase_( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) UpperCamelCase__ = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCamelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCamelCase__ = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCamelCase__ = ['_start_', '_delimiter_', '_classify_'] UpperCamelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info('Encoding dataset...' ) UpperCamelCase__ = load_rocstories_dataset(args.train_dataset ) UpperCamelCase__ = load_rocstories_dataset(args.eval_dataset ) UpperCamelCase__ = (train_dataset, eval_dataset) UpperCamelCase__ = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer UpperCamelCase__ = model.config.n_positions // 2 - 2 UpperCamelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCamelCase__ = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCamelCase__ = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ = tensor_datasets[0], tensor_datasets[1] UpperCamelCase__ = TensorDataset(*SCREAMING_SNAKE_CASE ) UpperCamelCase__ = RandomSampler(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) UpperCamelCase__ = TensorDataset(*SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SequentialSampler(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCamelCase__ = args.max_steps UpperCamelCase__ = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCamelCase__ = list(model.named_parameters() ) UpperCamelCase__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] UpperCamelCase__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] UpperCamelCase__ = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCamelCase__ = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = tqdm(SCREAMING_SNAKE_CASE , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = batch UpperCamelCase__ = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCamelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCamelCase__ = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCamelCase__ = model.module if hasattr(SCREAMING_SNAKE_CASE , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCamelCase__ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCamelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCamelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() UpperCamelCase__ , UpperCamelCase__ = 0, 0 UpperCamelCase__ , UpperCamelCase__ = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc='Evaluating' ): UpperCamelCase__ = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = batch with torch.no_grad(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = mc_logits.detach().cpu().numpy() UpperCamelCase__ = mc_labels.to('cpu' ).numpy() UpperCamelCase__ = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCamelCase__ = eval_loss / nb_eval_steps UpperCamelCase__ = eval_accuracy / nb_eval_examples UpperCamelCase__ = tr_loss / nb_tr_steps if args.do_train else None UpperCamelCase__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} UpperCamelCase__ = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class __lowerCamelCase : def __init__( self , *, snake_case_ = np.inf , snake_case_ = "linear" , snake_case_ = 0.0 , ) -> None: UpperCamelCase__ = regularization UpperCamelCase__ = gamma if kernel == "linear": UpperCamelCase__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) UpperCamelCase__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ = F'Unknown kernel: {kernel}' raise ValueError(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> float: return np.dot(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: UpperCamelCase__ = observations UpperCamelCase__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__ ) , ) = np.shape(snake_case_ ) def to_minimize(snake_case_ ) -> float: UpperCamelCase__ = 0 ((UpperCamelCase__ ) , ) = np.shape(snake_case_ ) for i in range(snake_case_ ): for j in range(snake_case_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case_ ) UpperCamelCase__ = LinearConstraint(snake_case_ , 0 , 0 ) UpperCamelCase__ = Bounds(0 , self.regularization ) UpperCamelCase__ = minimize( snake_case_ , np.ones(snake_case_ ) , bounds=snake_case_ , constraints=[ly_contraint] ).x UpperCamelCase__ = l_star # calculating mean offset of separation plane to points UpperCamelCase__ = 0 for i in range(snake_case_ ): for j in range(snake_case_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCamelCase__ = s / n def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if "cls_token" in name: UpperCamelCase__ = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: UpperCamelCase__ = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: UpperCamelCase__ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase__ = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: UpperCamelCase__ = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: UpperCamelCase__ = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: UpperCamelCase__ = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: UpperCamelCase__ = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: UpperCamelCase__ = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase__ = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase__ = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase__ = config.decoder_hidden_size UpperCamelCase__ = 'decoder.decoder_layers.' if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] elif "bias" in key: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] else: UpperCamelCase__ = config.hidden_size UpperCamelCase__ = 'vit.encoder.layer.' if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] elif "bias" in key: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif "huge" in checkpoint_url: UpperCamelCase__ = 14 UpperCamelCase__ = 12_80 UpperCamelCase__ = 51_20 UpperCamelCase__ = 32 UpperCamelCase__ = 16 UpperCamelCase__ = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] UpperCamelCase__ = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ = outputs.logits if "large" in checkpoint_url: UpperCamelCase__ = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase__ = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase__ = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__= argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__= parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Union[str, Any]= {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any]= ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys A__ : Optional[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False UpperCamelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=[1, 1, 2] , snake_case_=1 , snake_case_=32 , snake_case_=4 , snake_case_=8 , snake_case_=37 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=512 , snake_case_=3 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=False , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = block_sizes UpperCamelCase__ = num_decoder_layers UpperCamelCase__ = d_model UpperCamelCase__ = n_head UpperCamelCase__ = d_head UpperCamelCase__ = d_inner UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = 2 UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = initializer_std # Used in the tests to check the size of the first attention layer UpperCamelCase__ = n_head # Used in the tests to check the size of the first hidden state UpperCamelCase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCamelCase__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCamelCase__ = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: UpperCamelCase__ = TFFunnelModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase__ = False UpperCamelCase__ = TFFunnelModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase__ = False UpperCamelCase__ = TFFunnelModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Any: UpperCamelCase__ = TFFunnelBaseModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) UpperCamelCase__ = False UpperCamelCase__ = TFFunnelBaseModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) UpperCamelCase__ = False UpperCamelCase__ = TFFunnelBaseModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: UpperCamelCase__ = TFFunnelForPreTraining(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: UpperCamelCase__ = TFFunnelForMaskedLM(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[Any]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFFunnelForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Optional[int]: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFFunnelForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> List[Any]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFFunnelForTokenClassification(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: UpperCamelCase__ = TFFunnelForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : str =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a : Tuple =( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a : str =False a : Optional[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = TFFunnelModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @require_tf class __lowerCamelCase ( _a , unittest.TestCase ): a : Optional[Any] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a : Optional[int] =False a : Union[str, Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFFunnelModelTester(self , base=snake_case_ ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> list[float]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = coefficient_matrix.shape UpperCamelCase__ , UpperCamelCase__ = constant_matrix.shape if rowsa != colsa: UpperCamelCase__ = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE ) if colsa != 1: UpperCamelCase__ = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE ) if rowsa != rowsa: UpperCamelCase__ = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != rowsa: UpperCamelCase__ = ( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(SCREAMING_SNAKE_CASE )} and {rowsa}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) UpperCamelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase__ , UpperCamelCase__ = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [] for row in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 for col in range(SCREAMING_SNAKE_CASE ): if col == row: UpperCamelCase__ = table[row][col] elif col == cols - 1: UpperCamelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase__ = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = new_val return [float(SCREAMING_SNAKE_CASE ) for i in new_val] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = table.shape UpperCamelCase__ = True for i in range(0 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) UpperCamelCase__ = BlipProcessor(snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase__ = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='np' ) UpperCamelCase__ = processor(images=snake_case_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase__ = 'lower newer' UpperCamelCase__ = processor(text=snake_case_ ) UpperCamelCase__ = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase__ = 'lower newer' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(snake_case_ ) UpperCamelCase__ = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) UpperCamelCase__ = 'lower newer' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=snake_case_ , images=snake_case_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A__ : List[Any]= logging.get_logger("""transformers.models.encodec""") A__ : str= { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } A__ : int= { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } A__ : int= { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } A__ : Optional[int]= { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } A__ : List[Any]= { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } A__ : List[Any]= { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A__ : List[Any]= { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A__ : Dict= [] A__ : Any= [] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value elif weight_type == "running_mean": UpperCamelCase__ = value elif weight_type == "running_var": UpperCamelCase__ = value elif weight_type == "num_batches_tracked": UpperCamelCase__ = value elif weight_type == "weight_ih_l0": UpperCamelCase__ = value elif weight_type == "weight_hh_l0": UpperCamelCase__ = value elif weight_type == "bias_ih_l0": UpperCamelCase__ = value elif weight_type == "bias_hh_l0": UpperCamelCase__ = value elif weight_type == "weight_ih_l1": UpperCamelCase__ = value elif weight_type == "weight_hh_l1": UpperCamelCase__ = value elif weight_type == "bias_ih_l1": UpperCamelCase__ = value elif weight_type == "bias_hh_l1": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase__ , UpperCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase__ = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase__ = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info(F'{name} was ignored' ) continue UpperCamelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase__ , UpperCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: UpperCamelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] UpperCamelCase__ = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: UpperCamelCase__ = 'weight_g' elif "weight_v" in name: UpperCamelCase__ = 'weight_v' elif "weight_ih_l0" in name: UpperCamelCase__ = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCamelCase__ = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCamelCase__ = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCamelCase__ = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCamelCase__ = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCamelCase__ = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCamelCase__ = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCamelCase__ = 'bias_hh_l1' elif "bias" in name: UpperCamelCase__ = 'bias' elif "weight" in name: UpperCamelCase__ = 'weight' elif "running_mean" in name: UpperCamelCase__ = 'running_mean' elif "running_var" in name: UpperCamelCase__ = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase__ = 'num_batches_tracked' else: UpperCamelCase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" if config_path is not None: UpperCamelCase__ = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase__ = [8, 5, 4, 4] UpperCamelCase__ = [2.2] UpperCamelCase__ = 64 UpperCamelCase__ = 3_20_00 UpperCamelCase__ = 20_48 UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False elif model_name == "encodec_48khz": UpperCamelCase__ = [8, 5, 4, 2] UpperCamelCase__ = [3.0, 6.0, 12.0, 24.0] UpperCamelCase__ = 4_80_00 UpperCamelCase__ = 2 UpperCamelCase__ = False UpperCamelCase__ = 'time_group_norm' UpperCamelCase__ = True UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCamelCase__ = EncodecModel(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase__ = original_checkpoint['best_state'] recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE ) model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : str= argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) A__ : List[str]= parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[int]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCamelCase__ = 1_28 elif "12-12" in model_name: UpperCamelCase__ = 12 UpperCamelCase__ = 12 elif "14-14" in model_name: UpperCamelCase__ = 14 UpperCamelCase__ = 14 elif "16-16" in model_name: UpperCamelCase__ = 16 UpperCamelCase__ = 16 else: raise ValueError('Model not supported' ) UpperCamelCase__ = 'huggingface/label-files' if "speech-commands" in model_name: UpperCamelCase__ = 35 UpperCamelCase__ = 'speech-commands-v2-id2label.json' else: UpperCamelCase__ = 5_27 UpperCamelCase__ = 'audioset-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "module.v" in name: UpperCamelCase__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: UpperCamelCase__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: UpperCamelCase__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: UpperCamelCase__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: UpperCamelCase__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCamelCase__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: UpperCamelCase__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: UpperCamelCase__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = config.hidden_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict UpperCamelCase__ = model_name_to_url[model_name] UpperCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE ) # rename some keys UpperCamelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load 🤗 model UpperCamelCase__ = ASTForAudioClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCamelCase__ = -4.2677393 if 'speech-commands' not in model_name else -6.845978 UpperCamelCase__ = 4.5689974 if 'speech-commands' not in model_name else 5.5654526 UpperCamelCase__ = 10_24 if 'speech-commands' not in model_name else 1_28 UpperCamelCase__ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: UpperCamelCase__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) UpperCamelCase__ = dataset[0]['audio']['array'] else: UpperCamelCase__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) UpperCamelCase__ , UpperCamelCase__ = torchaudio.load(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = waveform.squeeze().numpy() UpperCamelCase__ = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCamelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCamelCase__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCamelCase__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCamelCase__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCamelCase__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCamelCase__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCamelCase__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCamelCase__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : str= parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import math import unittest def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: with self.assertRaises(snake_case_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( _a ): a : Optional[Any] =(PNDMScheduler,) a : Optional[int] =(("""num_inference_steps""", 5_0),) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Optional[int]: UpperCamelCase__ = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**snake_case_ ) return config def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 , **snake_case_ ) -> int: UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('num_inference_steps' , snake_case_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config(**snake_case_ ) UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase__ = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 , **snake_case_ ) -> List[str]: UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('num_inference_steps' , snake_case_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) UpperCamelCase__ = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**snake_case_ ) UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = 10 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ = model(snake_case_ , snake_case_ ) UpperCamelCase__ = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ = model(snake_case_ , snake_case_ ) UpperCamelCase__ = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('num_inference_steps' , snake_case_ ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , 'set_timesteps' ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , 'set_timesteps' ): UpperCamelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = scheduler.step_prk(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ = scheduler.step_plms(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample UpperCamelCase__ = scheduler.step_plms(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case_ ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCamelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: with self.assertRaises(snake_case_ ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**snake_case_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(snake_case_ ) ) UpperCamelCase__ = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_( ) -> Iterator[int]: """simple docstring""" UpperCamelCase__ = 2 while True: if is_prime(SCREAMING_SNAKE_CASE ): yield num num += 1 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any]= logging.get_logger(__name__) A__ : List[str]= { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[Any] ="""autoformer""" a : Union[str, Any] ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 64 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 32 , snake_case_ = 32 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 100 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 10 , snake_case_ = 25 , snake_case_ = 3 , **snake_case_ , ) -> int: # time series specific configuration UpperCamelCase__ = prediction_length UpperCamelCase__ = context_length if context_length is not None else prediction_length UpperCamelCase__ = distribution_output UpperCamelCase__ = loss UpperCamelCase__ = input_size UpperCamelCase__ = num_time_features UpperCamelCase__ = lags_sequence UpperCamelCase__ = scaling UpperCamelCase__ = num_dynamic_real_features UpperCamelCase__ = num_static_real_features UpperCamelCase__ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase__ = cardinality else: UpperCamelCase__ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase__ = embedding_dimension else: UpperCamelCase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase__ = num_parallel_samples # Transformer architecture configuration UpperCamelCase__ = input_size * len(self.lags_sequence ) + self._number_of_features UpperCamelCase__ = d_model UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = use_cache # Autoformer UpperCamelCase__ = label_length UpperCamelCase__ = moving_average UpperCamelCase__ = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=4 , snake_case_=4 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=0.02 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = rotary_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = None UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case_ ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , snake_case_ ) UpperCamelCase__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=snake_case_ , past_key_values=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase__ = model( input_ids[:, -1:] , attention_mask=snake_case_ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case_ , ) UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case_ ) UpperCamelCase__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , snake_case_ ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=snake_case_ , past_key_values=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Optional[Any] =(FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a : List[Any] =(FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) UpperCamelCase__ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=snake_case_ , truncation=snake_case_ ) UpperCamelCase__ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase__ = False UpperCamelCase__ = model.config.eos_token_id UpperCamelCase__ = jax.jit(model.generate ) UpperCamelCase__ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase__ = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) UpperCamelCase__ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(snake_case_ , snake_case_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs['input_ids'].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = pt_model_class(snake_case_ ).eval() UpperCamelCase__ = model_class(snake_case_ , dtype=jnp.floataa ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case_ ) UpperCamelCase__ = fx_state with torch.no_grad(): UpperCamelCase__ = pt_model(**snake_case_ ).to_tuple() UpperCamelCase__ = fx_model(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case_ ) UpperCamelCase__ = model_class.from_pretrained(snake_case_ , from_pt=snake_case_ ) UpperCamelCase__ = fx_model_loaded(**snake_case_ ).to_tuple() self.assertEqual( len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = pt_model_class(snake_case_ ).eval() UpperCamelCase__ = model_class(snake_case_ , dtype=jnp.floataa ) UpperCamelCase__ = load_flax_weights_in_pytorch_model(snake_case_ , fx_model.params ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs['input_ids'].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase__ = pt_model(**snake_case_ ).to_tuple() UpperCamelCase__ = fx_model(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case_ ) UpperCamelCase__ = pt_model_class.from_pretrained(snake_case_ , from_flax=snake_case_ ) with torch.no_grad(): UpperCamelCase__ = pt_model_loaded(**snake_case_ ).to_tuple() self.assertEqual( len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Union[str, Any]= { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int= [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any]= [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A__ : int= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" A__ : Dict= [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Union[str, Any]= [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Optional[int]= { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase__ = year // 1_00 UpperCamelCase__ = (5 * (century % 4) + 2) % 7 UpperCamelCase__ = year % 1_00 UpperCamelCase__ = centurian % 12 UpperCamelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: UpperCamelCase__ = ksize + 1 UpperCamelCase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): # distance from center UpperCamelCase__ = x - ksize // 2 UpperCamelCase__ = y - ksize // 2 # degree to radiant UpperCamelCase__ = theta / 1_80 * np.pi UpperCamelCase__ = np.cos(_theta ) UpperCamelCase__ = np.sin(_theta ) # get kernel x UpperCamelCase__ = cos_theta * px + sin_theta * py # get kernel y UpperCamelCase__ = -sin_theta * px + cos_theta * py # fill kernel UpperCamelCase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A__ : int= imread("""../image_data/lena.jpg""") # turn image in gray scale value A__ : int= cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A__ : List[str]= np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: A__ : Tuple= gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A__ : Tuple= out / out.max() * 2_55 A__ : Union[str, Any]= out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=snake_case_ , scheduler=snake_case_ ) pndm.to(snake_case_ ) pndm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=snake_case_ , num_inference_steps=20 , output_type='numpy' ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=snake_case_ , num_inference_steps=20 , output_type='numpy' , return_dict=snake_case_ )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = 'google/ddpm-cifar10-32' UpperCamelCase__ = UNetaDModel.from_pretrained(snake_case_ ) UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=snake_case_ , scheduler=snake_case_ ) pndm.to(snake_case_ ) pndm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=snake_case_ , output_type='numpy' ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A__= get_logger(__name__) A__= Path(__file__).parent / """model_card_template.md""" A__= uuida().hex A__= os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES A__= os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES A__= HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = None ) -> str: """simple docstring""" UpperCamelCase__ = F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None ) -> Union[str, Any]: """simple docstring""" if token is None: UpperCamelCase__ = HfFolder.get_token() if organization is None: UpperCamelCase__ = whoami(SCREAMING_SNAKE_CASE )['name'] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(SCREAMING_SNAKE_CASE , 'local_rank' ) and args.local_rank not in [-1, 0]: return UpperCamelCase__ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE , 'hub_token' ) else None UpperCamelCase__ = get_full_repo_name(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE , model_name=SCREAMING_SNAKE_CASE , repo_name=SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) UpperCamelCase__ = os.path.join(args.output_dir , 'README.md' ) model_card.save(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> str: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash UpperCamelCase__ = str(Path(SCREAMING_SNAKE_CASE ).as_posix() ) UpperCamelCase__ = re.search(r'snapshots/([^/]+)/' , SCREAMING_SNAKE_CASE ) if search is None: return None UpperCamelCase__ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A__= os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) A__= os.path.join(hf_cache_home, """diffusers""") def lowerCAmelCase_( SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None ) -> None: """simple docstring""" if new_cache_dir is None: UpperCamelCase__ = DIFFUSERS_CACHE if old_cache_dir is None: UpperCamelCase__ = old_diffusers_cache UpperCamelCase__ = Path(SCREAMING_SNAKE_CASE ).expanduser() UpperCamelCase__ = Path(SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCamelCase__ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) os.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) try: os.symlink(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A__= os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): A__= 0 else: with open(cache_version_file) as f: try: A__= int(f.read()) except ValueError: A__= 0 if cache_version < 1: A__= os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: A__= """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> str: """simple docstring""" if variant is not None: UpperCamelCase__ = weights_name.split('.' ) UpperCamelCase__ = splits[:-1] + [variant] + splits[-1:] UpperCamelCase__ = '.'.join(SCREAMING_SNAKE_CASE ) return weights_name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , *, SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = str(SCREAMING_SNAKE_CASE ) if os.path.isfile(SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE ).base_version ) >= version.parse('0.20.0' ) ): try: UpperCamelCase__ = hf_hub_download( SCREAMING_SNAKE_CASE , filename=_add_variant(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , user_agent=SCREAMING_SNAKE_CASE , subfolder=SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.' , SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual UpperCamelCase__ = hf_hub_download( SCREAMING_SNAKE_CASE , filename=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , user_agent=SCREAMING_SNAKE_CASE , subfolder=SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=12 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=0.02 , snake_case_=0 , snake_case_=None , ) -> Dict: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = projection_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = scope UpperCamelCase__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCamelCase__ = input_mask.numpy() UpperCamelCase__ , UpperCamelCase__ = input_mask.shape UpperCamelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = TFBlipTextModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , training=snake_case_ ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , unittest.TestCase ): a : List[str] =(TFBlipTextModel,) if is_tf_available() else () a : int =False a : Any =False a : Optional[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = BlipTextModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFBlipTextModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=True ) -> Tuple: super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case_ )
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ : Tuple= abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE , id=SCREAMING_SNAKE_CASE )
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" class __lowerCamelCase : def __init__( self ) -> Any: UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]: if vertex not in self.adjacency: UpperCamelCase__ = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.get_edges() for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): UpperCamelCase__ = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: UpperCamelCase__ = edges[i][2] + 1 for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = weight UpperCamelCase__ = weight def __str__( self ) -> Tuple: UpperCamelCase__ = '' for tail in self.adjacency: for head in self.adjacency[tail]: UpperCamelCase__ = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip('\n' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_=None , snake_case_=None ) -> Union[str, Any]: UpperCamelCase__ = Graph() if vertices is None: UpperCamelCase__ = [] if edges is None: UpperCamelCase__ = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class __lowerCamelCase : def __init__( self ) -> str: UpperCamelCase__ = {} UpperCamelCase__ = {} def __len__( self ) -> int: return len(self.parent ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if item in self.parent: return self.find(snake_case_ ) UpperCamelCase__ = item UpperCamelCase__ = 0 return item def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: UpperCamelCase__ = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = self.find(snake_case_ ) UpperCamelCase__ = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCamelCase__ = roota return roota if self.rank[roota] < self.rank[roota]: UpperCamelCase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCamelCase__ = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: UpperCamelCase__ = graph.num_vertices UpperCamelCase__ = Graph.UnionFind() UpperCamelCase__ = [] while num_components > 1: UpperCamelCase__ = {} for vertex in graph.get_vertices(): UpperCamelCase__ = -1 UpperCamelCase__ = graph.get_edges() for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge edges.remove((tail, head, weight) ) for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = union_find.find(snake_case_ ) UpperCamelCase__ = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) UpperCamelCase__ = num_components - 1 UpperCamelCase__ = Graph.build(edges=snake_case_ ) return mst
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" from __future__ import annotations A__ : Tuple= { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_ ) -> None: UpperCamelCase__ = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase__ = {} UpperCamelCase__ = source_vertex def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = {self.source_vertex} UpperCamelCase__ = None UpperCamelCase__ = [self.source_vertex] # first in first out queue while queue: UpperCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case_ ) UpperCamelCase__ = vertex queue.append(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase__ = self.parent.get(snake_case_ ) if target_vertex_parent is None: UpperCamelCase__ = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(snake_case_ ) return self.shortest_path(snake_case_ ) + F'->{target_vertex}' if __name__ == "__main__": A__ : Optional[int]= Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): a : Optional[Any] =MgpstrTokenizer a : List[Any] =False a : List[Any] ={} a : Tuple =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: super().setUp() # fmt: off UpperCamelCase__ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: UpperCamelCase__ = 'tester' UpperCamelCase__ = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCamelCase__ = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) UpperCamelCase__ = tokenizer.encode([special_token] , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) UpperCamelCase__ = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCamelCase__ , UpperCamelCase__ = self.get_input_output_texts(snake_case_ ) UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertNotEqual(len(snake_case_ ) , 0 ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(text_a.replace(' ' , '' ) , snake_case_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy A__ : Optional[int]= logging.getLogger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> List[str]: """simple docstring""" UpperCamelCase__ = bnb_quantization_config.load_in_abit UpperCamelCase__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) UpperCamelCase__ = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ = [] UpperCamelCase__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ = load_in_abit UpperCamelCase__ = load_in_abit UpperCamelCase__ = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) UpperCamelCase__ = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ = name.replace('.weight' , '' ).replace('.bias' , '' ) UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): UpperCamelCase__ = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ = True UpperCamelCase__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) UpperCamelCase__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ = {} UpperCamelCase__ = special_dtypes UpperCamelCase__ = no_split_module_classes UpperCamelCase__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ = max_memory UpperCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ = [] UpperCamelCase__ , UpperCamelCase__ = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ = '.'.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) UpperCamelCase__ = module.weight.data if module.bias is not None: UpperCamelCase__ = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" with init_empty_weights(): UpperCamelCase__ = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ = False if hasattr(SCREAMING_SNAKE_CASE , 'base_model_prefix' ): UpperCamelCase__ = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ = list(model.named_children() ) UpperCamelCase__ = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ = ['.weight', '.bias'] UpperCamelCase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ = name.replace(SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = param_name UpperCamelCase__ = model if "." in tensor_name: UpperCamelCase__ = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) UpperCamelCase__ = new_module UpperCamelCase__ = splits[-1] # offload weights UpperCamelCase__ = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'meta' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , ) -> Any: UpperCamelCase__ = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCamelCase ( _a , unittest.TestCase ): a : Any =ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'clusters' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case_ , 'image_processor.json' ) image_processor_first.to_json_file(snake_case_ ) UpperCamelCase__ = self.image_processing_class.from_json_file(snake_case_ ).to_dict() UpperCamelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) UpperCamelCase__ = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() UpperCamelCase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass def lowerCAmelCase_( ) -> List[Any]: """simple docstring""" UpperCamelCase__ = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) UpperCamelCase__ = Image.open(dataset[4]['file'] ) UpperCamelCase__ = Image.open(dataset[5]['file'] ) UpperCamelCase__ = [imagea, imagea] return images @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) UpperCamelCase__ = prepare_images() # test non-batched UpperCamelCase__ = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched UpperCamelCase__ = image_processing(snake_case_ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = F'class {class_name}(' UpperCamelCase__ = F'{4 * " "}def {test_name}(' UpperCamelCase__ = F'{8 * " "}{correct_line.split()[0]}' UpperCamelCase__ = F'{16 * " "}{correct_line.split()[0]}' UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = [] for line in lines: if line.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = True elif in_class and line.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = True elif in_class and in_func and (line.startswith(SCREAMING_SNAKE_CASE ) or line.startswith(SCREAMING_SNAKE_CASE )): UpperCamelCase__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCamelCase__ = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCamelCase__ = True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = False else: new_lines.append(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for line in new_lines: f.write(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if fail is not None: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = {l.strip() for l in f.readlines()} else: UpperCamelCase__ = None with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for line in correct_lines: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : str= argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) A__ : int= parser.parse_args() main(args.correct_filename, args.fail_filename)
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" from __future__ import annotations import math def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" if num <= 0: UpperCamelCase__ = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [True] * (num + 1) UpperCamelCase__ = [] UpperCamelCase__ = 2 UpperCamelCase__ = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: UpperCamelCase__ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str]= { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any]= ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A__ : List[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : Optional[Any]= logging.get_logger(__name__) class __lowerCamelCase ( _a , _a ): a : Optional[Any] ="""maskformer-swin""" a : int ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=224 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 12, 24] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__(**snake_case_ ) UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = num_heads UpperCamelCase__ = window_size UpperCamelCase__ = mlp_ratio UpperCamelCase__ = qkv_bias UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = drop_path_rate UpperCamelCase__ = hidden_act UpperCamelCase__ = use_absolute_embeddings UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) UpperCamelCase__ = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case_ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" from itertools import product def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = sides_number UpperCamelCase__ = max_face_number * dice_number UpperCamelCase__ = [0] * (max_total + 1) UpperCamelCase__ = 1 UpperCamelCase__ = range(SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE , repeat=SCREAMING_SNAKE_CASE ): UpperCamelCase__ = sum(SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def lowerCAmelCase_( ) -> float: """simple docstring""" UpperCamelCase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCamelCase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCamelCase__ = 0 UpperCamelCase__ = 9 UpperCamelCase__ = 4 * 9 UpperCamelCase__ = 6 for peter_total in range(SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCamelCase__ = (4**9) * (6**6) UpperCamelCase__ = peter_wins_count / total_games_number UpperCamelCase__ = round(SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0