code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any]= logging.get_logger(__name__) A__ : List[str]= { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[Any] ="""autoformer""" a : Union[str, Any] ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 64 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 32 , snake_case_ = 32 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 100 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 10 , snake_case_ = 25 , snake_case_ = 3 , **snake_case_ , ) -> int: # time series specific configuration UpperCamelCase__ = prediction_length UpperCamelCase__ = context_length if context_length is not None else prediction_length UpperCamelCase__ = distribution_output UpperCamelCase__ = loss UpperCamelCase__ = input_size UpperCamelCase__ = num_time_features UpperCamelCase__ = lags_sequence UpperCamelCase__ = scaling UpperCamelCase__ = num_dynamic_real_features UpperCamelCase__ = num_static_real_features UpperCamelCase__ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase__ = cardinality else: UpperCamelCase__ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase__ = embedding_dimension else: UpperCamelCase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase__ = num_parallel_samples # Transformer architecture configuration UpperCamelCase__ = input_size * len(self.lags_sequence ) + self._number_of_features UpperCamelCase__ = d_model UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = use_cache # Autoformer UpperCamelCase__ = label_length UpperCamelCase__ = moving_average UpperCamelCase__ = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
20
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=2 , snake_case_=3 , snake_case_=4 , snake_case_=2 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=36 , snake_case_=3 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=6 , snake_case_=6 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=1000 , ) -> Dict: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = text_seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase__ = text_seq_length UpperCamelCase__ = (image_size // patch_size) ** 2 + 1 UpperCamelCase__ = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase__ = bbox[i, j, 3] UpperCamelCase__ = bbox[i, j, 1] UpperCamelCase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase__ = bbox[i, j, 2] UpperCamelCase__ = bbox[i, j, 0] UpperCamelCase__ = t UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = LayoutLMvaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() # text + image UpperCamelCase__ = model(snake_case_ , pixel_values=snake_case_ ) UpperCamelCase__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ = model(snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase__ = model(snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase__ = model(pixel_values=snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = LayoutLMvaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = LayoutLMvaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = LayoutLMvaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , bbox=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : List[str] =False a : Optional[int] =False a : int =False a : Any =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a : Any =( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = LayoutLMvaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_=False ) -> Optional[Any]: UpperCamelCase__ = copy.deepcopy(snake_case_ ) if model_class in get_values(snake_case_ ): UpperCamelCase__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case_ ): UpperCamelCase__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) elif model_class in get_values(snake_case_ ): UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) elif model_class in [ *get_values(snake_case_ ), ]: UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) elif model_class in [ *get_values(snake_case_ ), ]: UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case_ , ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = LayoutLMvaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Dict: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=snake_case_ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(snake_case_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='pt' ).pixel_values.to(snake_case_ ) UpperCamelCase__ = torch.tensor([[1, 2]] ) UpperCamelCase__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCamelCase__ = model( input_ids=input_ids.to(snake_case_ ) , bbox=bbox.to(snake_case_ ) , pixel_values=pixel_values.to(snake_case_ ) , ) # verify the logits UpperCamelCase__ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case_ ) UpperCamelCase__ = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ) )
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : Union[str, Any]= { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any]= ["""MobileNetV2FeatureExtractor"""] A__ : Dict= ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any]= [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys A__ : Optional[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(1 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = collection[i] UpperCamelCase__ = 0 UpperCamelCase__ = i - 1 while low <= high: UpperCamelCase__ = (low + high) // 2 if val < collection[mid]: UpperCamelCase__ = mid - 1 else: UpperCamelCase__ = mid + 1 for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , -1 ): UpperCamelCase__ = collection[j - 1] UpperCamelCase__ = val return collection if __name__ == "__main__": A__ : str= input("""Enter numbers separated by a comma:\n""").strip() A__ : Dict= [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[list[float]]: """simple docstring""" UpperCamelCase__ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase__ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase__ = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase__ , UpperCamelCase__ = matrix[1][1], matrix[0][0] UpperCamelCase__ , UpperCamelCase__ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase__ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix UpperCamelCase__ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase__ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase__ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase__ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase__ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase__ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase__ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase__ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase__ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase__ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase__ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): UpperCamelCase__ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase__ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
20
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = [0 for i in range(len(SCREAMING_SNAKE_CASE ) )] # initialize interval's left pointer and right pointer UpperCamelCase__ , UpperCamelCase__ = 0, 0 for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase__ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCamelCase__ = min_edge while go_next(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase__ , UpperCamelCase__ = i, i + z_result[i] - 1 return z_result def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return i + z_result[i] < len(SCREAMING_SNAKE_CASE ) and s[z_result[i]] == s[i + z_result[i]] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase__ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(SCREAMING_SNAKE_CASE ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: UpperCamelCase__ = ksize + 1 UpperCamelCase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): # distance from center UpperCamelCase__ = x - ksize // 2 UpperCamelCase__ = y - ksize // 2 # degree to radiant UpperCamelCase__ = theta / 1_80 * np.pi UpperCamelCase__ = np.cos(_theta ) UpperCamelCase__ = np.sin(_theta ) # get kernel x UpperCamelCase__ = cos_theta * px + sin_theta * py # get kernel y UpperCamelCase__ = -sin_theta * px + cos_theta * py # fill kernel UpperCamelCase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A__ : int= imread("""../image_data/lena.jpg""") # turn image in gray scale value A__ : int= cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A__ : List[str]= np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: A__ : Tuple= gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A__ : Tuple= out / out.max() * 2_55 A__ : Union[str, Any]= out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
20
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any]= logging.get_logger(__name__) A__ : Any= { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __lowerCamelCase ( _a ): a : int ="""glpn""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=64 , snake_case_=10 , snake_case_=-1 , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = max_depth UpperCamelCase__ = head_in_index
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_( ) -> Iterator[int]: """simple docstring""" UpperCamelCase__ = 2 while True: if is_prime(SCREAMING_SNAKE_CASE ): yield num num += 1 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A__ : List[str]= """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ A__ : Tuple= """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ A__ : List[Any]= """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=False ) -> Optional[Any]: if rouge_types is None: UpperCamelCase__ = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase__ = rouge_scorer.RougeScorer(rouge_types=snake_case_ , use_stemmer=snake_case_ ) if use_aggregator: UpperCamelCase__ = scoring.BootstrapAggregator() else: UpperCamelCase__ = [] for ref, pred in zip(snake_case_ , snake_case_ ): UpperCamelCase__ = scorer.score(snake_case_ , snake_case_ ) if use_aggregator: aggregator.add_scores(snake_case_ ) else: scores.append(snake_case_ ) if use_aggregator: UpperCamelCase__ = aggregator.aggregate() else: UpperCamelCase__ = {} for key in scores[0]: UpperCamelCase__ = [score[key] for score in scores] return result
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A__ : List[Any]= logging.get_logger(__name__) A__ : Tuple= OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A__ : Optional[Any]= _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase__ = model_type_to_module_name(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , '__name__' , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase__ = importlib.import_module('transformers' ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" UpperCamelCase__ = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class __lowerCamelCase : def __init__( self ) -> Any: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> Optional[int]: UpperCamelCase__ = kwargs.pop('config' , snake_case_ ) UpperCamelCase__ = kwargs.pop('trust_remote_code' , snake_case_ ) UpperCamelCase__ = True UpperCamelCase__ , UpperCamelCase__ = ImageProcessingMixin.get_image_processor_dict(snake_case_ , **snake_case_ ) UpperCamelCase__ = config_dict.get('image_processor_type' , snake_case_ ) UpperCamelCase__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase__ = config_dict.pop('feature_extractor_type' , snake_case_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCamelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict['auto_map']['AutoFeatureExtractor'] UpperCamelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.image_processor_type`` UpperCamelCase__ = getattr(snake_case_ , 'image_processor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: UpperCamelCase__ = image_processor_class_from_name(snake_case_ ) UpperCamelCase__ = image_processor_auto_map is not None UpperCamelCase__ = image_processor_class is not None or type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase__ = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: UpperCamelCase__ = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) UpperCamelCase__ = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case_ , **snake_case_ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase__ = IMAGE_PROCESSOR_MAPPING[type(snake_case_ )] return image_processor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> Any: IMAGE_PROCESSOR_MAPPING.register(snake_case_ , snake_case_ )
20
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ) -> Any: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = mask_ratio UpperCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFViTMAEModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = TFViTMAEForPreTraining(snake_case_ ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches UpperCamelCase__ = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTMAEForPreTraining(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ , training=snake_case_ ) UpperCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : int =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a : List[str] ={"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a : List[Any] =False a : str =False a : Dict =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = TFViTMAEModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) UpperCamelCase__ = outputs_dict[0].numpy() UpperCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case_ ): UpperCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): UpperCamelCase__ = v.numpy() else: UpperCamelCase__ = np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = prepare_numpy_arrays(snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any: # make masks reproducible np.random.seed(2 ) UpperCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ = tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ = tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , '_keras_serializable' , snake_case_ ) } UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase__ = main_layer_class(snake_case_ ) UpperCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase__ = tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) UpperCamelCase__ = model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case_ , 'keras_model.h5' ) model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) UpperCamelCase__ = model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase__ = outputs.last_hidden_state.numpy() UpperCamelCase__ = 0 else: UpperCamelCase__ = outputs.logits.numpy() UpperCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = model_class.from_pretrained(snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase__ = after_outputs['last_hidden_state'].numpy() UpperCamelCase__ = 0 else: UpperCamelCase__ = after_outputs['logits'].numpy() UpperCamelCase__ = 0 UpperCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(snake_case_ , noise=snake_case_ ) UpperCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) UpperCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase__ = model_class.from_config(model.config ) UpperCamelCase__ = new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase__ = new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCamelCase__ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ = ViTMAEConfig() UpperCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase__ = model(**snake_case_ , noise=snake_case_ ) # verify the logits UpperCamelCase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 )
20
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=sys.maxsize ) -> Any: UpperCamelCase__ = 'bilinear' UpperCamelCase__ = max_size UpperCamelCase__ = short_edge_length def __call__( self , snake_case_ ) -> int: UpperCamelCase__ = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__ = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__ = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: UpperCamelCase__ , UpperCamelCase__ = size, scale * w else: UpperCamelCase__ , UpperCamelCase__ = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: UpperCamelCase__ = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) UpperCamelCase__ = newh * scale UpperCamelCase__ = neww * scale UpperCamelCase__ = int(neww + 0.5 ) UpperCamelCase__ = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__ = Image.fromarray(snake_case_ ) UpperCamelCase__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__ = np.asarray(snake_case_ ) else: UpperCamelCase__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__ = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class __lowerCamelCase : def __init__( self , snake_case_ ) -> Any: UpperCamelCase__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__ = cfg.INPUT.FORMAT UpperCamelCase__ = cfg.SIZE_DIVISIBILITY UpperCamelCase__ = cfg.PAD_VALUE UpperCamelCase__ = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__ = cfg.MODEL.DEVICE UpperCamelCase__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__ = lambda snake_case_ : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__ = [im.shape[-2:] for im in images] UpperCamelCase__ = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self , snake_case_ , snake_case_=False ) -> List[str]: with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__ = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__ = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__ = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__ = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__ = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__ = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A__ : Dict= """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") A__ : str= F"""https://www.google.com/search?q={query}&num=100""" A__ : Optional[Any]= requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: A__ : Tuple= ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: A__ : Optional[Any]= parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
20
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
1
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = 'ylacombe/bark-small' UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = 'en_speaker_1' UpperCamelCase__ = 'This is a test string' UpperCamelCase__ = 'speaker_embeddings_path.json' UpperCamelCase__ = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BarkProcessor(tokenizer=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase__ = 35 UpperCamelCase__ = 2 UpperCamelCase__ = 8 UpperCamelCase__ = { 'semantic_prompt': np.ones(snake_case_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase__ = processor(text=self.input_string , voice_preset=snake_case_ ) UpperCamelCase__ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase__ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(snake_case_ , **snake_case_ ) UpperCamelCase__ = processor(text=self.input_string , voice_preset=snake_case_ ) UpperCamelCase__ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BarkProcessor(tokenizer=snake_case_ ) UpperCamelCase__ = processor(text=self.input_string ) UpperCamelCase__ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
"""simple docstring""" class __lowerCamelCase : def __init__( self ) -> Any: UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]: if vertex not in self.adjacency: UpperCamelCase__ = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: self.add_vertex(snake_case_ ) self.add_vertex(snake_case_ ) if head == tail: return UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.get_edges() for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge edges.remove((tail, head, weight) ) for i in range(len(snake_case_ ) ): UpperCamelCase__ = list(edges[i] ) edges.sort(key=lambda snake_case_ : e[2] ) for i in range(len(snake_case_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: UpperCamelCase__ = edges[i][2] + 1 for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = weight UpperCamelCase__ = weight def __str__( self ) -> Tuple: UpperCamelCase__ = '' for tail in self.adjacency: for head in self.adjacency[tail]: UpperCamelCase__ = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip('\n' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_=None , snake_case_=None ) -> Union[str, Any]: UpperCamelCase__ = Graph() if vertices is None: UpperCamelCase__ = [] if edges is None: UpperCamelCase__ = [] for vertex in vertices: g.add_vertex(snake_case_ ) for edge in edges: g.add_edge(*snake_case_ ) return g class __lowerCamelCase : def __init__( self ) -> str: UpperCamelCase__ = {} UpperCamelCase__ = {} def __len__( self ) -> int: return len(self.parent ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if item in self.parent: return self.find(snake_case_ ) UpperCamelCase__ = item UpperCamelCase__ = 0 return item def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[Any]: if item not in self.parent: return self.make_set(snake_case_ ) if item != self.parent[item]: UpperCamelCase__ = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = self.find(snake_case_ ) UpperCamelCase__ = self.find(snake_case_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCamelCase__ = roota return roota if self.rank[roota] < self.rank[roota]: UpperCamelCase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCamelCase__ = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: UpperCamelCase__ = graph.num_vertices UpperCamelCase__ = Graph.UnionFind() UpperCamelCase__ = [] while num_components > 1: UpperCamelCase__ = {} for vertex in graph.get_vertices(): UpperCamelCase__ = -1 UpperCamelCase__ = graph.get_edges() for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge edges.remove((tail, head, weight) ) for edge in edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = union_find.find(snake_case_ ) UpperCamelCase__ = union_find.find(snake_case_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCamelCase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = cheap_edge[vertex] if union_find.find(snake_case_ ) != union_find.find(snake_case_ ): union_find.union(snake_case_ , snake_case_ ) mst_edges.append(cheap_edge[vertex] ) UpperCamelCase__ = num_components - 1 UpperCamelCase__ = Graph.build(edges=snake_case_ ) return mst
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
1
"""simple docstring""" from __future__ import annotations A__ : Dict= tuple[int, int, int] A__ : List[str]= tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase A__ : Union[str, Any]= """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- A__ : List[Any]= """EGZWVONAHDCLFQMSIPJBYUKXTR""" A__ : List[Any]= """FOBHMDKEXQNRAULPGSJVTYICZW""" A__ : Union[str, Any]= """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- A__ : Optional[Any]= { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- A__ : Any= """RMDJXFUWGISLHVTCQNKYPBEZOA""" A__ : Optional[int]= """SGLCPQWZHKXAREONTFBVIYJUDM""" A__ : Tuple= """HVSICLTYKQUBXDWAJZOMFGPREN""" A__ : Dict= """RZWQHFMVDBKICJLNTUXAGYPSOE""" A__ : int= """LFKIJODBEGAMQPXVUHYSTCZRWN""" A__ : str= """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(SCREAMING_SNAKE_CASE ) )) < 3: UpperCamelCase__ = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotpos if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE ) # Validates string and returns dict UpperCamelCase__ = _plugboard(SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> dict[str, str]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Plugboard setting isn\'t type string ({type(SCREAMING_SNAKE_CASE )})' raise TypeError(SCREAMING_SNAKE_CASE ) elif len(SCREAMING_SNAKE_CASE ) % 2 != 0: UpperCamelCase__ = F'Odd number of symbols ({len(SCREAMING_SNAKE_CASE )})' raise Exception(SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique UpperCamelCase__ = set() for i in pbstring: if i not in abc: UpperCamelCase__ = F'\'{i}\' not in list of symbols' raise Exception(SCREAMING_SNAKE_CASE ) elif i in tmppbl: UpperCamelCase__ = F'Duplicate symbol ({i})' raise Exception(SCREAMING_SNAKE_CASE ) else: tmppbl.add(SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary UpperCamelCase__ = {} for j in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 , 2 ): UpperCamelCase__ = pbstring[j + 1] UpperCamelCase__ = pbstring[j] return pb def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE = "" , ) -> str: """simple docstring""" UpperCamelCase__ = text.upper() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = _validator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , plugb.upper() ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotor_position UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCamelCase__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCamelCase__ = plugboard[symbol] # rotor ra -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- UpperCamelCase__ = abc.index(SCREAMING_SNAKE_CASE ) + rotorposa UpperCamelCase__ = rotora[index % len(SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCamelCase__ = reflector[symbol] # 2nd rotors UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] UpperCamelCase__ = abc[rotora.index(SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCamelCase__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Tuple= """This is my Python script that emulates the Enigma machine from WWII.""" A__ : Optional[int]= (1, 1, 1) A__ : List[str]= """pictures""" A__ : Optional[int]= (rotora, rotora, rotora) A__ : Optional[Any]= enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
20
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__ : Tuple= get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __lowerCamelCase ( _a , unittest.TestCase ): a : str =BartphoTokenizer a : Union[str, Any] =False a : str =True def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = ['▁This', '▁is', '▁a', '▁t', 'est'] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = {'unk_token': '<unk>'} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: UpperCamelCase__ = 'This is a là test' UpperCamelCase__ = 'This is a<unk><unk> test' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase__ = 'This is a là test' UpperCamelCase__ = '▁This ▁is ▁a ▁l à ▁t est'.split() UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = get_failure_array(SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern UpperCamelCase__ , UpperCamelCase__ = 0, 0 # index into text, pattern while i < len(SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ = failure[j - 1] continue i += 1 return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = [0] UpperCamelCase__ = 0 UpperCamelCase__ = 1 while j < len(SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ = failure[i - 1] continue j += 1 failure.append(SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) A__ : Dict= """abc1abc12""" A__ : int= """alskfjaldsabc1abc1abc12k23adsfabcabc""" A__ : Any= """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A__ : Optional[Any]= """ABABX""" A__ : Union[str, Any]= """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) A__ : List[str]= """AAAB""" A__ : Tuple= """ABAAAAAB""" assert kmp(pattern, text) # Test 4) A__ : Any= """abcdabcy""" A__ : Dict= """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) A__ : str= """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
20
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" from __future__ import annotations A__ : Tuple= """#""" class __lowerCamelCase : def __init__( self ) -> None: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = self._trie for char in text: if char not in trie: UpperCamelCase__ = {} UpperCamelCase__ = trie[char] UpperCamelCase__ = True def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> tuple | list: UpperCamelCase__ = self._trie for char in prefix: if char in trie: UpperCamelCase__ = trie[char] else: return [] return self._elements(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> tuple: UpperCamelCase__ = [] for c, v in d.items(): UpperCamelCase__ = [' '] if c == END else [(c + s) for s in self._elements(snake_case_ )] result.extend(snake_case_ ) return tuple(snake_case_ ) A__ : Union[str, Any]= Trie() A__ : Any= ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> tuple: """simple docstring""" UpperCamelCase__ = trie.find_word(SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def lowerCAmelCase_( ) -> None: """simple docstring""" print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
20
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
1
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example A__ : Dict= [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example A__ : Dict= [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[list[int]]: """simple docstring""" UpperCamelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE ) return next_generation def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[Image.Image]: """simple docstring""" UpperCamelCase__ = [] for _ in range(SCREAMING_SNAKE_CASE ): # Create output image UpperCamelCase__ = Image.new('RGB' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE )) ) UpperCamelCase__ = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): UpperCamelCase__ = 2_55 - cells[y][x] * 2_55 UpperCamelCase__ = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = new_generation(SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": A__ : int= generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A__ : Tuple= subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") A__ : Optional[Any]= subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() A__ : Optional[Any]= """|""".join(sys.argv[1:]) A__ : int= re.compile(rF"""^({joined_dirs}).*?\.py$""") A__ : Tuple= [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
20
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" import math def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 0.1 ) -> int: """simple docstring""" UpperCamelCase__ = 3 UpperCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = 2 UpperCamelCase__ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE ) if n > 1: factors.append(SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
"""simple docstring""" import requests def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase__ = {'Content-Type': 'application/json'} UpperCamelCase__ = requests.post(SCREAMING_SNAKE_CASE , json={'text': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 2_00: UpperCamelCase__ = ( 'Request to slack returned an error ' F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
20
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) UpperCamelCase__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ = model(snake_case_ )['last_hidden_state'].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( _a ): a : str =["""image_processor""", """tokenizer"""] a : List[str] ="""ViltImageProcessor""" a : Union[str, Any] =("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Any: UpperCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCamelCase__ = kwargs.pop('feature_extractor' ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) UpperCamelCase__ = self.image_processor def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: UpperCamelCase__ = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask UpperCamelCase__ = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Tuple: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Optional[Any]: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
20
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" A__ : Any= { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" assert type(SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = int(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '' UpperCamelCase__ = False if decimal < 0: UpperCamelCase__ = True decimal *= -1 while decimal > 0: UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 16 ) UpperCamelCase__ = values[remainder] + hexadecimal UpperCamelCase__ = '0x' + hexadecimal if negative: UpperCamelCase__ = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A__ : List[Any]= logging.get_logger("""transformers.models.encodec""") A__ : str= { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } A__ : int= { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } A__ : int= { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } A__ : Optional[int]= { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } A__ : List[Any]= { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } A__ : List[Any]= { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A__ : List[Any]= { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A__ : Dict= [] A__ : Any= [] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value elif weight_type == "running_mean": UpperCamelCase__ = value elif weight_type == "running_var": UpperCamelCase__ = value elif weight_type == "num_batches_tracked": UpperCamelCase__ = value elif weight_type == "weight_ih_l0": UpperCamelCase__ = value elif weight_type == "weight_hh_l0": UpperCamelCase__ = value elif weight_type == "bias_ih_l0": UpperCamelCase__ = value elif weight_type == "bias_hh_l0": UpperCamelCase__ = value elif weight_type == "weight_ih_l1": UpperCamelCase__ = value elif weight_type == "weight_hh_l1": UpperCamelCase__ = value elif weight_type == "bias_ih_l1": UpperCamelCase__ = value elif weight_type == "bias_hh_l1": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase__ , UpperCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase__ = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase__ = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info(F'{name} was ignored' ) continue UpperCamelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase__ , UpperCamelCase__ = key.split('.*.' ) if prefix in name and suffix in name: UpperCamelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] UpperCamelCase__ = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: UpperCamelCase__ = 'weight_g' elif "weight_v" in name: UpperCamelCase__ = 'weight_v' elif "weight_ih_l0" in name: UpperCamelCase__ = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCamelCase__ = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCamelCase__ = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCamelCase__ = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCamelCase__ = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCamelCase__ = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCamelCase__ = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCamelCase__ = 'bias_hh_l1' elif "bias" in name: UpperCamelCase__ = 'bias' elif "weight" in name: UpperCamelCase__ = 'weight' elif "running_mean" in name: UpperCamelCase__ = 'running_mean' elif "running_var" in name: UpperCamelCase__ = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase__ = 'num_batches_tracked' else: UpperCamelCase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" if config_path is not None: UpperCamelCase__ = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase__ = [8, 5, 4, 4] UpperCamelCase__ = [2.2] UpperCamelCase__ = 64 UpperCamelCase__ = 3_20_00 UpperCamelCase__ = 20_48 UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False elif model_name == "encodec_48khz": UpperCamelCase__ = [8, 5, 4, 2] UpperCamelCase__ = [3.0, 6.0, 12.0, 24.0] UpperCamelCase__ = 4_80_00 UpperCamelCase__ = 2 UpperCamelCase__ = False UpperCamelCase__ = 'time_group_norm' UpperCamelCase__ = True UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCamelCase__ = EncodecModel(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase__ = original_checkpoint['best_state'] recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE ) model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : str= argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) A__ : List[str]= parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[int]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCamelCase__ = 1_28 elif "12-12" in model_name: UpperCamelCase__ = 12 UpperCamelCase__ = 12 elif "14-14" in model_name: UpperCamelCase__ = 14 UpperCamelCase__ = 14 elif "16-16" in model_name: UpperCamelCase__ = 16 UpperCamelCase__ = 16 else: raise ValueError('Model not supported' ) UpperCamelCase__ = 'huggingface/label-files' if "speech-commands" in model_name: UpperCamelCase__ = 35 UpperCamelCase__ = 'speech-commands-v2-id2label.json' else: UpperCamelCase__ = 5_27 UpperCamelCase__ = 'audioset-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "module.v" in name: UpperCamelCase__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: UpperCamelCase__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: UpperCamelCase__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: UpperCamelCase__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: UpperCamelCase__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCamelCase__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: UpperCamelCase__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: UpperCamelCase__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = config.hidden_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict UpperCamelCase__ = model_name_to_url[model_name] UpperCamelCase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE ) # rename some keys UpperCamelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load 🤗 model UpperCamelCase__ = ASTForAudioClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCamelCase__ = -4.2677393 if 'speech-commands' not in model_name else -6.845978 UpperCamelCase__ = 4.5689974 if 'speech-commands' not in model_name else 5.5654526 UpperCamelCase__ = 10_24 if 'speech-commands' not in model_name else 1_28 UpperCamelCase__ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) if "speech-commands" in model_name: UpperCamelCase__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) UpperCamelCase__ = dataset[0]['audio']['array'] else: UpperCamelCase__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) UpperCamelCase__ , UpperCamelCase__ = torchaudio.load(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = waveform.squeeze().numpy() UpperCamelCase__ = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCamelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCamelCase__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCamelCase__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCamelCase__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCamelCase__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCamelCase__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCamelCase__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCamelCase__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : str= parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = 10 UpperCamelCase__ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCamelCase__ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(SCREAMING_SNAKE_CASE ) ), } , features=SCREAMING_SNAKE_CASE , ) return dataset @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return filename # FILE_CONTENT + files A__ : Tuple= """\ Text data. Second line of data.""" @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCamelCase__ = FILE_CONTENT with open(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" import bza UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with bza.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with lza.frame.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE , 'w' ) as archive: archive.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" import tarfile UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" import lzma UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with lzma.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" import zipfile UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCamelCase__ = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) with zstd.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCamelCase__ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE ) return filename A__ : Tuple= [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] A__ : Optional[Any]= [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] A__ : Any= { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } A__ : List[Any]= [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] A__ : List[str]= [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session' ) def lowerCAmelCase_( ) -> int: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: UpperCamelCase__ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: UpperCamelCase__ = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as f: UpperCamelCase__ = csv.DictWriter(SCREAMING_SNAKE_CASE , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" import bza UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: UpperCamelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCamelCase__ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: UpperCamelCase__ = pq.ParquetWriter(SCREAMING_SNAKE_CASE , schema=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE ) )] for k in DATA[0]} , schema=SCREAMING_SNAKE_CASE ) writer.write_table(SCREAMING_SNAKE_CASE ) writer.close() return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCamelCase__ = {'data': DATA} with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCamelCase__ = {'data': DATA_DICT_OF_LISTS} with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_312: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" import gzip UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE , 'wb' ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.add(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join('nested' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = ['0', '1', '2', '3'] UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = ['0', '1', '2', '3'] UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = ['0', '1', '2', '3'] UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.join('main_dir' , os.path.basename(SCREAMING_SNAKE_CASE ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported.ext' ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCamelCase__ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( ) -> Tuple: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowerCAmelCase_( ) -> Any: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ) ) f.write(SCREAMING_SNAKE_CASE , arcname=os.path.basename(SCREAMING_SNAKE_CASE ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
20
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( _a ): a : Tuple ="""ClapFeatureExtractor""" a : Optional[Any] =("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , snake_case_ , snake_case_ ) -> Optional[Any]: super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[Any]: UpperCamelCase__ = kwargs.pop('sampling_rate' , snake_case_ ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: UpperCamelCase__ = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if audios is not None: UpperCamelCase__ = self.feature_extractor( snake_case_ , sampling_rate=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and audios is not None: UpperCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> List[Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> int: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
20
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) UpperCamelCase__ = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ): # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if "metadata" in layer: UpperCamelCase__ = layer.split('metadata' ) UpperCamelCase__ = ''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: UpperCamelCase__ = layer.split('kvstore' ) UpperCamelCase__ = ''.join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: UpperCamelCase__ = layer.split('/' ) UpperCamelCase__ = '/'.join(split_layer[:-1] ) UpperCamelCase__ = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase__ = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: UpperCamelCase__ = 'file' else: UpperCamelCase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = rename_keys(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {} for k, v in current_block.items(): UpperCamelCase__ = v UpperCamelCase__ = new_current_block torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = convert_file_size_to_int(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: UpperCamelCase__ = serialization.msgpack_restore(fp.read() )['optimizer']['target'] UpperCamelCase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='/' ) UpperCamelCase__ = {} for layer in checkpoint_info.keys(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: UpperCamelCase__ = content else: UpperCamelCase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase__ , UpperCamelCase__ = rename_base_flax_keys(tuple(key.split('/' ) ) , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = '/'.join(SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase__ = {} UpperCamelCase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = weights_name.replace( '.bin' , F'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) # len(sharded_state_dicts):05d} UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = shard for key in shard: UpperCamelCase__ = shard_file # Add the metadata UpperCamelCase__ = {'total_size': total_size} UpperCamelCase__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A__ : int= parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase_( ) -> Union[str, Any]: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase__ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) UpperCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) UpperCamelCase__ = TaTokenizer.from_pretrained('t5-small' ) UpperCamelCase__ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Tuple= logging.get_logger(__name__) A__ : Union[str, Any]= { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __lowerCamelCase ( _a ): a : Optional[int] ="""big_bird""" def __init__( self , snake_case_=5_0358 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=4096 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=66 , snake_case_="block_sparse" , snake_case_=True , snake_case_=False , snake_case_=64 , snake_case_=3 , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , sep_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = type_vocab_size UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = rescale_embeddings UpperCamelCase__ = attention_type UpperCamelCase__ = use_bias UpperCamelCase__ = block_size UpperCamelCase__ = num_random_blocks UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
20
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase__ = dataset_size < in_memory_max_size else: UpperCamelCase__ = False UpperCamelCase__ = is_small_dataset(SCREAMING_SNAKE_CASE ) assert result == expected
20
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A__ : Dict= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : List[str] =["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) UpperCamelCase__ = size if size is not None else {'shortest_edge': 256} UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ) -> np.ndarray: UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: UpperCamelCase__ = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ) -> np.ndarray: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> Tuple: UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(snake_case_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] UpperCamelCase__ = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Union[str, Any]: UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(snake_case_ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(snake_case_ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case_ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
"""simple docstring""" import argparse from collections import defaultdict import yaml A__ : Optional[Any]= """docs/source/en/_toctree.yml""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for doc in model_doc: counts[doc["local"]] += 1 UpperCamelCase__ = [key for key, value in counts.items() if value > 1] UpperCamelCase__ = [] for duplicate_key in duplicates: UpperCamelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: UpperCamelCase__ = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ = content[api_idx]['sections'] # Then to the model doc UpperCamelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCamelCase__ = api_doc[model_idx]['sections'] UpperCamelCase__ = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE ) if 'sections' in section] UpperCamelCase__ = False for idx, modality_doc in modalities_docs: UpperCamelCase__ = modality_doc['sections'] UpperCamelCase__ = clean_model_doc_toc(SCREAMING_SNAKE_CASE ) if old_modality_doc != new_modality_doc: UpperCamelCase__ = True if overwrite: UpperCamelCase__ = new_modality_doc if diff: if overwrite: UpperCamelCase__ = model_doc UpperCamelCase__ = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A__ : Union[str, Any]= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Union[str, Any]= parser.parse_args() check_model_doc(args.fix_and_overwrite)
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
1
"""simple docstring""" import random class __lowerCamelCase : @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> tuple[list[int], list[int]]: UpperCamelCase__ = [ord(snake_case_ ) for i in text] UpperCamelCase__ = [] UpperCamelCase__ = [] for i in plain: UpperCamelCase__ = random.randint(1 , 300 ) UpperCamelCase__ = (i + k) * k cipher.append(snake_case_ ) key.append(snake_case_ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = [] for i in range(len(snake_case_ ) ): UpperCamelCase__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(snake_case_ ) ) return "".join(snake_case_ ) if __name__ == "__main__": A__, A__ : Dict= Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
20
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 8 , snake_case_=32 * 8 , snake_case_=4 , snake_case_=64 , ) -> Dict: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = is_training UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = num_queries UpperCamelCase__ = num_channels UpperCamelCase__ = min_size UpperCamelCase__ = max_size UpperCamelCase__ = num_labels UpperCamelCase__ = hidden_dim UpperCamelCase__ = hidden_dim def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) UpperCamelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) UpperCamelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() UpperCamelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() UpperCamelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase__ = self.num_queries UpperCamelCase__ = self.num_labels UpperCamelCase__ = [1, 1, 1, 1] UpperCamelCase__ = self.num_channels UpperCamelCase__ = 64 UpperCamelCase__ = 128 UpperCamelCase__ = self.hidden_dim UpperCamelCase__ = self.hidden_dim UpperCamelCase__ = self.hidden_dim return config def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = output.encoder_hidden_states UpperCamelCase__ = output.pixel_decoder_hidden_states UpperCamelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ) -> List[str]: with torch.no_grad(): UpperCamelCase__ = MaskaFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ , output_hidden_states=snake_case_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = MaskaFormerForUniversalSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) comm_check_on_output(snake_case_ ) UpperCamelCase__ = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a : List[Any] ={"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} a : List[Any] =False a : Optional[int] =False a : int =False a : Union[str, Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = MaskaFormerModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase__ = MaskaFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = (self.model_tester.min_size,) * 2 UpperCamelCase__ = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case_ ), 'mask_labels': torch.randn((2, 10, *size) , device=snake_case_ ), 'class_labels': torch.zeros(2 , 10 , device=snake_case_ ).long(), } UpperCamelCase__ = self.model_tester.get_config() UpperCamelCase__ = MaskaFormerForUniversalSegmentation(snake_case_ ).to(snake_case_ ) UpperCamelCase__ = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ).to(snake_case_ ) UpperCamelCase__ = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: if not self.model_tester.is_training: return UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.train() UpperCamelCase__ = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ).to(snake_case_ ) model.train() UpperCamelCase__ = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) UpperCamelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A__ : List[str]= 1E-4 def lowerCAmelCase_( ) -> List[str]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) UpperCamelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCamelCase__ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCamelCase__ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) UpperCamelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase__ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] UpperCamelCase__ = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval() UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase__ = inputs['pixel_values'].to(snake_case_ ) UpperCamelCase__ = [el.to(snake_case_ ) for el in inputs['mask_labels']] UpperCamelCase__ = [el.to(snake_case_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A__ : Dict= get_tests_dir("""fixtures/test_sentencepiece.model""") A__ : Union[str, Any]= {"""target_lang""": """fi""", """source_lang""": """en"""} A__ : int= """>>zh<<""" A__ : List[str]= """Helsinki-NLP/""" if is_torch_available(): A__ : Union[str, Any]= """pt""" elif is_tf_available(): A__ : Dict= """tf""" else: A__ : Optional[Any]= """jax""" @require_sentencepiece class __lowerCamelCase ( _a , unittest.TestCase ): a : Tuple =MarianTokenizer a : List[str] =False a : int =True def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) UpperCamelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = '</s>' UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case_ ) , 9 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) UpperCamelCase__ = en_de_tokenizer(['I am a small frog'] , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCamelCase__ = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(snake_case_ , batch.input_ids[0] ) UpperCamelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case_ ) UpperCamelCase__ = [x.name for x in Path(snake_case_ ).glob('*' )] self.assertIn('source.spm' , snake_case_ ) MarianTokenizer.from_pretrained(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=snake_case_ , truncation=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tok(['I am a tiny frog', 'I am a small frog'] , padding=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # fmt: off UpperCamelCase__ = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) UpperCamelCase__ = 'Tämä on testi' UpperCamelCase__ = 'This is a test' UpperCamelCase__ = [76, 7, 2047, 2] UpperCamelCase__ = [69, 12, 11, 940, 2] UpperCamelCase__ = tokenizer(snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer(text_target=snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
20
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A__ : Optional[Any]= logging.get_logger(__name__) A__ : Dict= { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } A__ : str= [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value elif weight_type == "running_mean": UpperCamelCase__ = value elif weight_type == "running_var": UpperCamelCase__ = value elif weight_type == "num_batches_tracked": UpperCamelCase__ = value elif weight_type == "inv_freq": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] UpperCamelCase__ = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "pos_bias_u" in name: UpperCamelCase__ = None elif "pos_bias_v" in name: UpperCamelCase__ = None elif "weight_g" in name: UpperCamelCase__ = 'weight_g' elif "weight_v" in name: UpperCamelCase__ = 'weight_v' elif "bias" in name: UpperCamelCase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = 'weight' elif "running_mean" in name: UpperCamelCase__ = 'running_mean' elif "inv_freq" in name: UpperCamelCase__ = 'inv_freq' elif "running_var" in name: UpperCamelCase__ = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase__ = 'num_batches_tracked' else: UpperCamelCase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = full_name.split('conv_layers.' )[-1] UpperCamelCase__ = name.split('.' ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Any: """simple docstring""" if config_path is not None: UpperCamelCase__ = WavaVecaConformerConfig.from_pretrained(SCREAMING_SNAKE_CASE , hidden_act='swish' ) else: UpperCamelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase__ = 'rotary' if is_finetuned: if dict_path: UpperCamelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ = target_dict.pad_index UpperCamelCase__ = target_dict.bos_index UpperCamelCase__ = target_dict.eos_index UpperCamelCase__ = len(target_dict.symbols ) UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ = 0 UpperCamelCase__ = 1 with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) UpperCamelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = WavaVecaConformerForCTC(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = WavaVecaConformerForPreTraining(SCREAMING_SNAKE_CASE ) if is_finetuned: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase__ = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Dict= argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) A__ : Any= parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
20
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
1
"""simple docstring""" from math import factorial def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) UpperCamelCase__ = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCamelCase__ = float(factorial(SCREAMING_SNAKE_CASE ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A__ : Optional[int]= True except ImportError: A__ : Tuple= False try: from torch.hub import _get_torch_home A__ : Union[str, Any]= _get_torch_home() except ImportError: A__ : str= os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A__ : Any= os.path.join(torch_cache_home, """transformers""") A__ : str= """https://cdn.huggingface.co""" A__ : Optional[int]= """https://s3.amazonaws.com/models.huggingface.co/bert""" A__ : int= """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A__ : Any= os.path.join(PATH, """config.yaml""") A__ : Dict= os.path.join(PATH, """attributes.txt""") A__ : Optional[int]= os.path.join(PATH, """objects.txt""") A__ : Optional[Any]= os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A__ : List[Any]= os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A__ : List[str]= os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A__ : Union[str, Any]= """pytorch_model.bin""" A__ : Optional[Any]= """config.yaml""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=OBJECTS , SCREAMING_SNAKE_CASE=ATTRIBUTES ) -> str: """simple docstring""" UpperCamelCase__ = [] with open(SCREAMING_SNAKE_CASE ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) UpperCamelCase__ = [] with open(SCREAMING_SNAKE_CASE ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = OrderedDict() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: UpperCamelCase__ = pkl.load(SCREAMING_SNAKE_CASE )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCamelCase__ = ckp.pop(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase__ = torch.tensor(SCREAMING_SNAKE_CASE ) else: assert isinstance(SCREAMING_SNAKE_CASE , torch.tensor ), type(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = v return r class __lowerCamelCase : a : Optional[int] ={} def __init__( self , snake_case_ , snake_case_ = "root" , snake_case_=0 ) -> List[str]: UpperCamelCase__ = name UpperCamelCase__ = level UpperCamelCase__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCamelCase__ = copy.deepcopy(snake_case_ ) UpperCamelCase__ = copy.deepcopy(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = Config(snake_case_ , name=snake_case_ , level=level + 1 ) UpperCamelCase__ = v setattr(self , snake_case_ , snake_case_ ) UpperCamelCase__ = d def __repr__( self ) -> Tuple: return str(list((self._pointer.keys()) ) ) def __setattr__( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = val UpperCamelCase__ = val UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = len(snake_case_ ) - 1 UpperCamelCase__ = self._pointer if len(snake_case_ ) > 1: for i, l in enumerate(snake_case_ ): if hasattr(self , snake_case_ ) and isinstance(getattr(self , snake_case_ ) , snake_case_ ): setattr(getattr(self , snake_case_ ) , '.'.join(levels[i:] ) , snake_case_ ) if l == last_level: UpperCamelCase__ = val else: UpperCamelCase__ = pointer[l] def SCREAMING_SNAKE_CASE__ ( self ) -> str: return self._pointer def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: with open(F'{file_name}' , 'w' ) as stream: dump(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: with open(F'{file_name}' , 'w' ) as stream: json.dump(snake_case_ , snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: with open(snake_case_ ) as stream: UpperCamelCase__ = load(snake_case_ , Loader=snake_case_ ) return data def __str__( self ) -> str: UpperCamelCase__ = ' ' if self._name != "root": UpperCamelCase__ = F'{t * (self._level-1)}{self._name}:\n' else: UpperCamelCase__ = '' UpperCamelCase__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(snake_case_ , snake_case_ ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(snake_case_ ).__name__})\n' UpperCamelCase__ = level return r[:-1] @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(snake_case_ , **snake_case_ ) return cls(snake_case_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> int: UpperCamelCase__ = kwargs.pop('cache_dir' , snake_case_ ) UpperCamelCase__ = kwargs.pop('force_download' , snake_case_ ) UpperCamelCase__ = kwargs.pop('resume_download' , snake_case_ ) UpperCamelCase__ = kwargs.pop('proxies' , snake_case_ ) UpperCamelCase__ = kwargs.pop('local_files_only' , snake_case_ ) if os.path.isdir(snake_case_ ): UpperCamelCase__ = os.path.join(snake_case_ , snake_case_ ) elif os.path.isfile(snake_case_ ) or is_remote_url(snake_case_ ): UpperCamelCase__ = pretrained_model_name_or_path else: UpperCamelCase__ = hf_bucket_url(snake_case_ , filename=snake_case_ , use_cdn=snake_case_ ) try: # Load from URL or cache if already cached UpperCamelCase__ = cached_path( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , local_files_only=snake_case_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCamelCase__ = Config.load_yaml(snake_case_ ) except EnvironmentError: UpperCamelCase__ = 'Can\'t load config for' raise EnvironmentError(snake_case_ ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(snake_case_ ), kwargs def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = torch.load('dump.pt' , map_location=in_tensor.device ) UpperCamelCase__ = in_tensor.numpy() UpperCamelCase__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rtol=0.01 , atol=0.1 ), ( F'{sum([1 for x in np.isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = urlparse(SCREAMING_SNAKE_CASE ) return parsed.scheme in ("http", "https") def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> str: """simple docstring""" UpperCamelCase__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCamelCase__ = '/' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" UpperCamelCase__ = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join('{}/{}'.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): ua += "; " + user_agent UpperCamelCase__ = {'user-agent': ua} if resume_size > 0: UpperCamelCase__ = 'bytes=%d-' % (resume_size,) UpperCamelCase__ = requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ) if response.status_code == 4_16: # Range not satisfiable return UpperCamelCase__ = response.headers.get('Content-Length' ) UpperCamelCase__ = resume_size + int(SCREAMING_SNAKE_CASE ) if content_length is not None else None UpperCamelCase__ = tqdm( unit='B' , unit_scale=SCREAMING_SNAKE_CASE , total=SCREAMING_SNAKE_CASE , initial=SCREAMING_SNAKE_CASE , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(SCREAMING_SNAKE_CASE ) ) temp_file.write(SCREAMING_SNAKE_CASE ) progress.close() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , ) -> Union[str, Any]: """simple docstring""" if cache_dir is None: UpperCamelCase__ = TRANSFORMERS_CACHE if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = str(SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = None if not local_files_only: try: UpperCamelCase__ = requests.head(SCREAMING_SNAKE_CASE , allow_redirects=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE ) if response.status_code == 2_00: UpperCamelCase__ = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCamelCase__ = url_to_filename(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # get cache path to put the file UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(SCREAMING_SNAKE_CASE ): return cache_path else: UpperCamelCase__ = [ file for file in fnmatch.filter(os.listdir(SCREAMING_SNAKE_CASE ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(SCREAMING_SNAKE_CASE ) > 0: return os.path.join(SCREAMING_SNAKE_CASE , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(SCREAMING_SNAKE_CASE ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCamelCase__ = cache_path + '.lock' with FileLock(SCREAMING_SNAKE_CASE ): # If the download just completed while the lock was activated. if os.path.exists(SCREAMING_SNAKE_CASE ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCamelCase__ = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(SCREAMING_SNAKE_CASE , 'a+b' ) as f: yield f UpperCamelCase__ = _resumable_file_manager if os.path.exists(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = os.stat(SCREAMING_SNAKE_CASE ).st_size else: UpperCamelCase__ = 0 else: UpperCamelCase__ = partial(tempfile.NamedTemporaryFile , dir=SCREAMING_SNAKE_CASE , delete=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , SCREAMING_SNAKE_CASE , temp_file.name , ) http_get( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , resume_size=SCREAMING_SNAKE_CASE , user_agent=SCREAMING_SNAKE_CASE , ) os.replace(temp_file.name , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {'url': url, 'etag': etag} UpperCamelCase__ = cache_path + '.json' with open(SCREAMING_SNAKE_CASE , 'w' ) as meta_file: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return cache_path def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" UpperCamelCase__ = url.encode('utf-8' ) UpperCamelCase__ = shaaaa(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = url_hash.hexdigest() if etag: UpperCamelCase__ = etag.encode('utf-8' ) UpperCamelCase__ = shaaaa(SCREAMING_SNAKE_CASE ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , ) -> Optional[Any]: """simple docstring""" if cache_dir is None: UpperCamelCase__ = TRANSFORMERS_CACHE if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = str(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = str(SCREAMING_SNAKE_CASE ) if is_remote_url(SCREAMING_SNAKE_CASE ): # URL, so get it from the cache (downloading if necessary) UpperCamelCase__ = get_from_cache( SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , user_agent=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) elif os.path.exists(SCREAMING_SNAKE_CASE ): # File, and it exists. UpperCamelCase__ = url_or_filename elif urlparse(SCREAMING_SNAKE_CASE ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(SCREAMING_SNAKE_CASE ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(SCREAMING_SNAKE_CASE ) ) if extract_compressed_file: if not is_zipfile(SCREAMING_SNAKE_CASE ) and not tarfile.is_tarfile(SCREAMING_SNAKE_CASE ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCamelCase__ , UpperCamelCase__ = os.path.split(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = output_file.replace('.' , '-' ) + '-extracted' UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if os.path.isdir(SCREAMING_SNAKE_CASE ) and os.listdir(SCREAMING_SNAKE_CASE ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCamelCase__ = output_path + '.lock' with FileLock(SCREAMING_SNAKE_CASE ): shutil.rmtree(SCREAMING_SNAKE_CASE , ignore_errors=SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE ) if is_zipfile(SCREAMING_SNAKE_CASE ): with ZipFile(SCREAMING_SNAKE_CASE , 'r' ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE ) zip_file.close() elif tarfile.is_tarfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = tarfile.open(SCREAMING_SNAKE_CASE ) tar_file.extractall(SCREAMING_SNAKE_CASE ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(SCREAMING_SNAKE_CASE ) ) return output_path_extracted return output_path def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="," ) -> Optional[int]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE ) as f: UpperCamelCase__ = eval(f.read() ) else: UpperCamelCase__ = requests.get(SCREAMING_SNAKE_CASE ) try: UpperCamelCase__ = requests.json() except Exception: UpperCamelCase__ = req.content.decode() assert data is not None, "could not connect" try: UpperCamelCase__ = eval(SCREAMING_SNAKE_CASE ) except Exception: UpperCamelCase__ = data.split('\n' ) req.close() return data def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = requests.get(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'rb' ) as stream: UpperCamelCase__ = pkl.load(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = weights.pop('model' ) UpperCamelCase__ = {} for k, v in model.items(): UpperCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) if "running_var" in k: UpperCamelCase__ = torch.tensor([0] ) UpperCamelCase__ = k.replace('running_var' , 'num_batches_tracked' ) UpperCamelCase__ = zero return new def lowerCAmelCase_( ) -> Dict: """simple docstring""" print(F'{os.path.abspath(os.path.join(SCREAMING_SNAKE_CASE , os.pardir ) )}/demo.ipynb' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="RGB" ) -> Dict: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = cva.imread(SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = get_image_from_url(SCREAMING_SNAKE_CASE ) assert img is not None, F'could not connect to: {im}' UpperCamelCase__ = cva.cvtColor(SCREAMING_SNAKE_CASE , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCamelCase__ = img[:, :, ::-1] return img def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 ) -> Optional[int]: """simple docstring""" return (images[i : i + batch] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ))
20
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=3 , snake_case_=32 , snake_case_=3 , snake_case_=10 , snake_case_=[10, 20, 30, 40] , snake_case_=[1, 1, 2, 1] , snake_case_=True , snake_case_=True , snake_case_="relu" , snake_case_=3 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = embeddings_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = scope UpperCamelCase__ = len(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = FlaxRegNetModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = FlaxRegNetForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : List[str] =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a : List[Any] =False a : Optional[Any] =False a : int =False def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxRegNetModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> List[Any]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) UpperCamelCase__ = model(**snake_case_ ) # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(outputs.logits.shape , snake_case_ ) UpperCamelCase__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = dataset UpperCamelCase__ = process UpperCamelCase__ = params def __len__( self ) -> Any: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> List[Any]: UpperCamelCase__ = self.dataset[i] UpperCamelCase__ = self.process(snake_case_ , **self.params ) return processed class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> Dict: UpperCamelCase__ = loader UpperCamelCase__ = infer UpperCamelCase__ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCamelCase__ = None UpperCamelCase__ = loader_batch_size # Internal bookkeeping UpperCamelCase__ = None UpperCamelCase__ = None def __len__( self ) -> Tuple: return len(self.loader ) def __iter__( self ) -> Optional[Any]: UpperCamelCase__ = iter(self.loader ) return self def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCamelCase__ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCamelCase__ = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case_ , snake_case_ ): # Convert ModelOutput to tuple first UpperCamelCase__ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCamelCase__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case_ , snake_case_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCamelCase__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCamelCase__ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase__ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase__ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCamelCase__ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCamelCase__ = self._loader_batch_data.__class__(snake_case_ ) self._loader_batch_index += 1 return result def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCamelCase__ = next(self.iterator ) UpperCamelCase__ = self.infer(snake_case_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case_ , torch.Tensor ): UpperCamelCase__ = processed else: UpperCamelCase__ = list(processed.keys() )[0] UpperCamelCase__ = processed[key] if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = len(snake_case_ ) else: UpperCamelCase__ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase__ = observed_batch_size # Setting internal index to unwrap the batch UpperCamelCase__ = processed UpperCamelCase__ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> int: super().__init__(snake_case_ , snake_case_ , snake_case_ ) def __iter__( self ) -> Union[str, Any]: UpperCamelCase__ = iter(self.loader ) UpperCamelCase__ = None return self def SCREAMING_SNAKE_CASE__ ( self ) -> Any: if self.subiterator is None: UpperCamelCase__ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCamelCase__ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCamelCase__ = self.infer(next(self.iterator ) , **self.params ) UpperCamelCase__ = next(self.subiterator ) return processed class __lowerCamelCase ( _a ): def __iter__( self ) -> str: UpperCamelCase__ = iter(self.loader ) return self def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCamelCase__ = False UpperCamelCase__ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCamelCase__ = self.loader_batch_item() UpperCamelCase__ = item.pop('is_last' ) accumulator.append(snake_case_ ) if is_last: return accumulator while not is_last: UpperCamelCase__ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case_ , torch.Tensor ): UpperCamelCase__ = processed else: UpperCamelCase__ = list(processed.keys() )[0] UpperCamelCase__ = processed[key] if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = len(snake_case_ ) else: UpperCamelCase__ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase__ = observed_batch_size UpperCamelCase__ = processed UpperCamelCase__ = 0 while self._loader_batch_index < self.loader_batch_size: UpperCamelCase__ = self.loader_batch_item() UpperCamelCase__ = item.pop('is_last' ) accumulator.append(snake_case_ ) if is_last: return accumulator else: UpperCamelCase__ = processed UpperCamelCase__ = item.pop('is_last' ) accumulator.append(snake_case_ ) return accumulator class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = dataset UpperCamelCase__ = key def __len__( self ) -> int: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> Dict: return self.dataset[i][self.key] class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = dataset UpperCamelCase__ = keya UpperCamelCase__ = keya def __len__( self ) -> List[str]: return len(self.dataset ) def __getitem__( self , snake_case_ ) -> Any: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="resnet50" , snake_case_=3 , snake_case_=32 , snake_case_=3 , snake_case_=True , snake_case_=True , ) -> Any: UpperCamelCase__ = parent UpperCamelCase__ = out_indices if out_indices is not None else [4] UpperCamelCase__ = stage_names UpperCamelCase__ = out_features UpperCamelCase__ = backbone UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = is_training def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = TimmBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( _a , _a , _a , unittest.TestCase ): a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Any ={"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a : Optional[Any] =False a : Any =False a : Any =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = TimmBackboneModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 'resnet18' UpperCamelCase__ = 'microsoft/resnet-18' UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , use_timm_backbone=snake_case_ , out_indices=[1, 2, 3] ) UpperCamelCase__ = AutoBackbone.from_pretrained(snake_case_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('Safetensors is not supported by timm.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase__ = self.all_model_classes[0] UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase__ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase__ = copy.deepcopy(snake_case_ ) UpperCamelCase__ = None UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase__ = copy.deepcopy(snake_case_ ) UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(**snake_case_ )
20
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A__ : Union[str, Any]= None A__ : Any= logging.get_logger(__name__) A__ : Dict= {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ : Optional[Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 A__ : List[Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class __lowerCamelCase ( _a ): a : Union[str, Any] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple =["""input_ids""", """attention_mask"""] a : List[str] =TaTokenizer a : List[int] =[] def __init__( self , snake_case_=None , snake_case_=None , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , **snake_case_ , ) -> Dict: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id_' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True UpperCamelCase__ = extra_ids @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> int: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCamelCase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) logger.info(F'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCamelCase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return [self.convert_tokens_to_ids(snake_case_ ) for token in self.get_sentinel_tokens()]
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=_a ): a : int =["""keras_nlp"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Tuple: requires_backends(self , ['keras_nlp'] )
20
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) A__ : Dict= logging.getLogger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='utf_8' ) as f: UpperCamelCase__ = csv.reader(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = [] for dataset in encoded_datasets: UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCamelCase__ = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCamelCase__ = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) UpperCamelCase__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCamelCase__ = with_conta UpperCamelCase__ = with_conta UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) - 1 UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) - 1 UpperCamelCase__ = with_conta UpperCamelCase__ = with_conta UpperCamelCase__ = mc_label UpperCamelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase_( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) UpperCamelCase__ = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCamelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCamelCase__ = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCamelCase__ = ['_start_', '_delimiter_', '_classify_'] UpperCamelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info('Encoding dataset...' ) UpperCamelCase__ = load_rocstories_dataset(args.train_dataset ) UpperCamelCase__ = load_rocstories_dataset(args.eval_dataset ) UpperCamelCase__ = (train_dataset, eval_dataset) UpperCamelCase__ = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer UpperCamelCase__ = model.config.n_positions // 2 - 2 UpperCamelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCamelCase__ = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCamelCase__ = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ = tensor_datasets[0], tensor_datasets[1] UpperCamelCase__ = TensorDataset(*SCREAMING_SNAKE_CASE ) UpperCamelCase__ = RandomSampler(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) UpperCamelCase__ = TensorDataset(*SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SequentialSampler(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCamelCase__ = args.max_steps UpperCamelCase__ = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCamelCase__ = list(model.named_parameters() ) UpperCamelCase__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] UpperCamelCase__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] UpperCamelCase__ = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCamelCase__ = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = tqdm(SCREAMING_SNAKE_CASE , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = batch UpperCamelCase__ = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCamelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCamelCase__ = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCamelCase__ = model.module if hasattr(SCREAMING_SNAKE_CASE , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCamelCase__ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCamelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCamelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() UpperCamelCase__ , UpperCamelCase__ = 0, 0 UpperCamelCase__ , UpperCamelCase__ = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc='Evaluating' ): UpperCamelCase__ = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = batch with torch.no_grad(): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = mc_logits.detach().cpu().numpy() UpperCamelCase__ = mc_labels.to('cpu' ).numpy() UpperCamelCase__ = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCamelCase__ = eval_loss / nb_eval_steps UpperCamelCase__ = eval_accuracy / nb_eval_examples UpperCamelCase__ = tr_loss / nb_tr_steps if args.do_train else None UpperCamelCase__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} UpperCamelCase__ = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: UpperCamelCase__ = parser.add_parser('env' ) download_parser.set_defaults(func=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = huggingface_hub.__version__ UpperCamelCase__ = 'not installed' UpperCamelCase__ = 'NA' if is_torch_available(): import torch UpperCamelCase__ = torch.__version__ UpperCamelCase__ = torch.cuda.is_available() UpperCamelCase__ = 'not installed' if is_transformers_available(): import transformers UpperCamelCase__ = transformers.__version__ UpperCamelCase__ = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase__ = accelerate.__version__ UpperCamelCase__ = 'not installed' if is_xformers_available(): import xformers UpperCamelCase__ = xformers.__version__ UpperCamelCase__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=snake_case_ ).to(snake_case_ ) UpperCamelCase__ = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase__ = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCamelCase__ = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCamelCase__ = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss UpperCamelCase__ = -(labels.shape[-1] * loss.item()) UpperCamelCase__ = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = params UpperCamelCase__ = np.array(snake_case_ ) UpperCamelCase__ = np.array([len(snake_case_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , snake_case_ ) -> Tuple: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Dict: return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.params.max_model_input_size UpperCamelCase__ = self.lengths > max_len logger.info(F'Splitting {sum(snake_case_ )} too long sequences.' ) def divide_chunks(snake_case_ , snake_case_ ): return [l[i : i + n] for i in range(0 , len(snake_case_ ) , snake_case_ )] UpperCamelCase__ = [] UpperCamelCase__ = [] if self.params.mlm: UpperCamelCase__ , UpperCamelCase__ = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: UpperCamelCase__ , UpperCamelCase__ = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCamelCase__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: UpperCamelCase__ = np.insert(snake_case_ , 0 , snake_case_ ) if sub_s[-1] != sep_id: UpperCamelCase__ = np.insert(snake_case_ , len(snake_case_ ) , snake_case_ ) assert len(snake_case_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(snake_case_ ) new_tok_ids.extend(snake_case_ ) new_lengths.extend([len(snake_case_ ) for l in sub_seqs] ) UpperCamelCase__ = np.array(snake_case_ ) UpperCamelCase__ = np.array(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = len(self ) UpperCamelCase__ = self.lengths > 11 UpperCamelCase__ = self.token_ids[indices] UpperCamelCase__ = self.lengths[indices] UpperCamelCase__ = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: if "unk_token" not in self.params.special_tok_ids: return else: UpperCamelCase__ = self.params.special_tok_ids['unk_token'] UpperCamelCase__ = len(self ) UpperCamelCase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCamelCase__ = (unk_occs / self.lengths) < 0.5 UpperCamelCase__ = self.token_ids[indices] UpperCamelCase__ = self.lengths[indices] UpperCamelCase__ = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: UpperCamelCase__ = [t[0] for t in batch] UpperCamelCase__ = [t[1] for t in batch] assert len(snake_case_ ) == len(snake_case_ ) # Max for paddings UpperCamelCase__ = max(snake_case_ ) # Pad token ids if self.params.mlm: UpperCamelCase__ = self.params.special_tok_ids['pad_token'] else: UpperCamelCase__ = self.params.special_tok_ids['unk_token'] UpperCamelCase__ = [list(t.astype(snake_case_ ) ) + [pad_idx] * (max_seq_len_ - len(snake_case_ )) for t in token_ids] assert len(tk_ ) == len(snake_case_ ) assert all(len(snake_case_ ) == max_seq_len_ for t in tk_ ) UpperCamelCase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCamelCase__ = torch.tensor(snake_case_ ) # (bs) return tk_t, lg_t
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
20
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=4 , snake_case_=4 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=0.02 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = rotary_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = None UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 UpperCamelCase__ = vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case_ ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , snake_case_ ) UpperCamelCase__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=snake_case_ , past_key_values=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase__ = model( input_ids[:, -1:] , attention_mask=snake_case_ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case_ , ) UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case_ ) UpperCamelCase__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase__ = model.init_cache(input_ids.shape[0] , snake_case_ ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ = model( input_ids[:, :-1] , attention_mask=snake_case_ , past_key_values=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case_ , position_ids=snake_case_ , ) UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Optional[Any] =(FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a : List[Any] =(FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) UpperCamelCase__ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=snake_case_ , truncation=snake_case_ ) UpperCamelCase__ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase__ = False UpperCamelCase__ = model.config.eos_token_id UpperCamelCase__ = jax.jit(model.generate ) UpperCamelCase__ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase__ = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) UpperCamelCase__ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(snake_case_ , snake_case_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs['input_ids'].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = pt_model_class(snake_case_ ).eval() UpperCamelCase__ = model_class(snake_case_ , dtype=jnp.floataa ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case_ ) UpperCamelCase__ = fx_state with torch.no_grad(): UpperCamelCase__ = pt_model(**snake_case_ ).to_tuple() UpperCamelCase__ = fx_model(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case_ ) UpperCamelCase__ = model_class.from_pretrained(snake_case_ , from_pt=snake_case_ ) UpperCamelCase__ = fx_model_loaded(**snake_case_ ).to_tuple() self.assertEqual( len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = pt_model_class(snake_case_ ).eval() UpperCamelCase__ = model_class(snake_case_ , dtype=jnp.floataa ) UpperCamelCase__ = load_flax_weights_in_pytorch_model(snake_case_ , fx_model.params ) UpperCamelCase__ , UpperCamelCase__ = pt_inputs['input_ids'].shape UpperCamelCase__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case_ ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase__ = pt_model(**snake_case_ ).to_tuple() UpperCamelCase__ = fx_model(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case_ ) UpperCamelCase__ = pt_model_class.from_pretrained(snake_case_ , from_flax=snake_case_ ) with torch.no_grad(): UpperCamelCase__ = pt_model_loaded(**snake_case_ ).to_tuple() self.assertEqual( len(snake_case_ ) , len(snake_case_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(snake_case_ , snake_case_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ )
20
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( _a , unittest.TestCase ): a : Dict =DebertaTokenizer a : Optional[int] =True a : Optional[Any] =DebertaTokenizerFast def SCREAMING_SNAKE_CASE__ ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ = {'unk_token': '[UNK]'} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: UpperCamelCase__ = 'lower newer' UpperCamelCase__ = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = 'lower newer' UpperCamelCase__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tokenizer('Hello' , 'World' ) UpperCamelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) UpperCamelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase__ = tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase__ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] UpperCamelCase__ = tokenizer(snake_case_ , padding=snake_case_ ) UpperCamelCase__ = [tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) for seq in encoding['input_ids']] # fmt: off UpperCamelCase__ = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase__ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , snake_case_ ) for expected, decoded in zip(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ )
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
1
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable A__ : int= list[list[float | int]] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Matrix: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE )] UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for row in range(SCREAMING_SNAKE_CASE ): for col in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = matrix[row][col] UpperCamelCase__ = vector[row][0] UpperCamelCase__ = 0 UpperCamelCase__ = 0 while row < size and col < size: # pivoting UpperCamelCase__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase__ , UpperCamelCase__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = augmented[rowa][col] / augmented[row][col] UpperCamelCase__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE ): for row in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE ) ] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Callable[[int], int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] UpperCamelCase__ = [[0] for _ in range(SCREAMING_SNAKE_CASE )] UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE ): for col in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = (x_val + 1) ** (size - col - 1) UpperCamelCase__ = y_val UpperCamelCase__ = solve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def interpolated_func(SCREAMING_SNAKE_CASE ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE ) ) return interpolated_func def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE = question_function , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = [func(SCREAMING_SNAKE_CASE ) for x_val in range(1 , order + 1 )] UpperCamelCase__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCamelCase__ = 0 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for poly in polynomials: UpperCamelCase__ = 1 while func(SCREAMING_SNAKE_CASE ) == poly(SCREAMING_SNAKE_CASE ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
20
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
"""simple docstring""" import argparse from collections import defaultdict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = F'class {class_name}(' UpperCamelCase__ = F'{4 * " "}def {test_name}(' UpperCamelCase__ = F'{8 * " "}{correct_line.split()[0]}' UpperCamelCase__ = F'{16 * " "}{correct_line.split()[0]}' UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = [] for line in lines: if line.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = True elif in_class and line.startswith(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = True elif in_class and in_func and (line.startswith(SCREAMING_SNAKE_CASE ) or line.startswith(SCREAMING_SNAKE_CASE )): UpperCamelCase__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCamelCase__ = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCamelCase__ = True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = False else: new_lines.append(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' ) as f: for line in new_lines: f.write(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" if fail is not None: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = {l.strip() for l in f.readlines()} else: UpperCamelCase__ = None with open(SCREAMING_SNAKE_CASE , 'r' ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for line in correct_lines: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : str= argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) A__ : int= parser.parse_args() main(args.correct_filename, args.fail_filename)
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A__ : int= { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple= [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys A__ : Any= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
"""simple docstring""" from __future__ import annotations import queue class __lowerCamelCase : def __init__( self , snake_case_ ) -> Dict: UpperCamelCase__ = data UpperCamelCase__ = None UpperCamelCase__ = None def lowerCAmelCase_( ) -> TreeNode: """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) UpperCamelCase__ = input('Enter the value of the root node: ' ).strip().lower() UpperCamelCase__ = queue.Queue() UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = q.get() UpperCamelCase__ = F'Enter the left node of {node_found.data}: ' UpperCamelCase__ = input(SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = left_node q.put(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = F'Enter the right node of {node_found.data}: ' UpperCamelCase__ = input(SCREAMING_SNAKE_CASE ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase__ = TreeNode(int(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = right_node q.put(SCREAMING_SNAKE_CASE ) raise def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = queue.Queue() q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = queue.Queue() q.put(SCREAMING_SNAKE_CASE ) while not q.empty(): UpperCamelCase__ = [] while not q.empty(): UpperCamelCase__ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = [] UpperCamelCase__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = n.left # end of while means current node doesn't have left child UpperCamelCase__ = stack.pop() # start to traverse its right child UpperCamelCase__ = n.right def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ = [] UpperCamelCase__ = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = n.left UpperCamelCase__ = stack.pop() print(n.data , end=',' ) UpperCamelCase__ = n.right def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not node: return UpperCamelCase__ , UpperCamelCase__ = [], [] UpperCamelCase__ = node stacka.append(SCREAMING_SNAKE_CASE ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCamelCase__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char UpperCamelCase__ , UpperCamelCase__ = divmod(width - len(SCREAMING_SNAKE_CASE ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A__ : TreeNode= build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
20
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(SCREAMING_SNAKE_CASE ) == 1: return True UpperCamelCase__ = series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) UpperCamelCase__ = 0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
1
"""simple docstring""" from collections import Counter from timeit import timeit def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" ) -> bool: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return True UpperCamelCase__ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string UpperCamelCase__ = {} for character in lower_case_input_str: UpperCamelCase__ = character_freq_dict.get(SCREAMING_SNAKE_CASE , 0 ) + 1 UpperCamelCase__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "" ) -> None: """simple docstring""" print('\nFor string = ' , SCREAMING_SNAKE_CASE , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(SCREAMING_SNAKE_CASE ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(SCREAMING_SNAKE_CASE ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": A__ : List[str]= input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) A__ : Dict= can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A__ : Union[str, Any]= datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): a : Optional[datasets.Features] =None a : str ="utf-8" a : Optional[str] =None a : Optional[str] =None a : bool =True # deprecated a : Optional[int] =None # deprecated a : int =1_0 << 2_0 # 10MB a : Optional[bool] =None class __lowerCamelCase ( datasets.ArrowBasedBuilder ): a : Any =JsonConfig def SCREAMING_SNAKE_CASE__ ( self ) -> int: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) UpperCamelCase__ = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) UpperCamelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCamelCase__ = data_files if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [files] UpperCamelCase__ = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase__ = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [files] UpperCamelCase__ = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase__ = self.config.features.arrow_schema.field(snake_case_ ).type UpperCamelCase__ = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase__ = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase__ = json.load(snake_case_ ) # We keep only the field we are interested in UpperCamelCase__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCamelCase__ = set().union(*[row.keys() for row in dataset] ) UpperCamelCase__ = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCamelCase__ = dataset UpperCamelCase__ = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , 'rb' ) as f: UpperCamelCase__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase__ = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: UpperCamelCase__ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase__ = batch.decode(self.config.encoding , errors=snake_case_ ).encode('utf-8' ) try: while True: try: UpperCamelCase__ = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase__ = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCamelCase__ = set().union(*[row.keys() for row in dataset] ) UpperCamelCase__ = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCamelCase__ = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
20
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCamelCase ( _a ): a : jnp.ndarray @flax_register_to_config class __lowerCamelCase ( nn.Module , _a , _a ): a : int =3_2 a : int =4 a : int =4 a : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") a : Union[bool, Tuple[bool]] =False a : Tuple[int] =(3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) a : int =2 a : Union[int, Tuple[int]] =8 a : Optional[Union[int, Tuple[int]]] =None a : int =1_2_8_0 a : float =0.0 a : bool =False a : jnp.dtype =jnp.floataa a : bool =True a : int =0 a : bool =False def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> FrozenDict: # init input tensors UpperCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase__ = jnp.zeros(snake_case_ , dtype=jnp.floataa ) UpperCamelCase__ = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase__ , UpperCamelCase__ = jax.random.split(snake_case_ ) UpperCamelCase__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(snake_case_ , snake_case_ , snake_case_ , snake_case_ )["params"] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.block_out_channels UpperCamelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase__ = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase__ = FlaxTimestepEmbedding(snake_case_ , dtype=self.dtype ) UpperCamelCase__ = self.only_cross_attention if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase__ = [] UpperCamelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase__ = output_channel UpperCamelCase__ = block_out_channels[i] UpperCamelCase__ = i == len(snake_case_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase__ = FlaxCrossAttnDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCamelCase__ = FlaxDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case_ ) UpperCamelCase__ = down_blocks # mid UpperCamelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCamelCase__ = [] UpperCamelCase__ = list(reversed(snake_case_ ) ) UpperCamelCase__ = list(reversed(snake_case_ ) ) UpperCamelCase__ = list(reversed(snake_case_ ) ) UpperCamelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): UpperCamelCase__ = output_channel UpperCamelCase__ = reversed_block_out_channels[i] UpperCamelCase__ = reversed_block_out_channels[min(i + 1 , len(snake_case_ ) - 1 )] UpperCamelCase__ = i == len(snake_case_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCamelCase__ = FlaxCrossAttnUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCamelCase__ = FlaxUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case_ ) UpperCamelCase__ = output_channel UpperCamelCase__ = up_blocks # out UpperCamelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCamelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_ = True , snake_case_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(snake_case_ , jnp.ndarray ): UpperCamelCase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case_ , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase__ = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase__ = jnp.expand_dims(snake_case_ , 0 ) UpperCamelCase__ = self.time_proj(snake_case_ ) UpperCamelCase__ = self.time_embedding(snake_case_ ) # 2. pre-process UpperCamelCase__ = jnp.transpose(snake_case_ , (0, 2, 3, 1) ) UpperCamelCase__ = self.conv_in(snake_case_ ) # 3. down UpperCamelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ , UpperCamelCase__ = down_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) else: UpperCamelCase__ , UpperCamelCase__ = down_block(snake_case_ , snake_case_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCamelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( snake_case_ , snake_case_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCamelCase__ = new_down_block_res_samples # 4. mid UpperCamelCase__ = self.mid_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCamelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCamelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = up_block( snake_case_ , temb=snake_case_ , encoder_hidden_states=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train , ) else: UpperCamelCase__ = up_block(snake_case_ , temb=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train ) # 6. post-process UpperCamelCase__ = self.conv_norm_out(snake_case_ ) UpperCamelCase__ = nn.silu(snake_case_ ) UpperCamelCase__ = self.conv_out(snake_case_ ) UpperCamelCase__ = jnp.transpose(snake_case_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case_ )
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=32 , snake_case_=True , ) -> List[str]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size_divisor UpperCamelCase__ = do_rescale def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCamelCase ( _a , unittest.TestCase ): a : List[str] =GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size_divisor' ) ) self.assertTrue(hasattr(snake_case_ , 'resample' ) ) self.assertTrue(hasattr(snake_case_ , 'do_rescale' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
20
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[int]= { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int]= ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str= [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int]= [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any]= [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A__ : Any= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": A__ : Optional[int]= argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) A__ : Tuple= parser.parse_args() A__ : Optional[Any]= download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" UpperCamelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase__ = np.zeros((n + 1,) ) UpperCamelCase__ = ya UpperCamelCase__ = xa for k in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE , y[k] ) UpperCamelCase__ = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" from collections.abc import Iterable from typing import Any class __lowerCamelCase : def __init__( self , snake_case_ = None ) -> Tuple: UpperCamelCase__ = value UpperCamelCase__ = None # Added in order to delete a node easier UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class __lowerCamelCase : def __init__( self , snake_case_ = None ) -> List[str]: UpperCamelCase__ = root def __str__( self ) -> str: return str(self.root ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if new_children is not None: # reset its kids UpperCamelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case_ ): # If it is the right children UpperCamelCase__ = new_children else: UpperCamelCase__ = new_children else: UpperCamelCase__ = new_children def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE__ ( self ) -> bool: return self.root is None def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = Node(snake_case_ ) # create a new Node if self.empty(): # if Tree is empty UpperCamelCase__ = new_node # set its root else: # Tree is not empty UpperCamelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCamelCase__ = new_node # We insert the new node in a leaf break else: UpperCamelCase__ = parent_node.left else: if parent_node.right is None: UpperCamelCase__ = new_node break else: UpperCamelCase__ = parent_node.right UpperCamelCase__ = parent_node def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ ) -> None: for value in values: self.__insert(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: UpperCamelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCamelCase__ = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ = None ) -> Node | None: if node is None: if self.root is None: return None UpperCamelCase__ = self.root if not self.empty(): while node.right is not None: UpperCamelCase__ = node.right return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ = None ) -> Node | None: if node is None: UpperCamelCase__ = self.root if self.root is None: return None if not self.empty(): UpperCamelCase__ = self.root while node.left is not None: UpperCamelCase__ = node.left return node def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = self.search(snake_case_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case_ , snake_case_ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case_ , node.left ) else: UpperCamelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCamelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if node: self.inorder(snake_case_ , node.left ) arr.append(node.value ) self.inorder(snake_case_ , node.right ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = [] self.inorder(snake_case_ , snake_case_ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" UpperCamelCase__ = [] if curr_node is not None: UpperCamelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase_( ) -> None: """simple docstring""" UpperCamelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCamelCase__ = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class __lowerCamelCase : def __init__( self , *, snake_case_ = np.inf , snake_case_ = "linear" , snake_case_ = 0.0 , ) -> None: UpperCamelCase__ = regularization UpperCamelCase__ = gamma if kernel == "linear": UpperCamelCase__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) UpperCamelCase__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ = F'Unknown kernel: {kernel}' raise ValueError(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> float: return np.dot(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: UpperCamelCase__ = observations UpperCamelCase__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__) , ) = np.shape(snake_case_ ) def to_minimize(snake_case_ ) -> float: UpperCamelCase__ = 0 ((UpperCamelCase__) , ) = np.shape(snake_case_ ) for i in range(snake_case_ ): for j in range(snake_case_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case_ ) UpperCamelCase__ = LinearConstraint(snake_case_ , 0 , 0 ) UpperCamelCase__ = Bounds(0 , self.regularization ) UpperCamelCase__ = minimize( snake_case_ , np.ones(snake_case_ ) , bounds=snake_case_ , constraints=[ly_contraint] ).x UpperCamelCase__ = l_star # calculating mean offset of separation plane to points UpperCamelCase__ = 0 for i in range(snake_case_ ): for j in range(snake_case_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCamelCase__ = s / n def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : List[str]= { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str]= ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int= [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any]= [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int= [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A__ : Optional[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( _a , _a , _a , unittest.TestCase ): a : Tuple =StableDiffusionInstructPixaPixPipeline a : Optional[Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} a : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : Dict =IMAGE_TO_IMAGE_IMAGE_PARAMS a : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase__ = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ = CLIPTextModel(snake_case_ ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=0 ) -> Union[str, Any]: UpperCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ) if str(snake_case_ ).startswith('mps' ): UpperCamelCase__ = torch.manual_seed(snake_case_ ) else: UpperCamelCase__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = 'french fries' UpperCamelCase__ = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = [inputs['prompt']] * 2 UpperCamelCase__ = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 UpperCamelCase__ = torch.from_numpy(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) UpperCamelCase__ = image / 2 + 0.5 UpperCamelCase__ = image.permute(0 , 3 , 1 , 2 ) UpperCamelCase__ = image.repeat(2 , 1 , 1 , 1 ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCamelCase__ = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = [round(snake_case_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(snake_case_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = VaeImageProcessor(do_resize=snake_case_ , do_normalize=snake_case_ ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) )[0] UpperCamelCase__ = components['vae'] UpperCamelCase__ = self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCamelCase__ = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCamelCase__ = pipe(**snake_case_ )[0] UpperCamelCase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 ) -> Tuple: UpperCamelCase__ = torch.manual_seed(snake_case_ ) UpperCamelCase__ = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) UpperCamelCase__ = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) UpperCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) UpperCamelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 0 def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: UpperCamelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ = latents[0, -3:, -3:, -1] UpperCamelCase__ = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCamelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ = latents[0, -3:, -3:, -1] UpperCamelCase__ = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCamelCase__ = False UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ) UpperCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase__ = inputs['image'].resize((504, 504) ) UpperCamelCase__ = 'timbrooks/instruct-pix2pix' UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = pipe(**snake_case_ ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCamelCase__ = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
20
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> list[float]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = coefficient_matrix.shape UpperCamelCase__ , UpperCamelCase__ = constant_matrix.shape if rowsa != colsa: UpperCamelCase__ = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE ) if colsa != 1: UpperCamelCase__ = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE ) if rowsa != rowsa: UpperCamelCase__ = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != rowsa: UpperCamelCase__ = ( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(SCREAMING_SNAKE_CASE )} and {rowsa}' ) raise ValueError(SCREAMING_SNAKE_CASE ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) UpperCamelCase__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase__ , UpperCamelCase__ = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [] for row in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 for col in range(SCREAMING_SNAKE_CASE ): if col == row: UpperCamelCase__ = table[row][col] elif col == cols - 1: UpperCamelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase__ = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = new_val return [float(SCREAMING_SNAKE_CASE ) for i in new_val] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = table.shape UpperCamelCase__ = True for i in range(0 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
1
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( _a , unittest.TestCase ): a : str =KandinskyVaaPriorPipeline a : Optional[int] =["""prompt"""] a : str =["""prompt""", """negative_prompt"""] a : Dict =[ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] a : Union[str, Any] =False @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return 32 @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return 32 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 100 @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case_ ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: torch.manual_seed(0 ) UpperCamelCase__ = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } UpperCamelCase__ = PriorTransformer(**snake_case_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 UpperCamelCase__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) UpperCamelCase__ = CLIPVisionModelWithProjection(snake_case_ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case_ , do_normalize=snake_case_ , do_resize=snake_case_ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.dummy_prior UpperCamelCase__ = self.dummy_image_encoder UpperCamelCase__ = self.dummy_text_encoder UpperCamelCase__ = self.dummy_tokenizer UpperCamelCase__ = self.dummy_image_processor UpperCamelCase__ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=snake_case_ , clip_sample_range=10.0 , ) UpperCamelCase__ = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=0 ) -> List[Any]: if str(snake_case_ ).startswith('mps' ): UpperCamelCase__ = torch.manual_seed(snake_case_ ) else: UpperCamelCase__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase__ = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = 'cpu' UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**snake_case_ ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(snake_case_ ) ) UpperCamelCase__ = output.image_embeds UpperCamelCase__ = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] UpperCamelCase__ = image[0, -10:] UpperCamelCase__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) UpperCamelCase__ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = torch_device == 'cpu' UpperCamelCase__ = True UpperCamelCase__ = False self._test_inference_batch_single_identical( test_max_difference=snake_case_ , relax_max_difference=snake_case_ , test_mean_pixel_difference=snake_case_ , ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = torch_device == 'cpu' UpperCamelCase__ = False self._test_attention_slicing_forward_pass( test_max_difference=snake_case_ , test_mean_pixel_difference=snake_case_ , )
20
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[int]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = '' else: UpperCamelCase__ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) UpperCamelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ = dct.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = val def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = ViTConfig() UpperCamelCase__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCamelCase__ = True UpperCamelCase__ = int(vit_name[-12:-10] ) UpperCamelCase__ = int(vit_name[-9:-6] ) else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = int(vit_name[-6:-4] ) UpperCamelCase__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): UpperCamelCase__ = 1_92 UpperCamelCase__ = 7_68 UpperCamelCase__ = 12 UpperCamelCase__ = 3 elif vit_name[9:].startswith('small' ): UpperCamelCase__ = 3_84 UpperCamelCase__ = 15_36 UpperCamelCase__ = 12 UpperCamelCase__ = 6 else: pass else: if vit_name[4:].startswith('small' ): UpperCamelCase__ = 7_68 UpperCamelCase__ = 23_04 UpperCamelCase__ = 8 UpperCamelCase__ = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif vit_name[4:].startswith('huge' ): UpperCamelCase__ = 12_80 UpperCamelCase__ = 51_20 UpperCamelCase__ = 32 UpperCamelCase__ = 16 # load original model from timm UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase__ = ViTModel(SCREAMING_SNAKE_CASE ).eval() else: UpperCamelCase__ = ViTForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCamelCase__ = DeiTImageProcessor(size=config.image_size ) else: UpperCamelCase__ = ViTImageProcessor(size=config.image_size ) UpperCamelCase__ = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase__ = encoding['pixel_values'] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE ) if base_model: UpperCamelCase__ = timm_model.forward_features(SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: UpperCamelCase__ = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : List[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Dict= parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
20
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
1
"""simple docstring""" from maths.prime_check import is_prime def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
1
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any]= logging.get_logger(__name__) A__ : Tuple= { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCamelCase ( _a ): a : Tuple ="""yolos""" def __init__( self , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=[512, 864] , snake_case_=16 , snake_case_=3 , snake_case_=True , snake_case_=100 , snake_case_=True , snake_case_=False , snake_case_=1 , snake_case_=5 , snake_case_=2 , snake_case_=5 , snake_case_=2 , snake_case_=0.1 , **snake_case_ , ) -> str: super().__init__(**snake_case_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class __lowerCamelCase ( _a ): a : int =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
20
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: debug_launcher(test_ops.main )
20
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCamelCase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ = 1 if upper_limit > 0: UpperCamelCase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: A__ : List[str]= int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
20
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
1
"""simple docstring""" import os import sys import unittest A__ : Union[str, Any]= os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A__ : List[str]= os.path.join(git_repo_path, """src""", """transformers""") A__ : Dict= """ {0} = None """ A__ : str= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ A__ : List[Any]= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(snake_case_ ) UpperCamelCase__ = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(snake_case_ , 'tokenizers' ) UpperCamelCase__ = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(snake_case_ , 'tensorflow_text' ) UpperCamelCase__ = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(snake_case_ , 'sentencepiece_and_tokenizers' ) UpperCamelCase__ = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(snake_case_ , 'sentencepiece_and_tensorflow_text' ) UpperCamelCase__ = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(snake_case_ , 'sentencepiece_and_tokenizers_and_vision' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , snake_case_ ) self.assertIn('tensorflow_text' , snake_case_ ) self.assertIn('sentencepiece_and_tokenizers' , snake_case_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(snake_case_ , '\nCONSTANT = None\n' ) UpperCamelCase__ = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( snake_case_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCamelCase__ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' UpperCamelCase__ = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' UpperCamelCase__ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , snake_case_ )
20
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A__ : int= get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): a : List[str] =SpeechTaTokenizer a : List[Any] =False a : List[str] =True def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = SpeechTaTokenizer(snake_case_ ) UpperCamelCase__ = AddedToken('<mask>' , lstrip=snake_case_ , rstrip=snake_case_ ) UpperCamelCase__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = 'this is a test' UpperCamelCase__ = 'this is a test' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=False , snake_case_=20 , snake_case_=5 ) -> Optional[Any]: UpperCamelCase__ , UpperCamelCase__ = self.get_input_output_texts(snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = '<pad>' UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(snake_case_ ) , 81 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCamelCase__ = tokenizer.vocab_size UpperCamelCase__ = len(snake_case_ ) self.assertNotEqual(snake_case_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase__ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase__ = tokenizer.add_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.vocab_size UpperCamelCase__ = len(snake_case_ ) self.assertNotEqual(snake_case_ , 0 ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , len(snake_case_ ) ) self.assertEqual(snake_case_ , all_size + len(snake_case_ ) ) UpperCamelCase__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=snake_case_ ) self.assertGreaterEqual(len(snake_case_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase__ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase__ = tokenizer.add_special_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.vocab_size UpperCamelCase__ = len(snake_case_ ) self.assertNotEqual(snake_case_ , 0 ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , len(snake_case_ ) ) self.assertEqual(snake_case_ , all_size_a + len(snake_case_ ) ) UpperCamelCase__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=snake_case_ ) self.assertGreaterEqual(len(snake_case_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(snake_case_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) UpperCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) # fmt: off self.assertListEqual(snake_case_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on UpperCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: # Use custom sequence because this tokenizer does not handle numbers. UpperCamelCase__ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off UpperCamelCase__ = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=snake_case_ , )
20
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
1
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : List[str]= logging.get_logger() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> Optional[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": UpperCamelCase__ = timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 1_92: UpperCamelCase__ = timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 2_56: UpperCamelCase__ = timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE ) if hidden_sizes == 3_84: UpperCamelCase__ = timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE ) from_model.eval() UpperCamelCase__ = LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ = OrderedDict() UpperCamelCase__ = from_model.state_dict() UpperCamelCase__ = list(from_model.state_dict().keys() ) UpperCamelCase__ = list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = torch.randn((2, 3, 2_24, 2_24) ) UpperCamelCase__ = from_model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = our_model(SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." UpperCamelCase__ = name print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ) -> Tuple: """simple docstring""" UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = 10_00 UpperCamelCase__ = (1, num_labels) UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = num_labels UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } UpperCamelCase__ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": A__ : List[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) A__ : Any= parser.parse_args() A__ : Path= args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 2_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = [0 for i in range(n + 1 )] UpperCamelCase__ = 1 UpperCamelCase__ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 for i in range(SCREAMING_SNAKE_CASE ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
20
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowerCamelCase : a : str =None def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) UpperCamelCase__ = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) UpperCamelCase__ = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
20
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 4 , snake_case_=32 * 6 , snake_case_=4 , snake_case_=32 , ) -> Any: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = is_training UpperCamelCase__ = use_auxiliary_loss UpperCamelCase__ = num_queries UpperCamelCase__ = num_channels UpperCamelCase__ = min_size UpperCamelCase__ = max_size UpperCamelCase__ = num_labels UpperCamelCase__ = mask_feature_size def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) UpperCamelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) UpperCamelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() UpperCamelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() UpperCamelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = output.encoder_hidden_states UpperCamelCase__ = output.pixel_decoder_hidden_states UpperCamelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ) -> Optional[Any]: with torch.no_grad(): UpperCamelCase__ = MaskFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ , output_hidden_states=snake_case_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = MaskFormerForInstanceSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) comm_check_on_output(snake_case_ ) UpperCamelCase__ = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Union[str, Any] =(MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a : List[Any] =( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a : Union[str, Any] =False a : Optional[int] =False a : int =False a : List[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = MaskFormerModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ = MaskFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = (self.model_tester.min_size,) * 2 UpperCamelCase__ = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case_ ), 'mask_labels': torch.randn((2, 10, *size) , device=snake_case_ ), 'class_labels': torch.zeros(2 , 10 , device=snake_case_ ).long(), } UpperCamelCase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case_ ) UpperCamelCase__ = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ).to(snake_case_ ) UpperCamelCase__ = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.train() UpperCamelCase__ = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self ) -> int: # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) model.to(snake_case_ ) model.train() UpperCamelCase__ = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) UpperCamelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A__ : Any= 1E-4 def lowerCAmelCase_( ) -> List[str]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(snake_case_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) UpperCamelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCamelCase__ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCamelCase__ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(snake_case_ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) UpperCamelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] UpperCamelCase__ = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(snake_case_ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(snake_case_ , return_tensors='pt' ).to(snake_case_ ) UpperCamelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) # masks_queries_logits UpperCamelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] UpperCamelCase__ = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits UpperCamelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(snake_case_ ) .eval() ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase__ = inputs['pixel_values'].to(snake_case_ ) UpperCamelCase__ = [el.to(snake_case_ ) for el in inputs['mask_labels']] UpperCamelCase__ = [el.to(snake_case_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase__ = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
20
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if num < 0: return False UpperCamelCase__ = num UpperCamelCase__ = 0 while num > 0: UpperCamelCase__ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy A__ : Optional[int]= logging.getLogger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> List[str]: """simple docstring""" UpperCamelCase__ = bnb_quantization_config.load_in_abit UpperCamelCase__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) UpperCamelCase__ = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ = [] UpperCamelCase__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ = load_in_abit UpperCamelCase__ = load_in_abit UpperCamelCase__ = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) UpperCamelCase__ = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ = name.replace('.weight' , '' ).replace('.bias' , '' ) UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): UpperCamelCase__ = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ = True UpperCamelCase__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) UpperCamelCase__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ = {} UpperCamelCase__ = special_dtypes UpperCamelCase__ = no_split_module_classes UpperCamelCase__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ = max_memory UpperCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ = [] UpperCamelCase__ , UpperCamelCase__ = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase__ = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ = '.'.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) UpperCamelCase__ = module.weight.data if module.bias is not None: UpperCamelCase__ = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" with init_empty_weights(): UpperCamelCase__ = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ = False if hasattr(SCREAMING_SNAKE_CASE , 'base_model_prefix' ): UpperCamelCase__ = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ = list(model.named_children() ) UpperCamelCase__ = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ = ['.weight', '.bias'] UpperCamelCase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ = name.replace(SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = param_name UpperCamelCase__ = model if "." in tensor_name: UpperCamelCase__ = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) UpperCamelCase__ = new_module UpperCamelCase__ = splits[-1] # offload weights UpperCamelCase__ = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'meta' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=False , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=19 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = EsmForProteinFolding(config=snake_case_ ).float() model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Tuple =False a : List[str] =(EsmForProteinFolding,) if is_torch_available() else () a : Optional[Any] =() a : List[str] ={} if is_torch_available() else {} a : Optional[Any] =False def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = EsmFoldModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) @unittest.skip('Does not support attention outputs' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold only has one output format.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: pass @unittest.skip('ESMFold does not support input chunking.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: pass @require_torch class __lowerCamelCase ( _a ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase__ = model(snake_case_ )['positions'] UpperCamelCase__ = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case_ , atol=1E-4 ) )
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm A__ : Tuple= logging.get_logger(__name__) @dataclass class __lowerCamelCase ( _a ): a : Optional[Any] =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **snake_case_ ) -> str: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCamelCase__ = deprecated_arg[3:] setattr(self , snake_case_ , not kwargs.pop(snake_case_ ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) UpperCamelCase__ = kwargs.pop('torchscript' , self.torchscript ) UpperCamelCase__ = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) UpperCamelCase__ = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**snake_case_ ) a : bool =field(default=_a , metadata={"""help""": """Trace the models using torchscript"""} ) a : bool =field(default=_a , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a : str =field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: UpperCamelCase__ = torch.device('cpu' ) UpperCamelCase__ = 0 elif is_torch_tpu_available(): UpperCamelCase__ = xm.xla_device() UpperCamelCase__ = 0 else: UpperCamelCase__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCamelCase__ = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE__ ( self ) -> "torch.device": requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return self.n_gpu > 0
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products UpperCamelCase__ = numbers[i] if number < 0: UpperCamelCase__ , UpperCamelCase__ = min_till_now, max_till_now UpperCamelCase__ = max(SCREAMING_SNAKE_CASE , max_till_now * number ) UpperCamelCase__ = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now UpperCamelCase__ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
20
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
1