code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase ( _a , unittest.TestCase ):
a : Dict =BlenderbotSmallTokenizer
a : Tuple =False
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
UpperCamelCase__ = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__']
UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) )
UpperCamelCase__ = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', '']
UpperCamelCase__ = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'}
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(snake_case_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Optional[Any]:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
UpperCamelCase__ = 'adapt act apte'
UpperCamelCase__ = 'adapt act apte'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ = 'adapt act apte'
UpperCamelCase__ = ['adapt', 'act', 'ap@@', 'te']
UpperCamelCase__ = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
UpperCamelCase__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCamelCase__ = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
assert tok('sam' ).input_ids == [1384]
UpperCamelCase__ = 'I am a small frog.'
UpperCamelCase__ = tok([src_text] , padding=snake_case_ , truncation=snake_case_ )['input_ids']
UpperCamelCase__ = tok.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
UpperCamelCase__ = 'I am a small frog .'
UpperCamelCase__ = '.'
UpperCamelCase__ = tok(snake_case_ )['input_ids']
UpperCamelCase__ = tok(snake_case_ )['input_ids']
assert encoded[-1] == encoded_dot[0]
| 20 |
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
A__ : str= {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
A__ : str= {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE )
return images
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if images.ndim == 3:
UpperCamelCase__ = images[None, ...]
UpperCamelCase__ = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 20 | 1 |
"""simple docstring"""
from maths.prime_factors import prime_factors
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'Input value of [number={number}] must be an integer'
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(SCREAMING_SNAKE_CASE ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """spiece.model"""}
A__ : Union[str, Any]= {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
}
}
# TODO(PVP) - this should be removed in Transformers v5
A__ : Union[str, Any]= {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
A__ : Optional[Any]= """▁"""
class __lowerCamelCase ( _a ):
a : Dict =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' )
UpperCamelCase__ = legacy
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = extra_ids
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case_ )) + [1]
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return list(
set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]:
if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
if token_ids_a is None:
return token_ids_a
else:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> Any:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' )
return super().tokenize(snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]:
if not self.legacy:
UpperCamelCase__ = text.startswith(snake_case_ )
if is_first:
UpperCamelCase__ = text[1:]
UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ )
if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ):
UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token.startswith('<extra_id_' ):
UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ )
UpperCamelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ )
else:
UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = []
UpperCamelCase__ = ''
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case_ )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 20 | 1 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A__ : Any= TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , snake_case_ ) -> None:
UpperCamelCase__ = data
UpperCamelCase__ = self
UpperCamelCase__ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# create a new set with x as its member
UpperCamelCase__ = DisjointSetTreeNode(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
UpperCamelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
UpperCamelCase__ = nodea
else:
UpperCamelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# add an edge with the given weight
self.add_node(snake_case_ )
self.add_node(snake_case_ )
UpperCamelCase__ = weight
UpperCamelCase__ = weight
def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]:
UpperCamelCase__ = []
UpperCamelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case_ : x[2] )
# creating the disjoint set
UpperCamelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case_ )
# MST generation
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index]
index += 1
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case_ , snake_case_ , snake_case_ )
disjoint_set.union(snake_case_ , snake_case_ )
return graph
| 20 | 1 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A__ : str= (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A__ : list[int]= [ord(letter) for letter in string.ascii_lowercase]
A__ : set[int]= {ord(char) for char in VALID_CHARS}
A__ : list[str]= ["the", "be", "to", "of", "and", "in", "that", "have"]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str | None:
"""simple docstring"""
UpperCamelCase__ = ""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(SCREAMING_SNAKE_CASE )
return decoded
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[str]:
"""simple docstring"""
UpperCamelCase__ = []
for key in product(SCREAMING_SNAKE_CASE , repeat=3 ):
UpperCamelCase__ = try_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if encoded is not None:
possibles.append(SCREAMING_SNAKE_CASE )
return possibles
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ) -> int:
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding='utf-8' )
UpperCamelCase__ = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split(',' )]
UpperCamelCase__ = filter_valid_chars(SCREAMING_SNAKE_CASE )
for common_word in COMMON_WORDS:
UpperCamelCase__ = filter_common_word(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 1:
break
UpperCamelCase__ = possibles[0]
return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 |
"""simple docstring"""
A__ : Tuple= """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
UpperCamelCase__ = Stack()
UpperCamelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
UpperCamelCase__ = operator_stack.peek()
operator_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
operand_stack.push(SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A__ : int= """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 20 | 1 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
A__ : Tuple= """__DUMMY_TRANSFORMERS_USER__"""
A__ : Dict= """Dummy User"""
A__ : Union[str, Any]= """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"""
A__ : Union[str, Any]= """https://hub-ci.huggingface.co"""
A__ : List[Any]= CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
A__ : Union[str, Any]= CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
A__ : List[Any]= Path("""~/.huggingface/hub_ci_token""").expanduser()
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
monkeypatch.setattr(
'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE )
monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
HfFolder.save_token(SCREAMING_SNAKE_CASE )
yield
HfFolder.delete_token()
@pytest.fixture(scope='session' )
def lowerCAmelCase_( ) -> Optional[Any]:
"""simple docstring"""
return HfApi(endpoint=SCREAMING_SNAKE_CASE )
@pytest.fixture(scope='session' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = HfFolder.get_token()
HfFolder.save_token(SCREAMING_SNAKE_CASE )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
def _cleanup_repo(SCREAMING_SNAKE_CASE ):
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
return _cleanup_repo
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
@contextmanager
def _temporary_repo(SCREAMING_SNAKE_CASE ):
try:
yield repo_id
finally:
cleanup_repo(SCREAMING_SNAKE_CASE )
return _temporary_repo
@pytest.fixture(scope='session' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
UpperCamelCase__ = F'repo_txt_data-{int(time.time() * 10E3 )}'
UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='session' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = F'repo_zipped_txt_data-{int(time.time() * 10E3 )}'
UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='session' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = F'repo_zipped_img_data-{int(time.time() * 10E3 )}'
UpperCamelCase__ = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return hf_private_dataset_repo_zipped_img_data_
| 20 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 | 1 |
"""simple docstring"""
import os
from collections.abc import Iterator
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "." ) -> Iterator[str]:
"""simple docstring"""
for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(SCREAMING_SNAKE_CASE )[1] in (".py", ".ipynb"):
yield os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).lstrip('./' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return F'{i * " "}*' if i else "\n##"
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(SCREAMING_SNAKE_CASE ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(SCREAMING_SNAKE_CASE )} {new_part.replace("_" , " " ).title()}' )
return new_path
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "." ) -> None:
"""simple docstring"""
UpperCamelCase__ = ''
for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ , UpperCamelCase__ = os.path.split(SCREAMING_SNAKE_CASE )
if filepath != old_path:
UpperCamelCase__ = print_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = (filepath.count(os.sep ) + 1) if filepath else 0
UpperCamelCase__ = F'{filepath}/{filename}'.replace(' ' , '%20' )
UpperCamelCase__ = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(SCREAMING_SNAKE_CASE )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md(""".""")
| 20 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 | 1 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
A__ : List[Any]= datasets.logging.get_logger(__name__)
A__ : str= """\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
A__ : int= """\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project's README at https://github.com/google-research/bleurt#readme for more information.
"""
A__ : Dict= """
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
'scores': List of scores.
Examples:
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> bleurt = datasets.load_metric(\"bleurt\")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results[\"scores\"]])
[1.03, 1.04]
"""
A__ : Optional[Any]= {
"""bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""",
"""bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""",
"""bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""",
"""bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""",
"""bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""",
"""bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""",
"""BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""",
"""BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""",
"""BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""",
"""BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
'Using default BLEURT-Base checkpoint for sequence maximum length 128. '
'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' )
UpperCamelCase__ = 'bleurt-base-128'
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCamelCase__ = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCamelCase__ = self.config_name.upper()
else:
raise KeyError(
F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCamelCase__ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCamelCase__ = score.BleurtScorer(os.path.join(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.scorer.score(references=snake_case_ , candidates=snake_case_ )
return {"scores": scores}
| 20 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
a : Optional[int] ="""timm_backbone"""
def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict:
super().__init__(**snake_case_ )
UpperCamelCase__ = backbone
UpperCamelCase__ = num_channels
UpperCamelCase__ = features_only
UpperCamelCase__ = use_pretrained_backbone
UpperCamelCase__ = True
UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
| 20 | 1 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A__ : Any= logging.get_logger(__name__)
A__ : str= {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : List[str] ="""layoutlmv3"""
def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
UpperCamelCase__ = max_ad_position_embeddings
UpperCamelCase__ = coordinate_size
UpperCamelCase__ = shape_size
UpperCamelCase__ = has_relative_attention_bias
UpperCamelCase__ = rel_pos_bins
UpperCamelCase__ = max_rel_pos
UpperCamelCase__ = has_spatial_attention_bias
UpperCamelCase__ = rel_ad_pos_bins
UpperCamelCase__ = max_rel_ad_pos
UpperCamelCase__ = text_embed
UpperCamelCase__ = visual_embed
UpperCamelCase__ = input_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_size
UpperCamelCase__ = classifier_dropout
class __lowerCamelCase ( _a ):
a : Tuple =version.parse("""1.12""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , 'apply_ocr' , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 20 | 1 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
UpperCamelCase__ = str(bin(SCREAMING_SNAKE_CASE ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
UpperCamelCase__ = str(bin(SCREAMING_SNAKE_CASE ) )[2:]
if shift_amount >= len(SCREAMING_SNAKE_CASE ):
return "0b0"
UpperCamelCase__ = binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
UpperCamelCase__ = '0' + str(bin(SCREAMING_SNAKE_CASE ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCamelCase__ = len(bin(SCREAMING_SNAKE_CASE )[3:] ) # Find 2's complement of number
UpperCamelCase__ = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:]
UpperCamelCase__ = (
'1' + '0' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + binary_number
)
if shift_amount >= len(SCREAMING_SNAKE_CASE ):
return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 | 1 |
"""simple docstring"""
from PIL import Image
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Image:
"""simple docstring"""
UpperCamelCase__ , UpperCamelCase__ = image.size
UpperCamelCase__ = 0
UpperCamelCase__ = image.load()
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(SCREAMING_SNAKE_CASE ):
for i in range(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = 2_55 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
A__ : List[str]= mean_threshold(Image.open("""path_to_image""").convert("""L"""))
image.save("""output_image_path""")
| 20 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 1 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'files' , [
['full:README.md', 'dataset_infos.json'],
['empty:README.md', 'dataset_infos.json'],
['dataset_infos.json'],
['full:README.md'],
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = tmp_path_factory.mktemp('dset_infos_dir' )
if "full:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('---\ndataset_info:\n dataset_size: 42\n---' )
if "empty:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f:
f.write('{"default": {"dataset_size": 42}}' )
UpperCamelCase__ = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'dataset_info' , [
DatasetInfo(),
DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ),
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = str(SCREAMING_SNAKE_CASE )
dataset_info.write_to_directory(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = DatasetInfo.from_directory(SCREAMING_SNAKE_CASE )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'dataset_info.json' ) )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = DatasetInfo(
description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , )
UpperCamelCase__ = dataset_info._to_yaml_dict()
assert sorted(SCREAMING_SNAKE_CASE ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
UpperCamelCase__ = yaml.safe_dump(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = yaml.safe_load(SCREAMING_SNAKE_CASE )
assert dataset_info_yaml_dict == reloaded
def lowerCAmelCase_( ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = DatasetInfo()
UpperCamelCase__ = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'dataset_infos_dict' , [
DatasetInfosDict(),
DatasetInfosDict({'default': DatasetInfo()} ),
DatasetInfosDict({'my_config_name': DatasetInfo()} ),
DatasetInfosDict(
{
'default': DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , )
} ),
DatasetInfosDict(
{
'v1': DatasetInfo(dataset_size=42 ),
'v2': DatasetInfo(dataset_size=13_37 ),
} ),
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = str(SCREAMING_SNAKE_CASE )
dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
UpperCamelCase__ = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
UpperCamelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'README.md' ) )
| 20 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]:
UpperCamelCase__ = parent
UpperCamelCase__ = vocab_size
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = patch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase__ = (image_size // patch_size) ** 2
UpperCamelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitModel(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.type_sequence_label_size
UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase__ = 1
UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ )
UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase__ = model(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( _a , unittest.TestCase ):
a : int =(
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
UpperCamelCase__ = FlaxBeitModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , **snake_case_ ):
return model(pixel_values=snake_case_ , **snake_case_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ )
# forward pass
UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 196, 8192)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 1000)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 2_1841)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
| 20 | 1 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
@staticmethod
def SCREAMING_SNAKE_CASE__ ( *snake_case_ , **snake_case_ ) -> List[Any]:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
a : List[Any] =MODEL_FOR_OBJECT_DETECTION_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 )
self.assertGreater(len(snake_case_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
snake_case_ , {
'score': ANY(snake_case_ ),
'label': ANY(snake_case_ ),
'box': {'xmin': ANY(snake_case_ ), 'ymin': ANY(snake_case_ ), 'xmax': ANY(snake_case_ ), 'ymax': ANY(snake_case_ )},
} , )
import datasets
UpperCamelCase__ = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' )
UpperCamelCase__ = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
UpperCamelCase__ = object_detector(snake_case_ , threshold=0.0 )
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for outputs in batch_outputs:
self.assertGreater(len(snake_case_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
snake_case_ , {
'score': ANY(snake_case_ ),
'label': ANY(snake_case_ ),
'box': {'xmin': ANY(snake_case_ ), 'ymin': ANY(snake_case_ ), 'xmax': ANY(snake_case_ ), 'ymax': ANY(snake_case_ )},
} , )
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
pass
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = 'hf-internal-testing/tiny-detr-mobilenetsv3'
UpperCamelCase__ = AutoModelForObjectDetection.from_pretrained(snake_case_ )
UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ )
UpperCamelCase__ = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ )
UpperCamelCase__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
] , )
UpperCamelCase__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
[
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
[
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
{'score': 0.3_376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = 'facebook/detr-resnet-50'
UpperCamelCase__ = AutoModelForObjectDetection.from_pretrained(snake_case_ )
UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(snake_case_ )
UpperCamelCase__ = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ )
UpperCamelCase__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
UpperCamelCase__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
[
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = 'facebook/detr-resnet-50'
UpperCamelCase__ = pipeline('object-detection' , model=snake_case_ )
UpperCamelCase__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
UpperCamelCase__ = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
[
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
[
{'score': 0.9_982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9_960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9_955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
],
] , )
@require_torch
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = 0.9_985
UpperCamelCase__ = 'facebook/detr-resnet-50'
UpperCamelCase__ = pipeline('object-detection' , model=snake_case_ )
UpperCamelCase__ = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=snake_case_ )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
{'score': 0.9_988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9_987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}},
] , )
@require_torch
@require_pytesseract
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = 'Narsil/layoutlmv3-finetuned-funsd'
UpperCamelCase__ = 0.9_993
UpperCamelCase__ = pipeline('object-detection' , model=snake_case_ , threshold=snake_case_ )
UpperCamelCase__ = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(snake_case_ , decimals=4 ) , [
{'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
{'score': 0.9_993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}},
] , )
| 20 |
"""simple docstring"""
import sys
from collections import defaultdict
class __lowerCamelCase :
def __init__( self ) -> Tuple:
UpperCamelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = pos
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCamelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCamelCase__ = 2 * start + 1
else:
UpperCamelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child]
UpperCamelCase__ , UpperCamelCase__ = (
heap[start],
positions[start],
)
UpperCamelCase__ , UpperCamelCase__ = temp, tempa
UpperCamelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , snake_case_ )
self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = position[index]
while index != 0:
UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCamelCase__ = heap[parent]
UpperCamelCase__ = position[parent]
self.set_position(position[parent] , snake_case_ )
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , snake_case_ )
break
UpperCamelCase__ = parent
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , 0 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = len(snake_case_ ) // 2 - 1
for i in range(snake_case_ , -1 , -1 ):
self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = positions[0]
UpperCamelCase__ = sys.maxsize
self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ )
return temp
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = Heap()
UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
UpperCamelCase__ = []
for vertex in range(len(SCREAMING_SNAKE_CASE ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE )
heap.node_position.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = []
UpperCamelCase__ = 1
UpperCamelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCamelCase__ = 0
UpperCamelCase__ = distance
heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCamelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )]
):
UpperCamelCase__ = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Dict= int(input("""Enter number of edges: """).strip())
A__ : Dict= defaultdict(list)
for _ in range(edges_number):
A__ : Dict= [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 20 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
A__ : Any= trt.Logger(trt.Logger.WARNING)
A__ : Any= absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
A__ : Tuple= logging.getLogger(__name__)
A__ : Optional[int]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--onnx_model_path""",
default=None,
type=str,
required=True,
help="""Path to ONNX model: """,
)
parser.add_argument(
"""--output_dir""",
default=None,
type=str,
required=True,
help="""The output directory where the model checkpoints and predictions will be written.""",
)
# Other parameters
parser.add_argument(
"""--tokenizer_name""",
default="""""",
type=str,
required=True,
help="""Pretrained tokenizer name or path if not the same as model_name""",
)
parser.add_argument(
"""--version_2_with_negative""",
action="""store_true""",
help="""If true, the SQuAD examples contain some that do not have an answer.""",
)
parser.add_argument(
"""--null_score_diff_threshold""",
type=float,
default=0.0,
help="""If null_score - best_non_null is greater than the threshold predict null.""",
)
parser.add_argument(
"""--max_seq_length""",
default=3_84,
type=int,
help=(
"""The maximum total input sequence length after WordPiece tokenization. Sequences """
"""longer than this will be truncated, and sequences shorter than this will be padded."""
),
)
parser.add_argument(
"""--doc_stride""",
default=1_28,
type=int,
help="""When splitting up a long document into chunks, how much stride to take between chunks.""",
)
parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""")
parser.add_argument(
"""--n_best_size""",
default=20,
type=int,
help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""",
)
parser.add_argument(
"""--max_answer_length""",
default=30,
type=int,
help=(
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
),
)
parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""")
parser.add_argument(
"""--dataset_name""",
type=str,
default=None,
required=True,
help="""The name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--dataset_config_name""",
type=str,
default=None,
help="""The configuration name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data."""
)
parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""")
parser.add_argument(
"""--fp16""",
action="""store_true""",
help="""Whether to use 16-bit (mixed) precision instead of 32-bit""",
)
parser.add_argument(
"""--int8""",
action="""store_true""",
help="""Whether to use INT8""",
)
A__ : Tuple= parser.parse_args()
if args.tokenizer_name:
A__ : Optional[Any]= AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name."""
)
logger.info("""Training/evaluation parameters %s""", args)
A__ : Dict= args.per_device_eval_batch_size
A__ : Union[str, Any]= (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
A__ : List[Any]= True
A__ : List[Any]= """temp_engine/bert-fp32.engine"""
if args.fpaa:
A__ : List[str]= """temp_engine/bert-fp16.engine"""
if args.inta:
A__ : Union[str, Any]= """temp_engine/bert-int8.engine"""
# import ONNX file
if not os.path.exists("""temp_engine"""):
os.makedirs("""temp_engine""")
A__ : Any= 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, """rb""") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
A__ : Optional[int]= [network.get_input(i) for i in range(network.num_inputs)]
A__ : List[str]= [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
A__ : str= 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
A__ : Union[str, Any]= builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
A__ : Optional[Any]= builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, """wb""") as f:
f.write(engine.serialize())
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = np.asarray(inputs['input_ids'] , dtype=np.intaa )
UpperCamelCase__ = np.asarray(inputs['attention_mask'] , dtype=np.intaa )
UpperCamelCase__ = np.asarray(inputs['token_type_ids'] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE )
# start time
UpperCamelCase__ = time.time()
# Run inference
context.execute_async(
bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Synchronize the stream and take time
stream.synchronize()
# end time
UpperCamelCase__ = time.time()
UpperCamelCase__ = end_time - start_time
UpperCamelCase__ = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
A__ : Optional[Any]= Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A__ : Union[str, Any]= load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("""Evaluation requires a dataset name""")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
A__ : Optional[int]= raw_datasets["""validation"""].column_names
A__ : str= """question""" if """question""" in column_names else column_names[0]
A__ : List[Any]= """context""" if """context""" in column_names else column_names[1]
A__ : Dict= """answers""" if """answers""" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
A__ : List[str]= tokenizer.padding_side == """right"""
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."""
)
A__ : Union[str, Any]= min(args.max_seq_length, tokenizer.model_max_length)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
UpperCamelCase__ = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='max_length' , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
UpperCamelCase__ = tokenized_examples.pop('overflow_to_sample_mapping' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
UpperCamelCase__ = []
for i in range(len(tokenized_examples['input_ids'] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
UpperCamelCase__ = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
UpperCamelCase__ = sample_mapping[i]
tokenized_examples["example_id"].append(examples['id'][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
UpperCamelCase__ = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['offset_mapping'][i] )
]
return tokenized_examples
A__ : Optional[int]= raw_datasets["""validation"""]
# Validation Feature Creation
A__ : Optional[int]= eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="""Running tokenizer on validation dataset""",
)
A__ : List[str]= default_data_collator
A__ : Union[str, Any]= eval_dataset.remove_columns(["""example_id""", """offset_mapping"""])
A__ : List[str]= DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="eval" ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = postprocess_qa_predictions(
examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
UpperCamelCase__ = [
{'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items()
]
else:
UpperCamelCase__ = [{'id': k, 'prediction_text': v} for k, v in predictions.items()]
UpperCamelCase__ = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE )
A__ : List[Any]= load_metric("""squad_v2""" if args.version_2_with_negative else """squad""")
# Evaluation!
logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path)
with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize
# Allocate device memory for inputs and outputs.
A__ : Union[str, Any]= [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
A__ : Union[str, Any]= cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
A__ : Union[str, Any]= cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
A__ : str= cuda.mem_alloc(h_outputa.nbytes)
A__ : int= cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
A__ : Optional[int]= cuda.Stream()
# Evaluation
logger.info("""***** Running Evaluation *****""")
logger.info(F""" Num examples = {len(eval_dataset)}""")
logger.info(F""" Batch size = {args.per_device_eval_batch_size}""")
A__ : str= 0.0
A__ : List[Any]= 0
A__ : Dict= timeit.default_timer()
A__ : Union[str, Any]= None
for step, batch in enumerate(eval_dataloader):
A__, A__ : Dict= model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
A__, A__ : Union[str, Any]= outputs
A__ : Union[str, Any]= torch.tensor(start_logits)
A__ : Dict= torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
A__ : Any= accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00)
A__ : int= accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00)
A__ : int= (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
A__ : Dict= logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00)
if all_preds is not None:
A__ : Any= nested_truncate(all_preds, len(eval_dataset))
A__ : int= timeit.default_timer() - start_time
logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 10_00 / niter))
logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 10_00))
logger.info("""Total Number of Inference = %d""", niter)
A__ : Optional[int]= post_processing_function(eval_examples, eval_dataset, all_preds)
A__ : int= metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F"""Evaluation metrics: {eval_metric}""")
| 20 |
"""simple docstring"""
from copy import deepcopy
class __lowerCamelCase :
def __init__( self , snake_case_ = None , snake_case_ = None ) -> None:
if arr is None and size is not None:
UpperCamelCase__ = size
UpperCamelCase__ = [0] * size
elif arr is not None:
self.init(snake_case_ )
else:
raise ValueError('Either arr or size must be specified' )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
UpperCamelCase__ = len(snake_case_ )
UpperCamelCase__ = deepcopy(snake_case_ )
for i in range(1 , self.size ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]:
UpperCamelCase__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCamelCase__ = self.next_(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
self.add(snake_case_ , value - self.get(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
if right == 0:
return 0
UpperCamelCase__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCamelCase__ = self.prev(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int:
return self.prefix(snake_case_ ) - self.prefix(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.query(snake_case_ , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCamelCase__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCamelCase__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 1 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
A__ : Union[str, Any]= logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple:
UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )]
if identifier is not None:
UpperCamelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(snake_case_ , snake_case_ ):
for n_ in n_identifier:
UpperCamelCase__ = [file for file in files if n_ not in file]
else:
UpperCamelCase__ = [file for file in files if n_identifier not in file]
UpperCamelCase__ = ignore_files or []
ignore_files.append('__init__.py' )
UpperCamelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , snake_case_ )
if only_modules:
UpperCamelCase__ = file.split('.' )[0]
try:
UpperCamelCase__ = getattr(snake_case_ , snake_case_ )
UpperCamelCase__ = doctest.DocTestSuite(snake_case_ )
UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'modeling'
UpperCamelCase__ = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'tokenization'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'configuration'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(snake_case_ , n_identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('docs/source' )
UpperCamelCase__ = ['favicon.ico']
self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
| 20 | 1 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : str= logging.get_logger(__name__)
A__ : List[Any]= {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCamelCase ( _a ):
a : Any ="""segformer"""
def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple:
super().__init__(**snake_case_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , )
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_encoder_blocks
UpperCamelCase__ = depths
UpperCamelCase__ = sr_ratios
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = classifier_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = decoder_hidden_size
UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ )
UpperCamelCase__ = semantic_loss_ignore_index
class __lowerCamelCase ( _a ):
a : Any =version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
| 20 | 1 |
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
A__ : Tuple= (7_20, 12_80) # Height, Width
A__ : Tuple= (0.4, 0.6) # if height or width lower than this scale, drop it.
A__ : str= 1 / 1_00
A__ : int= """"""
A__ : List[str]= """"""
A__ : Optional[int]= """"""
A__ : str= 2_50
def lowerCAmelCase_( ) -> None:
"""simple docstring"""
UpperCamelCase__ , UpperCamelCase__ = get_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for index in range(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 4 )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = update_image_and_anno(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , filter_scale=SCREAMING_SNAKE_CASE , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCamelCase__ = random_chars(32 )
UpperCamelCase__ = path.split(os.sep )[-1].rsplit('.' , 1 )[0]
UpperCamelCase__ = F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'
cva.imwrite(F'{file_root}.jpg' , SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' )
UpperCamelCase__ = []
for anno in new_annos:
UpperCamelCase__ = anno[3] - anno[1]
UpperCamelCase__ = anno[4] - anno[2]
UpperCamelCase__ = anno[1] + width / 2
UpperCamelCase__ = anno[2] + height / 2
UpperCamelCase__ = F'{anno[0]} {x_center} {y_center} {width} {height}'
annos_list.append(SCREAMING_SNAKE_CASE )
with open(F'{file_root}.txt' , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[list, list]:
"""simple docstring"""
UpperCamelCase__ = []
UpperCamelCase__ = []
for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '*.txt' ) ):
UpperCamelCase__ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(SCREAMING_SNAKE_CASE ) as in_file:
UpperCamelCase__ = in_file.readlines()
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , F'{label_name}.jpg' )
UpperCamelCase__ = []
for obj_list in obj_lists:
UpperCamelCase__ = obj_list.rstrip('\n' ).split(' ' )
UpperCamelCase__ = float(obj[1] ) - float(obj[3] ) / 2
UpperCamelCase__ = float(obj[2] ) - float(obj[4] ) / 2
UpperCamelCase__ = float(obj[1] ) + float(obj[3] ) / 2
UpperCamelCase__ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(SCREAMING_SNAKE_CASE )
labels.append(SCREAMING_SNAKE_CASE )
return img_paths, labels
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
UpperCamelCase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
UpperCamelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCamelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
UpperCamelCase__ = int(scale_x * output_size[1] )
UpperCamelCase__ = int(scale_y * output_size[0] )
UpperCamelCase__ = []
UpperCamelCase__ = []
for i, index in enumerate(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = all_img_list[index]
path_list.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = all_annos[index]
UpperCamelCase__ = cva.imread(SCREAMING_SNAKE_CASE )
if i == 0: # top-left
UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) )
UpperCamelCase__ = img
for bbox in img_annos:
UpperCamelCase__ = bbox[1] * scale_x
UpperCamelCase__ = bbox[2] * scale_y
UpperCamelCase__ = bbox[3] * scale_x
UpperCamelCase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) )
UpperCamelCase__ = img
for bbox in img_annos:
UpperCamelCase__ = scale_x + bbox[1] * (1 - scale_x)
UpperCamelCase__ = bbox[2] * scale_y
UpperCamelCase__ = scale_x + bbox[3] * (1 - scale_x)
UpperCamelCase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
UpperCamelCase__ = cva.resize(SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) )
UpperCamelCase__ = img
for bbox in img_annos:
UpperCamelCase__ = bbox[1] * scale_x
UpperCamelCase__ = scale_y + bbox[2] * (1 - scale_y)
UpperCamelCase__ = bbox[3] * scale_x
UpperCamelCase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
UpperCamelCase__ = cva.resize(
SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
UpperCamelCase__ = img
for bbox in img_annos:
UpperCamelCase__ = scale_x + bbox[1] * (1 - scale_x)
UpperCamelCase__ = scale_y + bbox[2] * (1 - scale_y)
UpperCamelCase__ = scale_x + bbox[3] * (1 - scale_x)
UpperCamelCase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
UpperCamelCase__ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
UpperCamelCase__ = ascii_lowercase + digits
return "".join(random.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 20 |
"""simple docstring"""
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCamelCase ( _a ):
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' )
download_parser.set_defaults(func=snake_case_ )
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = model
UpperCamelCase__ = cache
UpperCamelCase__ = force
UpperCamelCase__ = trust_remote_code
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 20 | 1 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (boundary[1] - boundary[0]) / steps
UpperCamelCase__ = boundary[0]
UpperCamelCase__ = boundary[1]
UpperCamelCase__ = make_points(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE )
return y
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = a + h
while x < (b - h):
yield x
UpperCamelCase__ = x + h
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str: # enter your function here
"""simple docstring"""
UpperCamelCase__ = (x - 0) * (x - 0)
return y
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = 0.0 # Lower bound of integration
UpperCamelCase__ = 1.0 # Upper bound of integration
UpperCamelCase__ = 10.0 # define number of steps or resolution
UpperCamelCase__ = [a, b] # define boundary of integration
UpperCamelCase__ = method_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print(F'y = {y}' )
if __name__ == "__main__":
main()
| 20 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase ( _a ):
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = relative_attention
UpperCamelCase__ = position_biased_input
UpperCamelCase__ = pos_att_type
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = DebertaVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a : Dict =(
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Tuple =True
a : Union[str, Any] =False
a : Tuple =False
a : Union[str, Any] =False
a : Dict =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = DebertaVaModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@unittest.skip(reason='Model not available yet' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0]
# compare the actual values for a slice.
UpperCamelCase__ = torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
| 20 | 1 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
A__ : List[str]= {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : Union[str, Any] ="""t5"""
a : str =["""past_key_values"""]
a : Dict ={"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , snake_case_=3_2128 , snake_case_=512 , snake_case_=64 , snake_case_=2048 , snake_case_=6 , snake_case_=None , snake_case_=8 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="relu" , snake_case_=True , snake_case_=True , snake_case_=0 , snake_case_=1 , **snake_case_ , ) -> List[str]:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = d_model
UpperCamelCase__ = d_kv
UpperCamelCase__ = d_ff
UpperCamelCase__ = num_layers
UpperCamelCase__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
UpperCamelCase__ = num_heads
UpperCamelCase__ = relative_attention_num_buckets
UpperCamelCase__ = relative_attention_max_distance
UpperCamelCase__ = dropout_rate
UpperCamelCase__ = layer_norm_epsilon
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = feed_forward_proj
UpperCamelCase__ = use_cache
UpperCamelCase__ = self.feed_forward_proj.split('-' )
UpperCamelCase__ = act_info[-1]
UpperCamelCase__ = act_info[0] == 'gated'
if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
UpperCamelCase__ = 'gelu_new'
super().__init__(
pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
class __lowerCamelCase ( _a ):
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase__ = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
UpperCamelCase__ = 'past_encoder_sequence + sequence'
UpperCamelCase__ = {0: 'batch'}
UpperCamelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'}
UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(snake_case_ , direction='inputs' )
return common_inputs
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 13
| 20 |
"""simple docstring"""
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = SwinConfig()
UpperCamelCase__ = swin_name.split('_' )
UpperCamelCase__ = name_split[1]
UpperCamelCase__ = int(name_split[4] )
UpperCamelCase__ = int(name_split[3][-1] )
if model_size == "tiny":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 6, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "small":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "base":
UpperCamelCase__ = 1_28
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (4, 8, 16, 32)
else:
UpperCamelCase__ = 1_92
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (6, 12, 24, 48)
if "in22k" in swin_name:
UpperCamelCase__ = 2_18_41
else:
UpperCamelCase__ = 10_00
UpperCamelCase__ = 'huggingface/label-files'
UpperCamelCase__ = 'imagenet-1k-id2label.json'
UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
UpperCamelCase__ = img_size
UpperCamelCase__ = num_classes
UpperCamelCase__ = embed_dim
UpperCamelCase__ = depths
UpperCamelCase__ = num_heads
UpperCamelCase__ = window_size
return config
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if "patch_embed.proj" in name:
UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
UpperCamelCase__ = 'encoder.' + name
if "attn.proj" in name:
UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
UpperCamelCase__ = name.replace('attn' , 'attention.self' )
if "norm1" in name:
UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if name == "norm.weight":
UpperCamelCase__ = 'layernorm.weight'
if name == "norm.bias":
UpperCamelCase__ = 'layernorm.bias'
if "head" in name:
UpperCamelCase__ = name.replace('head' , 'classifier' )
else:
UpperCamelCase__ = 'swin.' + name
return name
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
UpperCamelCase__ = key.split('.' )
UpperCamelCase__ = int(key_split[1] )
UpperCamelCase__ = int(key_split[3] )
UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[
dim : dim * 2, :
]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = val[
:dim
]
UpperCamelCase__ = val[
dim : dim * 2
]
UpperCamelCase__ = val[
-dim:
]
else:
UpperCamelCase__ = val
return orig_state_dict
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE )
timm_model.eval()
UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) )
UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
UpperCamelCase__ = timm_model(inputs['pixel_values'] )
UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
A__ : Optional[Any]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
A__ : Tuple= parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 20 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = {
'task_specific_params': {
'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4},
'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4},
'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6},
}
}
UpperCamelCase__ = {
'task_specific_params.summarization.length_penalty': 1.0,
'task_specific_params.summarization.max_length': 128,
'task_specific_params.summarization.min_length': 12,
'task_specific_params.summarization.num_beams': 4,
'task_specific_params.summarization_cnn.length_penalty': 2.0,
'task_specific_params.summarization_cnn.max_length': 142,
'task_specific_params.summarization_cnn.min_length': 56,
'task_specific_params.summarization_cnn.num_beams': 4,
'task_specific_params.summarization_xsum.length_penalty': 1.0,
'task_specific_params.summarization_xsum.max_length': 62,
'task_specific_params.summarization_xsum.min_length': 11,
'task_specific_params.summarization_xsum.num_beams': 6,
}
self.assertEqual(flatten_dict(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(snake_case_ ) , x.transpose() ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ ) , transpose(snake_case_ ).numpy() ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , transpose(snake_case_ , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ ) , np.asarray(transpose(snake_case_ ) ) ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(transpose(snake_case_ , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case_ , axes=(1, 2, 0) ) ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.reshape(snake_case_ , (4, 3) ) ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.reshape(snake_case_ , (12, 5) ) ) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , reshape(snake_case_ , (4, 3) ).numpy() ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , reshape(snake_case_ , (12, 5) ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (4, 3) ) , np.asarray(reshape(snake_case_ , (4, 3) ) ) ) )
UpperCamelCase__ = np.random.randn(3 , 4 , 5 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(reshape(snake_case_ , (12, 5) ) , np.asarray(reshape(snake_case_ , (12, 5) ) ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.squeeze(snake_case_ ) ) )
UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.squeeze(snake_case_ , axis=2 ) ) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = np.random.randn(1 , 3 , 4 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) )
UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = np.random.randn(1 , 3 , 4 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ ) , squeeze(snake_case_ ).numpy() ) )
UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , squeeze(snake_case_ , axis=2 ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = np.random.randn(1 , 3 , 4 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ ) , np.asarray(squeeze(snake_case_ ) ) ) )
UpperCamelCase__ = np.random.randn(1 , 4 , 1 , 5 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(squeeze(snake_case_ , axis=2 ) , np.asarray(squeeze(snake_case_ , axis=2 ) ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.expand_dims(snake_case_ , axis=1 ) ) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = torch.tensor(snake_case_ )
self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = tf.constant(snake_case_ )
self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , expand_dims(snake_case_ , axis=1 ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = np.random.randn(3 , 4 )
UpperCamelCase__ = jnp.array(snake_case_ )
self.assertTrue(np.allclose(expand_dims(snake_case_ , axis=1 ) , np.asarray(expand_dims(snake_case_ , axis=1 ) ) ) )
| 20 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
UpperCamelCase__ = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )]
for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = pentagonal_nums[j]
UpperCamelCase__ = pentagonal_i + pentagonal_j
UpperCamelCase__ = pentagonal_j - pentagonal_i
if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 1 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
_validate_point(SCREAMING_SNAKE_CASE_ )
_validate_point(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
if point:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for item in point:
if not isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ):
UpperCamelCase__ = (
'Expected a list of numbers as input, found '
F'{type(SCREAMING_SNAKE_CASE_ ).__name__}'
)
raise TypeError(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase__ = F'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}'
raise TypeError(SCREAMING_SNAKE_CASE_ )
else:
raise ValueError('Missing an input' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
_validate_point(SCREAMING_SNAKE_CASE_ )
_validate_point(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = int((limit - 24) ** (1 / 2) )
UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) )
for primea in primes:
UpperCamelCase__ = primea * primea
for primea in primes:
UpperCamelCase__ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
UpperCamelCase__ = primea * primea * primea * primea
UpperCamelCase__ = square + cube + tetr
if total >= limit:
break
ret.add(SCREAMING_SNAKE_CASE )
return len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A__ : Tuple= (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A__ : Union[str, Any]= [ord(letter) for letter in string.ascii_lowercase]
A__ : List[str]= {ord(char) for char in VALID_CHARS}
A__ : Dict= ["""the""", """be""", """to""", """of""", """and""", """in""", """that""", """have"""]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = ''
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__A ) , __A ):
UpperCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__A )
return decoded
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = []
for key in product(__A , repeat=3 ):
UpperCamelCase__ = try_key(__A , __A )
if encoded is not None:
possibles.append(__A )
return possibles
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = Path(__A ).parent.joinpath(__A ).read_text(encoding='utf-8' )
UpperCamelCase__ = [int(__A ) for number in data.strip().split(',' )]
UpperCamelCase__ = filter_valid_chars(__A )
for common_word in COMMON_WORDS:
UpperCamelCase__ = filter_common_word(__A , __A )
if len(__A ) == 1:
break
UpperCamelCase__ = possibles[0]
return sum(ord(__A ) for char in decoded_text )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 701 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""]
A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only"""
if is_tf_available():
class __lowerCamelCase ( tf.keras.Model ):
def __init__( self , snake_case_ ) -> Optional[int]:
super().__init__()
UpperCamelCase__ = tokenizer
UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ )
UpperCamelCase__ = TFAutoModel.from_config(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = self.tokenizer(snake_case_ )
UpperCamelCase__ = self.bert(**snake_case_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
UpperCamelCase__ = [
BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCamelCase__ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf_tokenizer(self.paired_sentences )
UpperCamelCase__ = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf.function(snake_case_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tf.constant(snake_case_ )
UpperCamelCase__ = compiled_tokenizer(snake_case_ )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ )
UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences )
UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCamelCase__ = Path(snake_case_ ) / 'saved.model'
model.save(snake_case_ )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = loaded_model(snake_case_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 20 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class __lowerCamelCase ( snake_case__ ):
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Any:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = DistilBertModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = model(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase__ = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = DistilBertForMaskedLM(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = DistilBertForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DistilBertForSequenceClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DistilBertForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = DistilBertForMultipleChoice(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ):
a : str =(
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
a : Tuple =(
{
"""feature-extraction""": DistilBertModel,
"""fill-mask""": DistilBertForMaskedLM,
"""question-answering""": DistilBertForQuestionAnswering,
"""text-classification""": DistilBertForSequenceClassification,
"""token-classification""": DistilBertForTokenClassification,
"""zero-shot""": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
a : List[str] =True
a : Tuple =True
a : Dict =True
a : Union[str, Any] =True
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = DistilBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DistilBertModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
UpperCamelCase__ = True
UpperCamelCase__ = model_class(config=UpperCAmelCase_ )
UpperCamelCase__ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase__ = torch.jit.trace(
UpperCAmelCase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'traced_model.pt' ) )
UpperCamelCase__ = torch.jit.load(os.path.join(UpperCAmelCase_ , 'traced_model.pt' ) , map_location=UpperCAmelCase_ )
loaded(inputs_dict['input_ids'].to(UpperCAmelCase_ ) , inputs_dict['attention_mask'].to(UpperCAmelCase_ ) )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = DistilBertModel.from_pretrained('distilbert-base-uncased' )
UpperCamelCase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCamelCase__ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0]
UpperCamelCase__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , UpperCAmelCase_ )
UpperCamelCase__ = torch.tensor(
[[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
| 702 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]:
"""simple docstring"""
UpperCamelCase__ = len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE ):
if numbers[j] < numbers[i]:
UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip()
A__ : List[Any]= [int(item) for item in user_input.split(""",""")]
print(exchange_sort(unsorted))
| 20 | 0 |
"""simple docstring"""
A__ : List[Any]= range(2, 20 + 1)
A__ : List[str]= [10**k for k in range(ks[-1] + 1)]
A__ : dict[int, dict[int, list[list[int]]]]= {}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) )
UpperCamelCase__ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) )
UpperCamelCase__ , UpperCamelCase__ = 0, 0
UpperCamelCase__ = n - i
UpperCamelCase__ = memo.get(SCREAMING_SNAKE_CASE )
if sub_memo is not None:
UpperCamelCase__ = sub_memo.get(SCREAMING_SNAKE_CASE )
if jumps is not None and len(SCREAMING_SNAKE_CASE ) > 0:
# find and make the largest jump without going over
UpperCamelCase__ = -1
for _k in range(len(SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
UpperCamelCase__ = _k
break
if max_jump >= 0:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = jumps[max_jump]
# since the difference between jumps is cached, add c
UpperCamelCase__ = diff + c
for j in range(min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) ):
UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 )
if new_c > 0:
add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ = []
else:
UpperCamelCase__ = {c: []}
UpperCamelCase__ = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
UpperCamelCase__ , UpperCamelCase__ = next_term(SCREAMING_SNAKE_CASE , k - 1 , i + dn , SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
UpperCamelCase__ , UpperCamelCase__ = compute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , i + dn , SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
UpperCamelCase__ = sub_memo[c]
# keep jumps sorted by # of terms skipped
UpperCamelCase__ = 0
while j < len(SCREAMING_SNAKE_CASE ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(SCREAMING_SNAKE_CASE , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if i >= n:
return 0, i
if k > len(SCREAMING_SNAKE_CASE ):
a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
UpperCamelCase__ = i
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0, 0, 0
for j in range(len(SCREAMING_SNAKE_CASE ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
UpperCamelCase__ = ds_c + ds_b
diff += addend
UpperCamelCase__ = 0
for j in range(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = a_i[j] + addend
UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return diff, i - start_i
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = digits[j] + addend
if s >= 10:
UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 )
UpperCamelCase__ = addend // 10 + quotient
else:
UpperCamelCase__ = s
UpperCamelCase__ = addend // 10
if addend == 0:
break
while addend > 0:
UpperCamelCase__ , UpperCamelCase__ = divmod(SCREAMING_SNAKE_CASE , 10 )
digits.append(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 10**15 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [1]
UpperCamelCase__ = 1
UpperCamelCase__ = 0
while True:
UpperCamelCase__ , UpperCamelCase__ = next_term(SCREAMING_SNAKE_CASE , 20 , i + dn , SCREAMING_SNAKE_CASE )
dn += terms_jumped
if dn == n - i:
break
UpperCamelCase__ = 0
for j in range(len(SCREAMING_SNAKE_CASE ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"""{solution() = }""")
| 703 |
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
A__ : str= {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
A__ : str= {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE )
return images
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if images.ndim == 3:
UpperCamelCase__ = images[None, ...]
UpperCamelCase__ = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 20 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
A__ : str= {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
A__ : str= {
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
A__ : Any= {
'''unc-nlp/lxmert-base-uncased''': 5_12,
}
A__ : List[str]= {
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class __lowerCamelCase ( _a ):
a : List[Any] =VOCAB_FILES_NAMES
a : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP
a : Optional[int] =PRETRAINED_INIT_CONFIGURATION
a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : Union[str, Any] =LxmertTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Optional[int]:
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , UpperCamelCase_ ) != tokenize_chinese_chars
):
UpperCamelCase__ = getattr(UpperCamelCase_ , normalizer_state.pop('type' ) )
UpperCamelCase__ = do_lower_case
UpperCamelCase__ = strip_accents
UpperCamelCase__ = tokenize_chinese_chars
UpperCamelCase__ = normalizer_class(**UpperCamelCase_ )
UpperCamelCase__ = do_lower_case
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=None ) -> Optional[Any]:
UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
UpperCamelCase__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 704 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """spiece.model"""}
A__ : Union[str, Any]= {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
}
}
# TODO(PVP) - this should be removed in Transformers v5
A__ : Union[str, Any]= {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
A__ : Optional[Any]= """▁"""
class __lowerCamelCase ( _a ):
a : Dict =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' )
UpperCamelCase__ = legacy
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = extra_ids
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case_ )) + [1]
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return list(
set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]:
if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
if token_ids_a is None:
return token_ids_a
else:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> Any:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' )
return super().tokenize(snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]:
if not self.legacy:
UpperCamelCase__ = text.startswith(snake_case_ )
if is_first:
UpperCamelCase__ = text[1:]
UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ )
if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ):
UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token.startswith('<extra_id_' ):
UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ )
UpperCamelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ )
else:
UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = []
UpperCamelCase__ = ''
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case_ )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 20 | 0 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A__ : Optional[Any]= get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class __lowerCamelCase ( lowercase__ , unittest.TestCase ):
a : Optional[int] =XLMProphetNetTokenizer
a : Union[str, Any] =False
a : List[str] =True
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
UpperCamelCase__ = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = "[PAD]"
UpperCamelCase__ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '[PAD]' )
self.assertEqual(vocab_keys[1] , '[CLS]' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(__lowerCamelCase ) , 1012 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase )
UpperCamelCase__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(__lowerCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
__lowerCamelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
UpperCamelCase__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] , )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = "Hello World!"
UpperCamelCase__ = [3_5389, 6672, 49, 2]
self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
| 705 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A__ : Any= TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , snake_case_ ) -> None:
UpperCamelCase__ = data
UpperCamelCase__ = self
UpperCamelCase__ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# create a new set with x as its member
UpperCamelCase__ = DisjointSetTreeNode(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
UpperCamelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
UpperCamelCase__ = nodea
else:
UpperCamelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# add an edge with the given weight
self.add_node(snake_case_ )
self.add_node(snake_case_ )
UpperCamelCase__ = weight
UpperCamelCase__ = weight
def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]:
UpperCamelCase__ = []
UpperCamelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case_ : x[2] )
# creating the disjoint set
UpperCamelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case_ )
# MST generation
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index]
index += 1
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case_ , snake_case_ , snake_case_ )
disjoint_set.union(snake_case_ , snake_case_ )
return graph
| 20 | 0 |
"""simple docstring"""
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
A__ : Dict= """bert-base-cased"""
A__ : Any= """fp16"""
A__ : Union[str, Any]= """bf16"""
A__ : List[Any]= [FPaa, BFaa]
@require_fsdp
@require_cuda
class __lowerCamelCase ( __lowerCamelCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
super().setUp()
UpperCamelCase__ = dict(
ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(UpperCAmelCase_ ):
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = F'{i + 1}'
UpperCamelCase__ = strategy
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(UpperCAmelCase_ ):
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = prefetch_policy
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(UpperCAmelCase_ ):
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = state_dict_type
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ = AutoModel.from_pretrained(UpperCAmelCase_ )
for policy in FSDP_AUTO_WRAP_POLICY:
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
UpperCamelCase__ = 'BertLayer'
elif policy == "SIZE_BASED_WRAP":
UpperCamelCase__ = '2000'
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_ )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = 'TRANSFORMER_BASED_WRAP'
UpperCamelCase__ = 'T5Layer'
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
with self.assertRaises(UpperCAmelCase_ ) as cm:
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_ )
self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) )
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = 'SIZE_BASED_WRAP'
UpperCamelCase__ = '0'
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_ )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = mp_dtype
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = Accelerator()
if mp_dtype == "fp16":
UpperCamelCase__ = torch.floataa
elif mp_dtype == "bf16":
UpperCamelCase__ = torch.bfloataa
UpperCamelCase__ = MixedPrecision(param_dtype=UpperCAmelCase_ , reduce_dtype=UpperCAmelCase_ , buffer_dtype=UpperCAmelCase_ )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase_ )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase_ ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
UpperCamelCase__ = self.dist_env.copy()
UpperCamelCase__ = str(UpperCAmelCase_ ).lower()
with mockenv_context(**UpperCAmelCase_ ):
UpperCamelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase_ ) )
@require_fsdp
@require_multi_gpu
@slow
class __lowerCamelCase ( __lowerCamelCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
UpperCamelCase__ = 0.82
UpperCamelCase__ = [
'fsdp_shard_grad_op_transformer_based_wrap',
'fsdp_full_shard_transformer_based_wrap',
]
UpperCamelCase__ = {
'multi_gpu_fp16': 3200,
'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000,
'fsdp_full_shard_transformer_based_wrap_fp16': 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
UpperCamelCase__ = 160
UpperCamelCase__ = 160
UpperCamelCase__ = inspect.getfile(accelerate.test_utils )
UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ = os.path.join(self.test_scripts_folder , 'test_performance.py' )
UpperCamelCase__ = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp']
for config in self.performance_configs:
UpperCamelCase__ = cmd.copy()
for i, strategy in enumerate(UpperCAmelCase_ ):
if strategy.lower() in config:
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
break
if "fp32" in config:
cmd_config.append('--mixed_precision=no' )
else:
cmd_config.append('--mixed_precision=fp16' )
if "cpu_offload" in config:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
F'--performance_lower_bound={self.performance_lower_bound}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' )
UpperCamelCase__ = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
'--use_fsdp',
'--mixed_precision=fp16',
'--fsdp_transformer_layer_cls_to_wrap=BertLayer',
]
for i, strategy in enumerate(UpperCAmelCase_ ):
UpperCamelCase__ = cmd.copy()
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
if strategy != "FULL_SHARD":
continue
UpperCamelCase__ = len(UpperCAmelCase_ )
for state_dict_type in FSDP_STATE_DICT_TYPE:
UpperCamelCase__ = cmd_config[:state_dict_config_index]
cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
'--partial_train_epoch=1',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
UpperCamelCase__ = cmd_config[:-1]
UpperCamelCase__ = os.path.join(self.tmpdir , 'epoch_0' )
cmd_config.extend(
[
F'--resume_from_checkpoint={resume_from_checkpoint}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
'''simple docstring'''
UpperCamelCase__ = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' )
UpperCamelCase__ = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
UpperCamelCase__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['--mixed_precision=fp16'] )
else:
cmd_config.extend(['--mixed_precision=no'] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['--use_fsdp'] )
for i, strategy in enumerate(UpperCAmelCase_ ):
if strategy.lower() in spec:
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
break
if "cpu_offload" in spec:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
F'--peak_memory_upper_bound={peak_mem_upper_bound}',
F'--n_train={self.n_train}',
F'--n_val={self.n_val}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
| 706 |
"""simple docstring"""
A__ : Tuple= """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
UpperCamelCase__ = Stack()
UpperCamelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
UpperCamelCase__ = operator_stack.peek()
operator_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
operand_stack.push(SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A__ : int= """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 20 | 0 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Union[str, Any]= logging.get_logger(__name__)
# TODO Update this
A__ : List[str]= {
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __lowerCamelCase ( UpperCAmelCase_ ):
a : Dict ='esm'
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1026 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_="absolute" , snake_case_=True , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=None , snake_case_=None , **snake_case_ , ) -> int:
super().__init__(pad_token_id=_lowercase , mask_token_id=_lowercase , **_lowercase )
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = position_embedding_type
UpperCamelCase__ = use_cache
UpperCamelCase__ = emb_layer_norm_before
UpperCamelCase__ = token_dropout
UpperCamelCase__ = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
UpperCamelCase__ = EsmFoldConfig()
elif isinstance(_lowercase , _lowercase ):
UpperCamelCase__ = EsmFoldConfig(**_lowercase )
UpperCamelCase__ = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
UpperCamelCase__ = get_default_vocab_list()
else:
UpperCamelCase__ = vocab_list
else:
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _lowercase ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = super().to_dict()
if isinstance(self.esmfold_config , _lowercase ):
UpperCamelCase__ = self.esmfold_config.to_dict()
return output
@dataclass
class __lowerCamelCase :
a : str =None
a : bool =True
a : bool =False
a : bool =False
a : bool =False
a : float =0
a : bool =True
a : bool =False
a : int =1_2_8
a : "TrunkConfig" =None
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
if self.trunk is None:
UpperCamelCase__ = TrunkConfig()
elif isinstance(self.trunk , _lowercase ):
UpperCamelCase__ = TrunkConfig(**self.trunk )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = asdict(self )
UpperCamelCase__ = self.trunk.to_dict()
return output
@dataclass
class __lowerCamelCase :
a : int =4_8
a : int =1_0_2_4
a : int =1_2_8
a : int =3_2
a : int =3_2
a : int =3_2
a : float =0
a : float =0
a : bool =False
a : int =4
a : Optional[int] =1_2_8
a : "StructureModuleConfig" =None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
if self.structure_module is None:
UpperCamelCase__ = StructureModuleConfig()
elif isinstance(self.structure_module , _lowercase ):
UpperCamelCase__ = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
F' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
UpperCamelCase__ = self.sequence_state_dim // self.sequence_head_width
UpperCamelCase__ = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = asdict(self )
UpperCamelCase__ = self.structure_module.to_dict()
return output
@dataclass
class __lowerCamelCase :
a : int =3_8_4
a : int =1_2_8
a : int =1_6
a : int =1_2_8
a : int =1_2
a : int =4
a : int =8
a : float =0.1
a : int =8
a : int =1
a : int =2
a : int =7
a : int =1_0
a : float =1E-8
a : float =1E5
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return asdict(self )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 707 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 | 0 |
"""simple docstring"""
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = pipeline(
task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' )
UpperCamelCase__ = load_dataset('ashraq/esc50' )
UpperCamelCase__ = dataset['''train''']['''audio'''][-1]['''array''']
UpperCamelCase__ = audio_classifier(snake_case_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] )
self.assertEqual(
nested_simplify(snake_case_ ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , )
@unittest.skip('No models are available in TF' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
pass
@slow
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = pipeline(
task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , )
# This is an audio of a dog
UpperCamelCase__ = load_dataset('ashraq/esc50' )
UpperCamelCase__ = dataset['''train''']['''audio'''][-1]['''array''']
UpperCamelCase__ = audio_classifier(snake_case_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] )
self.assertEqual(
nested_simplify(snake_case_ ) , [
{'score': 0.999, 'label': 'Sound of a dog'},
{'score': 0.001, 'label': 'Sound of vaccum cleaner'},
] , )
UpperCamelCase__ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] )
self.assertEqual(
nested_simplify(snake_case_ ) , [
[
{'score': 0.999, 'label': 'Sound of a dog'},
{'score': 0.001, 'label': 'Sound of vaccum cleaner'},
],
]
* 5 , )
UpperCamelCase__ = audio_classifier(
[audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 )
self.assertEqual(
nested_simplify(snake_case_ ) , [
[
{'score': 0.999, 'label': 'Sound of a dog'},
{'score': 0.001, 'label': 'Sound of vaccum cleaner'},
],
]
* 5 , )
@unittest.skip('No models are available in TF' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
pass
| 708 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCamelCase ( _a ):
a : Any =4_2
a : Optional[int] =4_2
def __init__( self , snake_case_ , snake_case_ ) -> Any:
super().__init__()
self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self , snake_case_ = 1 , snake_case_ = 50 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ) -> Dict:
UpperCamelCase__ = self.unet.config.sample_size
UpperCamelCase__ = (batch_size, 3, img_size, img_size)
UpperCamelCase__ = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
UpperCamelCase__ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
UpperCamelCase__ = self.scheduler.schedule[t]
UpperCamelCase__ = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
UpperCamelCase__ , UpperCamelCase__ = self.scheduler.add_noise_to_input(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
UpperCamelCase__ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
UpperCamelCase__ = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
UpperCamelCase__ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
UpperCamelCase__ = self.scheduler.step_correct(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , step_output.prev_sample , step_output['derivative'] , )
UpperCamelCase__ = step_output.prev_sample
UpperCamelCase__ = (sample / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase__ = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase ) | 709 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
a : Optional[int] ="""timm_backbone"""
def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict:
super().__init__(**snake_case_ )
UpperCamelCase__ = backbone
UpperCamelCase__ = num_channels
UpperCamelCase__ = features_only
UpperCamelCase__ = use_pretrained_backbone
UpperCamelCase__ = True
UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
import random
from typing import Any
class __lowerCamelCase :
def __init__( self ) -> Union[str, Any]:
UpperCamelCase__ = []
UpperCamelCase__ = 0
UpperCamelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return self.head == self.tail
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
self.data.append(UpperCamelCase_ )
UpperCamelCase__ = self.tail + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.data[self.head]
UpperCamelCase__ = self.head + 1
return ret
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return self.tail - self.head
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
print(self.data )
print('**************' )
print(self.data[self.head : self.tail] )
class __lowerCamelCase :
def __init__( self , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = data
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = 1
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return self.data
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
return self.left
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
return self.right
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
return self.height
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[Any]:
UpperCamelCase__ = data
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = node
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
UpperCamelCase__ = node
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Tuple:
UpperCamelCase__ = height
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if node is None:
return 0
return node.get_height()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if a > b:
return a
return b
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> MyNode:
"""simple docstring"""
print('left rotation node:' , node.get_data() )
UpperCamelCase__ = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase__ )
return ret
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> MyNode:
"""simple docstring"""
print('right rotation node:' , node.get_data() )
UpperCamelCase__ = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase__ )
return ret
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> MyNode:
"""simple docstring"""
UpperCamelCase__ = node.get_left()
assert left_child is not None
node.set_left(left_rotation(lowerCamelCase__ ) )
return right_rotation(lowerCamelCase__ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> MyNode:
"""simple docstring"""
UpperCamelCase__ = node.get_right()
assert right_child is not None
node.set_right(right_rotation(lowerCamelCase__ ) )
return left_rotation(lowerCamelCase__ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> MyNode | None:
"""simple docstring"""
if node is None:
return MyNode(lowerCamelCase__ )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , lowerCamelCase__ ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
UpperCamelCase__ = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
UpperCamelCase__ = right_rotation(lowerCamelCase__ )
else:
UpperCamelCase__ = lr_rotation(lowerCamelCase__ )
else:
node.set_right(insert_node(node.get_right() , lowerCamelCase__ ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
UpperCamelCase__ = node.get_right()
assert right_child is not None
if data < right_child.get_data():
UpperCamelCase__ = rl_rotation(lowerCamelCase__ )
else:
UpperCamelCase__ = left_rotation(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
return node
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
while True:
UpperCamelCase__ = root.get_right()
if right_child is None:
break
UpperCamelCase__ = right_child
return root.get_data()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
while True:
UpperCamelCase__ = root.get_left()
if left_child is None:
break
UpperCamelCase__ = left_child
return root.get_data()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> MyNode | None:
"""simple docstring"""
UpperCamelCase__ = root.get_left()
UpperCamelCase__ = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
UpperCamelCase__ = get_left_most(lowerCamelCase__ )
root.set_data(lowerCamelCase__ )
root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
elif left_child is not None:
UpperCamelCase__ = left_child
elif right_child is not None:
UpperCamelCase__ = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('No such data' )
return root
else:
root.set_left(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
if get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
UpperCamelCase__ = left_rotation(lowerCamelCase__ )
else:
UpperCamelCase__ = rl_rotation(lowerCamelCase__ )
elif get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
UpperCamelCase__ = right_rotation(lowerCamelCase__ )
else:
UpperCamelCase__ = lr_rotation(lowerCamelCase__ )
UpperCamelCase__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(lowerCamelCase__ )
return root
class __lowerCamelCase :
def __init__( self ) -> Optional[int]:
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
return get_height(self.root )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
print('insert:' + str(UpperCamelCase_ ) )
UpperCamelCase__ = insert_node(self.root , UpperCamelCase_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
print('delete:' + str(UpperCamelCase_ ) )
if self.root is None:
print('Tree is empty!' )
return
UpperCamelCase__ = del_node(self.root , UpperCamelCase_ )
def __str__( self , ) -> Dict: # a level traversale, gives a more intuitive look on the tree
UpperCamelCase__ = ""
UpperCamelCase__ = MyQueue()
q.push(self.root )
UpperCamelCase__ = self.get_height()
if layer == 0:
return output
UpperCamelCase__ = 0
while not q.is_empty():
UpperCamelCase__ = q.pop()
UpperCamelCase__ = " " * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(UpperCamelCase_ )
q.push(UpperCamelCase_ )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
UpperCamelCase__ = cnt + 1
for i in range(100 ):
if cnt == math.pow(2 , UpperCamelCase_ ) - 1:
UpperCamelCase__ = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def lowerCAmelCase_( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
A__ : Dict= AVLtree()
A__ : List[str]= list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 710 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A__ : Any= logging.get_logger(__name__)
A__ : str= {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : List[str] ="""layoutlmv3"""
def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
UpperCamelCase__ = max_ad_position_embeddings
UpperCamelCase__ = coordinate_size
UpperCamelCase__ = shape_size
UpperCamelCase__ = has_relative_attention_bias
UpperCamelCase__ = rel_pos_bins
UpperCamelCase__ = max_rel_pos
UpperCamelCase__ = has_spatial_attention_bias
UpperCamelCase__ = rel_ad_pos_bins
UpperCamelCase__ = max_rel_ad_pos
UpperCamelCase__ = text_embed
UpperCamelCase__ = visual_embed
UpperCamelCase__ = input_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_size
UpperCamelCase__ = classifier_dropout
class __lowerCamelCase ( _a ):
a : Tuple =version.parse("""1.12""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , 'apply_ocr' , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 20 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __lowerCamelCase ( _a ):
a : int =4_2
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 711 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 | 0 |
"""simple docstring"""
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ):
a : Optional[int] =RobertaTokenizer
a : List[str] =RobertaTokenizerFast
a : List[Any] =True
a : List[str] ={"""cls_token""": """<s>"""}
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase__ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
UpperCamelCase__ = dict(zip(_a , range(len(_a ) ) ) )
UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
UpperCamelCase__ = {"""unk_token""": """<unk>"""}
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_a ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_a ) )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = """lower newer"""
UpperCamelCase__ = """lower newer"""
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ = """lower newer"""
UpperCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
UpperCamelCase__ = tokenizer.tokenize(_a ) # , add_prefix_space=True)
self.assertListEqual(_a , _a )
UpperCamelCase__ = tokens + [tokenizer.unk_token]
UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_a ) , [0, 3_1414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_a ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.tokenizer_class.from_pretrained('roberta-base' )
UpperCamelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=_a )
UpperCamelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_a )
UpperCamelCase__ = tokenizer.encode(
'sequence builders' , add_special_tokens=_a , add_prefix_space=_a )
UpperCamelCase__ = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=_a , add_prefix_space=_a )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = """Encode this sequence."""
UpperCamelCase__ = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]]
# Testing encoder arguments
UpperCamelCase__ = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(_a , _a )
UpperCamelCase__ = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(_a , _a )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
UpperCamelCase__ = tokenizer.encode(_a , add_special_tokens=_a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(_a , _a )
# Testing spaces after special tokens
UpperCamelCase__ = """<mask>"""
tokenizer.add_special_tokens(
{'mask_token': AddedToken(_a , lstrip=_a , rstrip=_a )} ) # mask token has a left space
UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_a )
UpperCamelCase__ = """Encode <mask> sequence"""
UpperCamelCase__ = """Encode <mask>sequence"""
UpperCamelCase__ = tokenizer.encode(_a )
UpperCamelCase__ = encoded.index(_a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(_a , _a )
UpperCamelCase__ = tokenizer.encode(_a )
UpperCamelCase__ = encoded.index(_a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_a , **_a )
UpperCamelCase__ = self.tokenizer_class.from_pretrained(_a , **_a )
UpperCamelCase__ = """A, <mask> AllenNLP sentence."""
UpperCamelCase__ = tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a )
UpperCamelCase__ = tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
_a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
_a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _a )
self.assertEqual(post_processor_state['add_prefix_space'] , _a )
self.assertEqual(post_processor_state['trim_offsets'] , _a )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase__ = F'{text_of_1_token} {text_of_1_token}'
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_a ), len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = F' {text}'
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_a , use_fast=_a , add_prefix_space=_a , trim_offsets=_a )
UpperCamelCase__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_a ), 1 + len(_a ) + 1 + len(_a )) , )
| 712 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : List[str]= {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any]= [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
A__ : Union[str, Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 713 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]:
UpperCamelCase__ = parent
UpperCamelCase__ = vocab_size
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = patch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase__ = (image_size // patch_size) ** 2
UpperCamelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitModel(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.type_sequence_label_size
UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase__ = 1
UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ )
UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase__ = model(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( _a , unittest.TestCase ):
a : int =(
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
UpperCamelCase__ = FlaxBeitModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , **snake_case_ ):
return model(pixel_values=snake_case_ , **snake_case_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ )
# forward pass
UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 196, 8192)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 1000)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 2_1841)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
| 20 | 0 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
UpperCamelCase__ , UpperCamelCase__ = grid.shape
UpperCamelCase__ = [-1, 1, 0, 0]
UpperCamelCase__ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCamelCase__ , UpperCamelCase__ = [(0, source)], set()
UpperCamelCase__ = np.full((rows, cols) , np.inf )
UpperCamelCase__ = 0
UpperCamelCase__ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCamelCase__ = None
while queue:
((UpperCamelCase__) , (UpperCamelCase__)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCamelCase__ = []
while (x, y) != source:
path.append((x, y) )
UpperCamelCase__ , UpperCamelCase__ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCamelCase__ , UpperCamelCase__ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCamelCase__ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCamelCase__ = dist + 1
UpperCamelCase__ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 |
"""simple docstring"""
import sys
from collections import defaultdict
class __lowerCamelCase :
def __init__( self ) -> Tuple:
UpperCamelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = pos
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCamelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCamelCase__ = 2 * start + 1
else:
UpperCamelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child]
UpperCamelCase__ , UpperCamelCase__ = (
heap[start],
positions[start],
)
UpperCamelCase__ , UpperCamelCase__ = temp, tempa
UpperCamelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , snake_case_ )
self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = position[index]
while index != 0:
UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCamelCase__ = heap[parent]
UpperCamelCase__ = position[parent]
self.set_position(position[parent] , snake_case_ )
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , snake_case_ )
break
UpperCamelCase__ = parent
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , 0 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = len(snake_case_ ) // 2 - 1
for i in range(snake_case_ , -1 , -1 ):
self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = positions[0]
UpperCamelCase__ = sys.maxsize
self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ )
return temp
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = Heap()
UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
UpperCamelCase__ = []
for vertex in range(len(SCREAMING_SNAKE_CASE ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE )
heap.node_position.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = []
UpperCamelCase__ = 1
UpperCamelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCamelCase__ = 0
UpperCamelCase__ = distance
heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCamelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )]
):
UpperCamelCase__ = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Dict= int(input("""Enter number of edges: """).strip())
A__ : Dict= defaultdict(list)
for _ in range(edges_number):
A__ : Dict= [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 20 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A__ : List[Any]= logging.get_logger(__name__)
A__ : Optional[int]= "▁"
A__ : Dict= {"vocab_file": "spiece.model"}
A__ : Optional[int]= {
"vocab_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
)
}
}
A__ : Union[str, Any]= {
"google/reformer-crime-and-punishment": 52_42_88,
}
class __lowerCamelCase ( __lowerCAmelCase ):
a : List[str] =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[Any] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_=[] , snake_case_ = None , **snake_case_ , ) -> None:
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCamelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size()
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> List[str]:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
return self.sp_model.piece_to_id(_UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(_UpperCamelCase )
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[Any]:
UpperCamelCase__ = []
UpperCamelCase__ = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_UpperCamelCase ) + token
UpperCamelCase__ = []
else:
current_sub_tokens.append(_UpperCamelCase )
out_string += self.sp_model.decode(_UpperCamelCase )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(_UpperCamelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
_UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,)
| 715 |
"""simple docstring"""
from copy import deepcopy
class __lowerCamelCase :
def __init__( self , snake_case_ = None , snake_case_ = None ) -> None:
if arr is None and size is not None:
UpperCamelCase__ = size
UpperCamelCase__ = [0] * size
elif arr is not None:
self.init(snake_case_ )
else:
raise ValueError('Either arr or size must be specified' )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
UpperCamelCase__ = len(snake_case_ )
UpperCamelCase__ = deepcopy(snake_case_ )
for i in range(1 , self.size ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]:
UpperCamelCase__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCamelCase__ = self.next_(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
self.add(snake_case_ , value - self.get(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
if right == 0:
return 0
UpperCamelCase__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCamelCase__ = self.prev(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int:
return self.prefix(snake_case_ ) - self.prefix(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.query(snake_case_ , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCamelCase__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCamelCase__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A__ : int= logging.get_logger(__name__)
A__ : Optional[int]= {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""}
A__ : Optional[int]= {
"""vocab_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""",
},
"""emoji_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""",
},
}
A__ : Optional[Any]= {
"""abeja/gpt-neox-japanese-2.7b""": 20_48,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f:
UpperCamelCase__ = json.loads(f.read() )
UpperCamelCase__ = collections.OrderedDict()
UpperCamelCase__ = collections.OrderedDict()
UpperCamelCase__ = collections.OrderedDict()
with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f:
UpperCamelCase__ = f.readlines()
UpperCamelCase__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(_lowerCamelCase ):
UpperCamelCase__ = b
UpperCamelCase__ = idx
for wd in b:
UpperCamelCase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __lowerCamelCase ( a__ ):
a : Union[str, Any] =VOCAB_FILES_NAMES
a : Dict =PRETRAINED_VOCAB_FILES_MAP
a : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : str =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_ , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_="<|startoftext|>" , snake_case_="<|endoftext|>" , snake_case_=False , **snake_case_ , ) -> Dict:
super().__init__(
unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , )
if not os.path.isfile(_A ):
raise ValueError(
F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(_A ):
raise ValueError(
F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
UpperCamelCase__ = do_clean_text
UpperCamelCase__ = load_vocab_and_emoji(_A , _A )
UpperCamelCase__ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
return len(self.raw_vocab )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.vocab.get(_A , self.vocab.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.subword_tokenizer.convert_id_to_token(_A )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = ''.join(_A ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] )
if len(_A ) > self.model_max_length:
UpperCamelCase__ = input_ids[-self.model_max_length :]
return input_ids
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> str:
UpperCamelCase__ = 0
if os.path.isdir(_A ):
UpperCamelCase__ = os.path.join(
_A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(
_A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
UpperCamelCase__ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
UpperCamelCase__ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(_A , 'w' , encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
UpperCamelCase__ = token_index
writer.write(','.join(_A ) + '\n' )
index += 1
with open(_A , 'w' , encoding='utf-8' ) as writer:
json.dump(self.emoji , _A )
return vocab_file, emoji_file
class __lowerCamelCase ( a__ ):
def __init__( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = vocab # same as swe
UpperCamelCase__ = ids_to_tokens # same as bpe
UpperCamelCase__ = emoji
UpperCamelCase__ = np.max([len(_A ) for w in self.vocab.keys()] )
UpperCamelCase__ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
UpperCamelCase__ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
UpperCamelCase__ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
UpperCamelCase__ = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
UpperCamelCase__ = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
UpperCamelCase__ = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
UpperCamelCase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
UpperCamelCase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
UpperCamelCase__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__( self ) -> Optional[Any]:
return len(self.ids_to_tokens )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.content_repattera.sub('<URL>' , _A )
UpperCamelCase__ = self.content_repattera.sub('<EMAIL>' , _A )
UpperCamelCase__ = self.content_repattera.sub('<TEL>' , _A )
UpperCamelCase__ = self.content_repattera.sub('<DATE>' , _A )
UpperCamelCase__ = self.content_repattera.sub('<DATE>' , _A )
UpperCamelCase__ = self.content_repattera.sub('<PRICE>' , _A )
UpperCamelCase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
UpperCamelCase__ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' )
return content
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=False ) -> Union[str, Any]:
UpperCamelCase__ = text.replace(' ' , '<SP>' )
UpperCamelCase__ = text.replace(' ' , '<SP>' )
UpperCamelCase__ = text.replace('\r\n' , '<BR>' )
UpperCamelCase__ = text.replace('\n' , '<BR>' )
UpperCamelCase__ = text.replace('\r' , '<BR>' )
UpperCamelCase__ = text.replace('\t' , '<TAB>' )
UpperCamelCase__ = text.replace('—' , 'ー' )
UpperCamelCase__ = text.replace('−' , 'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
UpperCamelCase__ = text.replace(_A , _A )
if clean:
UpperCamelCase__ = self.clean_text(_A )
def check_simbol(snake_case_ ):
UpperCamelCase__ = x.encode()
if len(_A ) == 1 and len(_A ) == 2:
UpperCamelCase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0Xc2a1 and c <= 0Xc2bf)
or (c >= 0Xc780 and c <= 0Xc783)
or (c >= 0Xcab9 and c <= 0Xcbbf)
or (c >= 0Xcc80 and c <= 0Xcda2)
):
return True
return False
def checkuae(snake_case_ ):
UpperCamelCase__ = x.encode()
if len(_A ) == 1 and len(_A ) == 3:
UpperCamelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0Xe2_8080 and c <= 0Xe2_b07f:
return True
return False
UpperCamelCase__ = 0
UpperCamelCase__ = []
while pos < len(_A ):
UpperCamelCase__ = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
UpperCamelCase__ = [] # (token_id, token, pos)
for e in range(_A , _A , -1 ):
UpperCamelCase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_A ) > 2:
UpperCamelCase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_A ) > 0:
# the smallest token_id is adopted
UpperCamelCase__ = sorted(_A , key=lambda snake_case_ : x[0] )[0]
result.append(_A )
UpperCamelCase__ = e
else:
UpperCamelCase__ = pos + 1
UpperCamelCase__ = text[pos:end]
if check_simbol(_A ):
result.append('<KIGOU>' )
elif checkuae(_A ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
UpperCamelCase__ = end
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_="\n" ) -> str:
UpperCamelCase__ = []
UpperCamelCase__ = []
UpperCamelCase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_A ) > 0:
words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) )
UpperCamelCase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(_A )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(_A )
if len(_A ) > 0:
words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) )
UpperCamelCase__ = ''.join(_A )
return text
| 716 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
A__ : Union[str, Any]= logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple:
UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )]
if identifier is not None:
UpperCamelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(snake_case_ , snake_case_ ):
for n_ in n_identifier:
UpperCamelCase__ = [file for file in files if n_ not in file]
else:
UpperCamelCase__ = [file for file in files if n_identifier not in file]
UpperCamelCase__ = ignore_files or []
ignore_files.append('__init__.py' )
UpperCamelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , snake_case_ )
if only_modules:
UpperCamelCase__ = file.split('.' )[0]
try:
UpperCamelCase__ = getattr(snake_case_ , snake_case_ )
UpperCamelCase__ = doctest.DocTestSuite(snake_case_ )
UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'modeling'
UpperCamelCase__ = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'tokenization'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'configuration'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(snake_case_ , n_identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('docs/source' )
UpperCamelCase__ = ['favicon.ico']
self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
| 20 | 0 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : str= logging.get_logger(__name__)
A__ : List[Any]= {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCamelCase ( _a ):
a : Any ="""segformer"""
def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple:
super().__init__(**snake_case_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , )
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_encoder_blocks
UpperCamelCase__ = depths
UpperCamelCase__ = sr_ratios
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = classifier_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = decoder_hidden_size
UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ )
UpperCamelCase__ = semantic_loss_ignore_index
class __lowerCamelCase ( _a ):
a : Any =version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
| 20 | 0 |
"""simple docstring"""
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A__ : Tuple= logging.get_logger(__name__)
A__ : Tuple= {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A__ : int= {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A__ : List[str]= {
"allenai/led-base-16384": 1_63_84,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCAmelCase_( ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
UpperCamelCase__ = bs[:]
UpperCamelCase__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(a_ )
cs.append(2**8 + n )
n += 1
UpperCamelCase__ = [chr(a_ ) for n in cs]
return dict(zip(a_ , a_ ) )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase__ = char
return pairs
class __lowerCamelCase ( _UpperCAmelCase ):
a : str =VOCAB_FILES_NAMES
a : int =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ) -> List[Any]:
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase__ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , )
with open(lowerCamelCase_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase__ = json.load(lowerCamelCase_ )
UpperCamelCase__ = {v: k for k, v in self.encoder.items()}
UpperCamelCase__ = errors # how to handle errors in decoding
UpperCamelCase__ = bytes_to_unicode()
UpperCamelCase__ = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ , encoding='utf-8' ) as merges_handle:
UpperCamelCase__ = merges_handle.read().split('\n' )[1:-1]
UpperCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges]
UpperCamelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
UpperCamelCase__ = {}
UpperCamelCase__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
return len(self.encoder )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token in self.cache:
return self.cache[token]
UpperCamelCase__ = tuple(lowerCamelCase_ )
UpperCamelCase__ = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCamelCase__ = min(lowerCamelCase_ , key=lambda snake_case_ : self.bpe_ranks.get(lowerCamelCase_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase__ = bigram
UpperCamelCase__ = []
UpperCamelCase__ = 0
while i < len(lowerCamelCase_ ):
try:
UpperCamelCase__ = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase__ = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase__ = tuple(lowerCamelCase_ )
UpperCamelCase__ = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCamelCase__ = get_pairs(lowerCamelCase_ )
UpperCamelCase__ = ''' '''.join(lowerCamelCase_ )
UpperCamelCase__ = word
return word
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Tuple:
UpperCamelCase__ = []
for token in re.findall(self.pat , lowerCamelCase_ ):
UpperCamelCase__ = ''''''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(' ' ) )
return bpe_tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]:
return self.decoder.get(lowerCamelCase_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = ''''''.join(lowerCamelCase_ )
UpperCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(
lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '\n' )
UpperCamelCase__ = 0
with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase__ = token_index
writer.write(' '.join(lowerCamelCase_ ) + '\n' )
index += 1
return vocab_file, merge_file
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
UpperCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=False , **snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCamelCase__ = ''' ''' + text
return (text, kwargs)
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = PaddingStrategy.DO_NOT_PAD , snake_case_ = None , snake_case_ = None , ) -> dict:
UpperCamelCase__ = super()._pad(
encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , )
# Load from model defaults
if return_attention_mask is None:
UpperCamelCase__ = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCamelCase__ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCamelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCamelCase__ = len(lowerCamelCase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCamelCase__ = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
UpperCamelCase__ = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 718 |
"""simple docstring"""
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCamelCase ( _a ):
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' )
download_parser.set_defaults(func=snake_case_ )
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = model
UpperCamelCase__ = cache
UpperCamelCase__ = force
UpperCamelCase__ = trust_remote_code
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Any= {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple= ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any= ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
A__ : List[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 719 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase ( _a ):
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = relative_attention
UpperCamelCase__ = position_biased_input
UpperCamelCase__ = pos_att_type
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = DebertaVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a : Dict =(
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Tuple =True
a : Union[str, Any] =False
a : Tuple =False
a : Union[str, Any] =False
a : Dict =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = DebertaVaModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@unittest.skip(reason='Model not available yet' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0]
# compare the actual values for a slice.
UpperCamelCase__ = torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
| 20 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Union[str, Any]= logging.get_logger(__name__)
A__ : Union[str, Any]= {
'''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''',
'''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''',
'''kssteven/ibert-roberta-large-mnli''': (
'''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'''
),
}
class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ):
a : Dict ="""ibert"""
def __init__( self , snake_case_=3_0522 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=False , snake_case_="none" , **snake_case_ , ) -> Union[str, Any]:
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = position_embedding_type
UpperCamelCase__ = quant_mode
UpperCamelCase__ = force_dequant
class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ):
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCamelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCamelCase__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 720 |
"""simple docstring"""
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = SwinConfig()
UpperCamelCase__ = swin_name.split('_' )
UpperCamelCase__ = name_split[1]
UpperCamelCase__ = int(name_split[4] )
UpperCamelCase__ = int(name_split[3][-1] )
if model_size == "tiny":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 6, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "small":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "base":
UpperCamelCase__ = 1_28
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (4, 8, 16, 32)
else:
UpperCamelCase__ = 1_92
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (6, 12, 24, 48)
if "in22k" in swin_name:
UpperCamelCase__ = 2_18_41
else:
UpperCamelCase__ = 10_00
UpperCamelCase__ = 'huggingface/label-files'
UpperCamelCase__ = 'imagenet-1k-id2label.json'
UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
UpperCamelCase__ = img_size
UpperCamelCase__ = num_classes
UpperCamelCase__ = embed_dim
UpperCamelCase__ = depths
UpperCamelCase__ = num_heads
UpperCamelCase__ = window_size
return config
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if "patch_embed.proj" in name:
UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
UpperCamelCase__ = 'encoder.' + name
if "attn.proj" in name:
UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
UpperCamelCase__ = name.replace('attn' , 'attention.self' )
if "norm1" in name:
UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if name == "norm.weight":
UpperCamelCase__ = 'layernorm.weight'
if name == "norm.bias":
UpperCamelCase__ = 'layernorm.bias'
if "head" in name:
UpperCamelCase__ = name.replace('head' , 'classifier' )
else:
UpperCamelCase__ = 'swin.' + name
return name
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
UpperCamelCase__ = key.split('.' )
UpperCamelCase__ = int(key_split[1] )
UpperCamelCase__ = int(key_split[3] )
UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[
dim : dim * 2, :
]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = val[
:dim
]
UpperCamelCase__ = val[
dim : dim * 2
]
UpperCamelCase__ = val[
-dim:
]
else:
UpperCamelCase__ = val
return orig_state_dict
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE )
timm_model.eval()
UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) )
UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
UpperCamelCase__ = timm_model(inputs['pixel_values'] )
UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
A__ : Optional[Any]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
A__ : Tuple= parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 20 | 0 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Optional[int]= logging.get_logger(__name__)
A__ : Optional[int]= {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCamelCase ( _lowercase ):
a : List[str] ='''segformer'''
def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Any:
super().__init__(**A_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , A_ , )
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_encoder_blocks
UpperCamelCase__ = depths
UpperCamelCase__ = sr_ratios
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = classifier_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = decoder_hidden_size
UpperCamelCase__ = kwargs.get('reshape_last_stage' , A_ )
UpperCamelCase__ = semantic_loss_ignore_index
class __lowerCamelCase ( _lowercase ):
a : Optional[Any] =version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
| 721 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
UpperCamelCase__ = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )]
for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = pentagonal_nums[j]
UpperCamelCase__ = pentagonal_i + pentagonal_j
UpperCamelCase__ = pentagonal_j - pentagonal_i
if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
A__ : List[str]= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : str= {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
A__ : List[Any]= {
"""allenai/led-base-16384""": 1_63_84,
}
class __lowerCamelCase ( lowercase__ ):
'''simple docstring'''
a : Optional[int] =VOCAB_FILES_NAMES
a : List[str] =PRETRAINED_VOCAB_FILES_MAP
a : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : str =LEDTokenizer
a : List[Any] =['input_ids', 'attention_mask']
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> Optional[int]:
super().__init__(
snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , )
UpperCamelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case_ ) != add_prefix_space:
UpperCamelCase__ = getattr(snake_case_ , pre_tok_state.pop('type' ) )
UpperCamelCase__ = add_prefix_space
UpperCamelCase__ = pre_tok_class(**snake_case_ )
UpperCamelCase__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
UpperCamelCase__ = 'post_processor'
UpperCamelCase__ = getattr(self.backend_tokenizer , snake_case_ , snake_case_ )
if tokenizer_component_instance:
UpperCamelCase__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase__ = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase__ = tuple(state['cls'] )
UpperCamelCase__ = False
if state.get('add_prefix_space' , snake_case_ ) != add_prefix_space:
UpperCamelCase__ = add_prefix_space
UpperCamelCase__ = True
if state.get('trim_offsets' , snake_case_ ) != trim_offsets:
UpperCamelCase__ = trim_offsets
UpperCamelCase__ = True
if changes_to_apply:
UpperCamelCase__ = getattr(snake_case_ , state.pop('type' ) )
UpperCamelCase__ = component_class(**snake_case_ )
setattr(self.backend_tokenizer , snake_case_ , snake_case_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value
UpperCamelCase__ = value
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> List[Any]:
UpperCamelCase__ = kwargs.get('is_split_into_words' , snake_case_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = kwargs.get('is_split_into_words' , snake_case_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'to use it with pretokenized inputs.' )
return super()._encode_plus(*snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Union[str, Any]:
UpperCamelCase__ = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=None ) -> int:
UpperCamelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Optional[int]:
UpperCamelCase__ = [self.sep_token_id]
UpperCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = PaddingStrategy.DO_NOT_PAD , snake_case_ = None , snake_case_ = None , ) -> Optional[Any]:
UpperCamelCase__ = super()._pad(
encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , )
# Load from model defaults
if return_attention_mask is None:
UpperCamelCase__ = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCamelCase__ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCamelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(snake_case_ )
if needs_to_be_padded:
UpperCamelCase__ = len(snake_case_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCamelCase__ = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
UpperCamelCase__ = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 700 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = int((limit - 24) ** (1 / 2) )
UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) )
for primea in primes:
UpperCamelCase__ = primea * primea
for primea in primes:
UpperCamelCase__ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
UpperCamelCase__ = primea * primea * primea * primea
UpperCamelCase__ = square + cube + tetr
if total >= limit:
break
ret.add(SCREAMING_SNAKE_CASE )
return len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
A__ : str= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
def __init__( self , *snake_case_ , **snake_case_ ) -> None:
warnings.warn(
'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use YolosImageProcessor instead.' , snake_case_ , )
super().__init__(*snake_case_ , **snake_case_ )
| 701 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""]
A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only"""
if is_tf_available():
class __lowerCamelCase ( tf.keras.Model ):
def __init__( self , snake_case_ ) -> Optional[int]:
super().__init__()
UpperCamelCase__ = tokenizer
UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ )
UpperCamelCase__ = TFAutoModel.from_config(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = self.tokenizer(snake_case_ )
UpperCamelCase__ = self.bert(**snake_case_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
UpperCamelCase__ = [
BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCamelCase__ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf_tokenizer(self.paired_sentences )
UpperCamelCase__ = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf.function(snake_case_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tf.constant(snake_case_ )
UpperCamelCase__ = compiled_tokenizer(snake_case_ )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ )
UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences )
UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCamelCase__ = Path(snake_case_ ) / 'saved.model'
model.save(snake_case_ )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = loaded_model(snake_case_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 20 | 0 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=99 , snake_case_=13 , snake_case_=7 , snake_case_=9 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_=8 , snake_case_=0.1 , snake_case_=0.002 , snake_case_=1 , snake_case_=0 , snake_case_=0 , snake_case_=None , snake_case_=None , ) -> List[Any]:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = encoder_seq_length
UpperCamelCase__ = decoder_seq_length
# For common tests
UpperCamelCase__ = self.decoder_seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_attention_mask
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = d_ff
UpperCamelCase__ = relative_attention_num_buckets
UpperCamelCase__ = dropout_rate
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = eos_token_id
UpperCamelCase__ = pad_token_id
UpperCamelCase__ = decoder_start_token_id
UpperCamelCase__ = None
UpperCamelCase__ = decoder_layers
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
return TaConfig.from_pretrained('google/umt5-base' )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ) -> Optional[Any]:
if attention_mask is None:
UpperCamelCase__ = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCamelCase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__A )
if decoder_head_mask is None:
UpperCamelCase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__A )
if cross_attn_head_mask is None:
UpperCamelCase__ = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__A )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCamelCase__ = self.get_config()
UpperCamelCase__ = config.num_attention_heads
UpperCamelCase__ = self.prepare_inputs_dict(__A , __A , __A )
return config, input_dict
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> Dict:
UpperCamelCase__ = UMTaModel(config=__A )
model.to(__A )
model.eval()
UpperCamelCase__ = model(
input_ids=__A , decoder_input_ids=__A , attention_mask=__A , decoder_attention_mask=__A , )
UpperCamelCase__ = model(input_ids=__A , decoder_input_ids=__A )
UpperCamelCase__ = result.last_hidden_state
UpperCamelCase__ = result.past_key_values
UpperCamelCase__ = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__A ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str:
UpperCamelCase__ = UMTaModel(config=__A ).get_decoder().to(__A ).eval()
# first forward pass
UpperCamelCase__ = model(__A , use_cache=__A )
UpperCamelCase__ = model(__A )
UpperCamelCase__ = model(__A , use_cache=__A )
self.parent.assertTrue(len(__A ) == len(__A ) )
self.parent.assertTrue(len(__A ) == len(__A ) + 1 )
UpperCamelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase__ = model(__A )["last_hidden_state"]
UpperCamelCase__ = model(__A , past_key_values=__A )["last_hidden_state"]
# select random slice
UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase__ = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCamelCase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1E-3 ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , ) -> int:
UpperCamelCase__ = UMTaModel(config=__A ).to(__A ).half().eval()
UpperCamelCase__ = model(**__A )["last_hidden_state"]
self.parent.assertFalse(torch.isnan(__A ).any().item() )
@require_torch
class __lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
a : List[str] =(
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Optional[Any] =(UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[int] =(
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : List[str] =True
a : Dict =False
a : Tuple =False
a : List[Any] =True
a : str =True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : str =[0.8, 0.9]
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase__ = UMTaModel(config_and_inputs[0] ).to(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__A , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__A )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
UpperCamelCase__ = config_and_inputs[0]
UpperCamelCase__ = UMTaForConditionalGeneration(__A ).eval()
model.to(__A )
UpperCamelCase__ = {
"head_mask": torch.zeros(config.num_layers , config.num_heads , device=__A ),
"decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ),
}
for attn_name, (name, mask) in zip(__A , head_masking.items() ):
UpperCamelCase__ = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
UpperCamelCase__ = torch.ones(
config.num_decoder_layers , config.num_heads , device=__A )
UpperCamelCase__ = model.generate(
config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=__A , return_dict_in_generate=__A , **__A , )
# We check the state of decoder_attentions and cross_attentions just from the last step
UpperCamelCase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=__A ).to(__A )
UpperCamelCase__ = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=__A , legacy=__A )
UpperCamelCase__ = [
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
"No se como puedo <extra_id_0>.",
"This is the reason why we <extra_id_0> them.",
"The <extra_id_0> walks in <extra_id_1>, seats",
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
]
UpperCamelCase__ = tokenizer(__A , return_tensors='pt' , padding=__A ).input_ids
# fmt: off
UpperCamelCase__ = torch.tensor(
[
[ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__A , __A )
UpperCamelCase__ = model.generate(input_ids.to(__A ) )
UpperCamelCase__ = [
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
]
UpperCamelCase__ = tokenizer.batch_decode(__A )
self.assertEqual(__A , __A )
| 702 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]:
"""simple docstring"""
UpperCamelCase__ = len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE ):
if numbers[j] < numbers[i]:
UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip()
A__ : List[Any]= [int(item) for item in user_input.split(""",""")]
print(exchange_sort(unsorted))
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_ , snake_case_ = 0 ) -> None:
UpperCamelCase__ = row, column
UpperCamelCase__ = [[default_value for c in range(snake_case_ )] for r in range(snake_case_ )]
def __str__( self ) -> str:
UpperCamelCase__ = F'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
UpperCamelCase__ = 0
for row_vector in self.array:
for obj in row_vector:
UpperCamelCase__ = max(snake_case_ , len(str(snake_case_ ) ) )
UpperCamelCase__ = F'%{max_element_length}s'
# Make string and return
def single_line(snake_case_ ) -> str:
nonlocal string_format_identifier
UpperCamelCase__ = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(snake_case_ ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
return str(self )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> bool:
if not (isinstance(snake_case_ , (list, tuple) ) and len(snake_case_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , snake_case_ ) -> Any:
assert self.validate_indicies(snake_case_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self , snake_case_ , snake_case_ ) -> None:
assert self.validate_indicies(snake_case_ )
UpperCamelCase__ = value
def __add__( self , snake_case_ ) -> Matrix:
assert isinstance(snake_case_ , snake_case_ )
assert self.row == another.row and self.column == another.column
# Add
UpperCamelCase__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCamelCase__ = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
UpperCamelCase__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCamelCase__ = -self[r, c]
return result
def __sub__( self , snake_case_ ) -> Matrix:
return self + (-another)
def __mul__( self , snake_case_ ) -> Matrix:
if isinstance(snake_case_ , (int, float) ): # Scalar multiplication
UpperCamelCase__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCamelCase__ = self[r, c] * another
return result
elif isinstance(snake_case_ , snake_case_ ): # Matrix multiplication
assert self.column == another.row
UpperCamelCase__ = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
UpperCamelCase__ = F'Unsupported type given for another ({type(snake_case_ )})'
raise TypeError(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Matrix:
UpperCamelCase__ = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
UpperCamelCase__ = self[r, c]
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
assert isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
UpperCamelCase__ = v.transpose()
UpperCamelCase__ = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
UpperCamelCase__ = Matrix(3 , 3 , 0 )
for i in range(3 ):
UpperCamelCase__ = 1
print(F'a^(-1) is {ainv}' )
# u, v
UpperCamelCase__ = Matrix(3 , 1 , 0 )
UpperCamelCase__ = 1, 2, -3
UpperCamelCase__ = Matrix(3 , 1 , 0 )
UpperCamelCase__ = 4, -2, 5
print(F'u is {u}' )
print(F'v is {v}' )
print(F'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}' )
def lowerCAmelCase_( ) -> Any:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 703 |
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
A__ : str= {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
A__ : str= {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE )
return images
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if images.ndim == 3:
UpperCamelCase__ = images[None, ...]
UpperCamelCase__ = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 20 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=__SCREAMING_SNAKE_CASE ):
a : Any =["""onnx"""]
def __init__( self , *snake_case_ , **snake_case_ ) -> List[Any]:
requires_backends(self , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , *snake_case_ , **snake_case_ ) -> int:
requires_backends(cls , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , *snake_case_ , **snake_case_ ) -> int:
requires_backends(cls , ['onnx'] )
| 704 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """spiece.model"""}
A__ : Union[str, Any]= {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
}
}
# TODO(PVP) - this should be removed in Transformers v5
A__ : Union[str, Any]= {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
A__ : Optional[Any]= """▁"""
class __lowerCamelCase ( _a ):
a : Dict =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' )
UpperCamelCase__ = legacy
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = extra_ids
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case_ )) + [1]
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return list(
set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]:
if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
if token_ids_a is None:
return token_ids_a
else:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> Any:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' )
return super().tokenize(snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]:
if not self.legacy:
UpperCamelCase__ = text.startswith(snake_case_ )
if is_first:
UpperCamelCase__ = text[1:]
UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ )
if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ):
UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token.startswith('<extra_id_' ):
UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ )
UpperCamelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ )
else:
UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = []
UpperCamelCase__ = ''
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case_ )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 20 | 0 |
"""simple docstring"""
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
A__ : List[str]= logging.get_logger(__name__)
A__ : List[str]= TypeVar("""DatasetType""", Dataset, IterableDataset)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> str:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('Unable to interleave an empty list of datasets.' )
for i, dataset in enumerate(snake_case__ ):
if not isinstance(snake_case__ , (Dataset, IterableDataset) ):
if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'is an empty dataset dictionary.' )
raise ValueError(
F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n'
F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' )
raise ValueError(
F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' )
if i == 0:
UpperCamelCase__ = (
(Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset)
)
elif not isinstance(snake_case__ , snake_case__ ):
raise ValueError(
F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ )
else:
return _interleave_iterable_datasets(
snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , ) -> Any:
"""simple docstring"""
if not dsets:
raise ValueError('Unable to concatenate an empty list of datasets.' )
for i, dataset in enumerate(snake_case__ ):
if not isinstance(snake_case__ , (Dataset, IterableDataset) ):
if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '
'is an empty dataset dictionary.' )
raise ValueError(
F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n'
F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' )
raise ValueError(
F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' )
if i == 0:
UpperCamelCase__ = (
(Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset)
)
elif not isinstance(snake_case__ , snake_case__ ):
raise ValueError(
F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
else:
return _concatenate_iterable_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
| 705 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A__ : Any= TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , snake_case_ ) -> None:
UpperCamelCase__ = data
UpperCamelCase__ = self
UpperCamelCase__ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# create a new set with x as its member
UpperCamelCase__ = DisjointSetTreeNode(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
UpperCamelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
UpperCamelCase__ = nodea
else:
UpperCamelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# add an edge with the given weight
self.add_node(snake_case_ )
self.add_node(snake_case_ )
UpperCamelCase__ = weight
UpperCamelCase__ = weight
def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]:
UpperCamelCase__ = []
UpperCamelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case_ : x[2] )
# creating the disjoint set
UpperCamelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case_ )
# MST generation
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index]
index += 1
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case_ , snake_case_ , snake_case_ )
disjoint_set.union(snake_case_ , snake_case_ )
return graph
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None ) -> None:
"""simple docstring"""
if start is None:
UpperCamelCase__ = 0
if end is None:
UpperCamelCase__ = len(__snake_case ) - 1
if start >= end:
return
UpperCamelCase__ = (start + end) // 2
slowsort(__snake_case , __snake_case , __snake_case )
slowsort(__snake_case , mid + 1 , __snake_case )
if sequence[end] < sequence[mid]:
UpperCamelCase__ , UpperCamelCase__ = sequence[mid], sequence[end]
slowsort(__snake_case , __snake_case , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 706 |
"""simple docstring"""
A__ : Tuple= """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
UpperCamelCase__ = Stack()
UpperCamelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
UpperCamelCase__ = operator_stack.peek()
operator_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
operand_stack.push(SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A__ : int= """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 20 | 0 |
"""simple docstring"""
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
UpperCamelCase__ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
model.to(lowercase_ )
from datasets import load_dataset
UpperCamelCase__ = load_dataset('nielsr/rvlcdip-demo' )
UpperCamelCase__ = dataset["""train"""][0]["""image"""].convert('RGB' )
UpperCamelCase__ = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ )
# forward pass
with torch.no_grad():
UpperCamelCase__ = model(**lowercase_ )
UpperCamelCase__ = outputs.logits
UpperCamelCase__ = torch.Size((1, 16) )
self.assertEqual(logits.shape , lowercase_ )
UpperCamelCase__ = torch.tensor(
[-0.4_158, -0.4_092, -0.4_347] , device=lowercase_ , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) )
| 707 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 | 0 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
A__ : Union[str, Any]= {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class __lowerCamelCase ( a__ ):
a : str ="""xlnet"""
a : Dict =["""mems"""]
a : Optional[int] ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , snake_case_=3_2000 , snake_case_=1024 , snake_case_=24 , snake_case_=16 , snake_case_=4096 , snake_case_="gelu" , snake_case_=True , snake_case_="bi" , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_=512 , snake_case_=None , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=-1 , snake_case_=False , snake_case_="last" , snake_case_=True , snake_case_="tanh" , snake_case_=0.1 , snake_case_=5 , snake_case_=5 , snake_case_=5 , snake_case_=1 , snake_case_=2 , **snake_case_ , ) -> Optional[int]:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = d_model
UpperCamelCase__ = n_layer
UpperCamelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' )
UpperCamelCase__ = d_model // n_head
UpperCamelCase__ = ff_activation
UpperCamelCase__ = d_inner
UpperCamelCase__ = untie_r
UpperCamelCase__ = attn_type
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = dropout
UpperCamelCase__ = mem_len
UpperCamelCase__ = reuse_len
UpperCamelCase__ = bi_data
UpperCamelCase__ = clamp_len
UpperCamelCase__ = same_length
UpperCamelCase__ = summary_type
UpperCamelCase__ = summary_use_proj
UpperCamelCase__ = summary_activation
UpperCamelCase__ = summary_last_dropout
UpperCamelCase__ = start_n_top
UpperCamelCase__ = end_n_top
UpperCamelCase__ = bos_token_id
UpperCamelCase__ = pad_token_id
UpperCamelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , lowerCAmelCase__ , )
UpperCamelCase__ = kwargs["use_cache"]
UpperCamelCase__ = use_mems_eval
UpperCamelCase__ = use_mems_train
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 708 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : List[str]= {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class __lowerCamelCase ( UpperCAmelCase__ ):
a : List[str] ="""roc_bert"""
def __init__( self , snake_case_=3_0522 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=True , snake_case_=0 , snake_case_="absolute" , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=768 , snake_case_=910 , snake_case_=512 , snake_case_=2_4858 , snake_case_=True , **snake_case_ , ) -> List[str]:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = use_cache
UpperCamelCase__ = enable_pronunciation
UpperCamelCase__ = enable_shape
UpperCamelCase__ = pronunciation_embed_dim
UpperCamelCase__ = pronunciation_vocab_size
UpperCamelCase__ = shape_embed_dim
UpperCamelCase__ = shape_vocab_size
UpperCamelCase__ = concat_input
UpperCamelCase__ = position_embedding_type
UpperCamelCase__ = classifier_dropout
super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) | 709 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
a : Optional[int] ="""timm_backbone"""
def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict:
super().__init__(**snake_case_ )
UpperCamelCase__ = backbone
UpperCamelCase__ = num_channels
UpperCamelCase__ = features_only
UpperCamelCase__ = use_pretrained_backbone
UpperCamelCase__ = True
UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
| 20 | 0 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split()
UpperCamelCase__ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) )
UpperCamelCase__ = {
'unk_token': '<unk>',
'bos_token': '<s>',
'eos_token': '</s>',
}
UpperCamelCase__ = {
'feature_size': 1,
'padding_value': 0.0,
'sampling_rate': 1_6000,
'return_attention_mask': False,
'do_normalize': True,
}
UpperCamelCase__ = tempfile.mkdtemp()
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(self.tmpdirname , UpperCAmelCase_ )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + '\n' )
with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(UpperCAmelCase_ ) + '\n' )
# load decoder from hub
UpperCamelCase__ = 'hf-internal-testing/ngram-beam-search-decoder'
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> int:
UpperCamelCase__ = self.add_kwargs_tokens_map.copy()
kwargs.update(UpperCAmelCase_ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Union[str, Any]:
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]:
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['xx'] )
with self.assertRaisesRegex(UpperCAmelCase_ , 'include' ):
WavaVecaProcessorWithLM(
tokenizer=UpperCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = floats_list((3, 1000) )
UpperCamelCase__ = feature_extractor(UpperCAmelCase_ , return_tensors='np' )
UpperCamelCase__ = processor(UpperCAmelCase_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = 'This is a test string'
UpperCamelCase__ = processor(text=UpperCAmelCase_ )
UpperCamelCase__ = tokenizer(UpperCAmelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_=(2, 10, 16) , snake_case_=77 ) -> int:
np.random.seed(UpperCAmelCase_ )
return np.random.rand(*UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = self._get_dummy_logits(shape=(10, 16) , seed=13 )
UpperCamelCase__ = processor.decode(UpperCAmelCase_ )
UpperCamelCase__ = decoder.decode_beams(UpperCAmelCase_ )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('</s> <s> </s>' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['fork'], ['spawn']] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ )
else:
with get_context(UpperCAmelCase_ ).Pool() as pool:
UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase__ = list(UpperCAmelCase_ )
with get_context('fork' ).Pool() as p:
UpperCamelCase__ = decoder.decode_beams_batch(UpperCAmelCase_ , UpperCAmelCase_ )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(UpperCAmelCase_ , decoded_processor.text )
self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text )
self.assertListEqual(UpperCAmelCase_ , decoded_processor.logit_score )
self.assertListEqual(UpperCAmelCase_ , decoded_processor.lm_score )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = self._get_dummy_logits()
UpperCamelCase__ = 15
UpperCamelCase__ = -20.0
UpperCamelCase__ = -4.0
UpperCamelCase__ = processor.batch_decode(
UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , )
UpperCamelCase__ = decoded_processor_out.text
UpperCamelCase__ = list(UpperCAmelCase_ )
with get_context('fork' ).Pool() as pool:
UpperCamelCase__ = decoder.decode_beams_batch(
UpperCAmelCase_ , UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , )
UpperCamelCase__ = [d[0][0] for d in decoded_decoder_out]
UpperCamelCase__ = [d[0][2] for d in decoded_decoder_out]
UpperCamelCase__ = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , UpperCAmelCase_ )
self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , UpperCAmelCase_ , atol=1E-3 ) )
self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , UpperCAmelCase_ , atol=1E-3 ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
UpperCamelCase__ = self._get_dummy_logits()
UpperCamelCase__ = 2.0
UpperCamelCase__ = 5.0
UpperCamelCase__ = -20.0
UpperCamelCase__ = True
UpperCamelCase__ = processor.batch_decode(
UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , )
UpperCamelCase__ = decoded_processor_out.text
UpperCamelCase__ = list(UpperCAmelCase_ )
decoder.reset_params(
alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , )
with get_context('fork' ).Pool() as pool:
UpperCamelCase__ = decoder.decode_beams_batch(
UpperCAmelCase_ , UpperCAmelCase_ , )
UpperCamelCase__ = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , UpperCAmelCase_ )
UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key]
UpperCamelCase__ = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
UpperCamelCase__ = os.listdir(UpperCAmelCase_ )
UpperCamelCase__ = ['alphabet.json', 'language_model']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = snapshot_download('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained(UpperCAmelCase_ )
UpperCamelCase__ = processor.decoder.model_container[processor.decoder._model_key]
UpperCamelCase__ = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
UpperCamelCase__ = os.listdir(UpperCAmelCase_ )
UpperCamelCase__ = os.listdir(UpperCAmelCase_ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = floats_list((3, 1000) )
UpperCamelCase__ = processor_wavaveca(UpperCAmelCase_ , return_tensors='np' )
UpperCamelCase__ = processor_auto(UpperCAmelCase_ , return_tensors='np' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
UpperCamelCase__ = self._get_dummy_logits()
UpperCamelCase__ = processor_wavaveca.batch_decode(UpperCAmelCase_ )
UpperCamelCase__ = processor_auto.batch_decode(UpperCAmelCase_ )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.get_feature_extractor()
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = self.get_decoder()
UpperCamelCase__ = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_ )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = [d[key] for d in offsets]
return retrieved_list
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = self._get_dummy_logits()[0]
UpperCamelCase__ = processor.decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
UpperCamelCase__ = self._get_dummy_logits()
UpperCamelCase__ = processor.batch_decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) )
self.assertListEqual(
[' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
import torch
UpperCamelCase__ = load_dataset('common_voice' , 'en' , split='train' , streaming=UpperCAmelCase_ )
UpperCamelCase__ = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) )
UpperCamelCase__ = iter(UpperCAmelCase_ )
UpperCamelCase__ = next(UpperCAmelCase_ )
UpperCamelCase__ = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
UpperCamelCase__ = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
UpperCamelCase__ = processor(sample['audio']['array'] , return_tensors='pt' ).input_values
with torch.no_grad():
UpperCamelCase__ = model(UpperCAmelCase_ ).logits.cpu().numpy()
UpperCamelCase__ = processor.decode(logits[0] , output_word_offsets=UpperCAmelCase_ )
UpperCamelCase__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
UpperCamelCase__ = [
{
'start_time': d['start_offset'] * time_offset,
'end_time': d['end_offset'] * time_offset,
'word': d['word'],
}
for d in output['word_offsets']
]
UpperCamelCase__ = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'
# output words
self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) , UpperCAmelCase_ )
self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word' ) ) , output.text )
# output times
UpperCamelCase__ = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'start_time' ) )
UpperCamelCase__ = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'end_time' ) )
# fmt: off
UpperCamelCase__ = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
UpperCamelCase__ = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01 ) )
self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01 ) )
| 710 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A__ : Any= logging.get_logger(__name__)
A__ : str= {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : List[str] ="""layoutlmv3"""
def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
UpperCamelCase__ = max_ad_position_embeddings
UpperCamelCase__ = coordinate_size
UpperCamelCase__ = shape_size
UpperCamelCase__ = has_relative_attention_bias
UpperCamelCase__ = rel_pos_bins
UpperCamelCase__ = max_rel_pos
UpperCamelCase__ = has_spatial_attention_bias
UpperCamelCase__ = rel_ad_pos_bins
UpperCamelCase__ = max_rel_ad_pos
UpperCamelCase__ = text_embed
UpperCamelCase__ = visual_embed
UpperCamelCase__ = input_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_size
UpperCamelCase__ = classifier_dropout
class __lowerCamelCase ( _a ):
a : Tuple =version.parse("""1.12""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , 'apply_ocr' , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
class __lowerCamelCase :
def __init__( self , snake_case_ ) -> int:
UpperCamelCase__ = data
UpperCamelCase__ = None
UpperCamelCase__ = None
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: # In Order traversal of the tree
"""simple docstring"""
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowerCAmelCase_( ) -> Any: # Main function for testing.
"""simple docstring"""
UpperCamelCase__ = Node(1 )
UpperCamelCase__ = Node(2 )
UpperCamelCase__ = Node(3 )
UpperCamelCase__ = Node(4 )
UpperCamelCase__ = Node(5 )
UpperCamelCase__ = Node(6 )
UpperCamelCase__ = Node(7 )
UpperCamelCase__ = Node(8 )
UpperCamelCase__ = Node(9 )
print(is_full_binary_tree(_lowercase ) )
print(depth_of_tree(_lowercase ) )
print('Tree is: ' )
display(_lowercase )
if __name__ == "__main__":
main()
| 711 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 712 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00 ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = 0
UpperCamelCase__ = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(F"""{solution() = }""")
| 713 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]:
UpperCamelCase__ = parent
UpperCamelCase__ = vocab_size
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = patch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase__ = (image_size // patch_size) ** 2
UpperCamelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitModel(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.type_sequence_label_size
UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase__ = 1
UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ )
UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase__ = model(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( _a , unittest.TestCase ):
a : int =(
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
UpperCamelCase__ = FlaxBeitModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , **snake_case_ ):
return model(pixel_values=snake_case_ , **snake_case_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ )
# forward pass
UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 196, 8192)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 1000)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 2_1841)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
| 20 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=lowercase__ ):
a : Union[str, Any] =["""speech"""]
def __init__( self , *snake_case_ , **snake_case_ ) -> str:
requires_backends(self , ['speech'] )
class __lowerCamelCase ( metaclass=lowercase__ ):
a : Optional[Any] =["""speech"""]
def __init__( self , *snake_case_ , **snake_case_ ) -> int:
requires_backends(self , ['speech'] )
| 714 |
"""simple docstring"""
import sys
from collections import defaultdict
class __lowerCamelCase :
def __init__( self ) -> Tuple:
UpperCamelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = pos
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCamelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCamelCase__ = 2 * start + 1
else:
UpperCamelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child]
UpperCamelCase__ , UpperCamelCase__ = (
heap[start],
positions[start],
)
UpperCamelCase__ , UpperCamelCase__ = temp, tempa
UpperCamelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , snake_case_ )
self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = position[index]
while index != 0:
UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCamelCase__ = heap[parent]
UpperCamelCase__ = position[parent]
self.set_position(position[parent] , snake_case_ )
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , snake_case_ )
break
UpperCamelCase__ = parent
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , 0 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = len(snake_case_ ) // 2 - 1
for i in range(snake_case_ , -1 , -1 ):
self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = positions[0]
UpperCamelCase__ = sys.maxsize
self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ )
return temp
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = Heap()
UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
UpperCamelCase__ = []
for vertex in range(len(SCREAMING_SNAKE_CASE ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE )
heap.node_position.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = []
UpperCamelCase__ = 1
UpperCamelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCamelCase__ = 0
UpperCamelCase__ = distance
heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCamelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )]
):
UpperCamelCase__ = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Dict= int(input("""Enter number of edges: """).strip())
A__ : Dict= defaultdict(list)
for _ in range(edges_number):
A__ : Dict= [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 20 | 0 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
A__ : List[Any]= 8
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=BITS ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = x.device
UpperCamelCase__ = (x * 2_55).int().clamp(0 , 2_55 )
UpperCamelCase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase )
UpperCamelCase__ = rearrange(_lowerCAmelCase , 'd -> d 1 1' )
UpperCamelCase__ = rearrange(_lowerCAmelCase , 'b c h w -> b c 1 h w' )
UpperCamelCase__ = ((x & mask) != 0).float()
UpperCamelCase__ = rearrange(_lowerCAmelCase , 'b c d h w -> b (c d) h w' )
UpperCamelCase__ = bits * 2 - 1
return bits
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=BITS ) -> int:
"""simple docstring"""
UpperCamelCase__ = x.device
UpperCamelCase__ = (x > 0).int()
UpperCamelCase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCAmelCase , dtype=torch.intaa )
UpperCamelCase__ = rearrange(_lowerCAmelCase , 'd -> d 1 1' )
UpperCamelCase__ = rearrange(_lowerCAmelCase , 'b (c d) h w -> b c d h w' , d=8 )
UpperCamelCase__ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' )
return (dec / 2_55).clamp(0.0 , 1.0 )
def lowerCAmelCase_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
"""simple docstring"""
if self.num_inference_steps is None:
raise ValueError(
'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
UpperCamelCase__ = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
UpperCamelCase__ = self.alphas_cumprod[timestep]
UpperCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
UpperCamelCase__ = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
UpperCamelCase__ = self.bit_scale
if self.config.clip_sample:
UpperCamelCase__ = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
UpperCamelCase__ = self._get_variance(_lowerCAmelCase , _lowerCAmelCase )
UpperCamelCase__ = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
UpperCamelCase__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCamelCase__ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCamelCase__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
UpperCamelCase__ = model_output.device if torch.is_tensor(_lowerCAmelCase ) else "cpu"
UpperCamelCase__ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase ).to(_lowerCAmelCase )
UpperCamelCase__ = self._get_variance(_lowerCAmelCase , _lowerCAmelCase ) ** 0.5 * eta * noise
UpperCamelCase__ = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def lowerCAmelCase_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="epsilon" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
"""simple docstring"""
UpperCamelCase__ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
UpperCamelCase__ = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 )
else:
UpperCamelCase__ = None
# 1. compute alphas, betas
UpperCamelCase__ = self.alphas_cumprod[t]
UpperCamelCase__ = self.alphas_cumprod[t - 1] if t > 0 else self.one
UpperCamelCase__ = 1 - alpha_prod_t
UpperCamelCase__ = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
UpperCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
UpperCamelCase__ = model_output
else:
raise ValueError(F'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
UpperCamelCase__ = self.bit_scale
if self.config.clip_sample:
UpperCamelCase__ = torch.clamp(_lowerCAmelCase , -scale , _lowerCAmelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCamelCase__ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
UpperCamelCase__ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCamelCase__ = 0
if t > 0:
UpperCamelCase__ = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_lowerCAmelCase ).to(model_output.device )
UpperCamelCase__ = (self._get_variance(_lowerCAmelCase , predicted_variance=_lowerCAmelCase ) ** 0.5) * noise
UpperCamelCase__ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
class __lowerCamelCase ( __snake_case ):
def __init__( self , snake_case_ , snake_case_ , snake_case_ = 1.0 , ) -> Dict:
super().__init__()
UpperCamelCase__ = bit_scale
UpperCamelCase__ = (
ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=A_ , scheduler=A_ )
@torch.no_grad()
def __call__( self , snake_case_ = 256 , snake_case_ = 256 , snake_case_ = 50 , snake_case_ = None , snake_case_ = 1 , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ) -> Optional[int]:
UpperCamelCase__ = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=A_ , )
UpperCamelCase__ = decimal_to_bits(A_ ) * self.bit_scale
UpperCamelCase__ = latents.to(self.device )
self.scheduler.set_timesteps(A_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
UpperCamelCase__ = self.unet(A_ , A_ ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCamelCase__ = self.scheduler.step(A_ , A_ , A_ ).prev_sample
UpperCamelCase__ = bits_to_decimal(A_ )
if output_type == "pil":
UpperCamelCase__ = self.numpy_to_pil(A_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A_ )
| 715 |
"""simple docstring"""
from copy import deepcopy
class __lowerCamelCase :
def __init__( self , snake_case_ = None , snake_case_ = None ) -> None:
if arr is None and size is not None:
UpperCamelCase__ = size
UpperCamelCase__ = [0] * size
elif arr is not None:
self.init(snake_case_ )
else:
raise ValueError('Either arr or size must be specified' )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
UpperCamelCase__ = len(snake_case_ )
UpperCamelCase__ = deepcopy(snake_case_ )
for i in range(1 , self.size ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]:
UpperCamelCase__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCamelCase__ = self.next_(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
self.add(snake_case_ , value - self.get(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
if right == 0:
return 0
UpperCamelCase__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCamelCase__ = self.prev(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int:
return self.prefix(snake_case_ ) - self.prefix(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.query(snake_case_ , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCamelCase__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCamelCase__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
"""simple docstring"""
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'file.csv'
UpperCamelCase__ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'malformed_file.csv'
UpperCamelCase__ = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'csv_with_image.csv'
UpperCamelCase__ = textwrap.dedent(
F'\\n image\n {image_file}\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'csv_with_label.csv'
UpperCamelCase__ = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase__ = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = Csv()
UpperCamelCase__ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(SCREAMING_SNAKE_CASE , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(SCREAMING_SNAKE_CASE ) in record.message
for record in caplog.records )
@require_pil
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
UpperCamelCase__ = f.read().splitlines()[1]
UpperCamelCase__ = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase__ = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase__ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase__ = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
UpperCamelCase__ = f.read().splitlines()[1:]
UpperCamelCase__ = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase__ = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase__ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase__ = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(SCREAMING_SNAKE_CASE ) for label in labels]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda SCREAMING_SNAKE_CASE : [int(SCREAMING_SNAKE_CASE ) for i in x.split()]} )
UpperCamelCase__ = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase__ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase__ = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 716 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
A__ : Union[str, Any]= logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple:
UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )]
if identifier is not None:
UpperCamelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(snake_case_ , snake_case_ ):
for n_ in n_identifier:
UpperCamelCase__ = [file for file in files if n_ not in file]
else:
UpperCamelCase__ = [file for file in files if n_identifier not in file]
UpperCamelCase__ = ignore_files or []
ignore_files.append('__init__.py' )
UpperCamelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , snake_case_ )
if only_modules:
UpperCamelCase__ = file.split('.' )[0]
try:
UpperCamelCase__ = getattr(snake_case_ , snake_case_ )
UpperCamelCase__ = doctest.DocTestSuite(snake_case_ )
UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'modeling'
UpperCamelCase__ = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'tokenization'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'configuration'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(snake_case_ , n_identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('docs/source' )
UpperCamelCase__ = ['favicon.ico']
self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
| 20 | 0 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if len(__lowerCAmelCase ) <= 1:
return lst
UpperCamelCase__ = 1
while i < len(__lowerCAmelCase ):
if lst[i - 1] <= lst[i]:
i += 1
else:
UpperCamelCase__ = lst[i], lst[i - 1]
i -= 1
if i == 0:
UpperCamelCase__ = 1
return lst
if __name__ == "__main__":
A__ : List[Any]= input("""Enter numbers separated by a comma:\n""").strip()
A__ : int= [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 717 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : str= logging.get_logger(__name__)
A__ : List[Any]= {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCamelCase ( _a ):
a : Any ="""segformer"""
def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple:
super().__init__(**snake_case_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , )
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_encoder_blocks
UpperCamelCase__ = depths
UpperCamelCase__ = sr_ratios
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = classifier_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = decoder_hidden_size
UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ )
UpperCamelCase__ = semantic_loss_ignore_index
class __lowerCamelCase ( _a ):
a : Any =version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
| 20 | 0 |
"""simple docstring"""
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ ) -> int:
UpperCamelCase__ = parent
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return {}
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>'
UpperCamelCase__ = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n '
return [html_string_a, html_string_a]
@require_bsa
class __lowerCamelCase ( __a , unittest.TestCase ):
a : Optional[int] =MarkupLMFeatureExtractor if is_bsa_available() else None
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = MarkupLMFeatureExtractionTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
return self.feature_extract_tester.prepare_feat_extract_dict()
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.feature_extraction_class()
# Test not batched input
UpperCamelCase__ = get_html_strings()[0]
UpperCamelCase__ = feature_extractor(lowerCAmelCase_ )
# fmt: off
UpperCamelCase__ = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']]
UpperCamelCase__ = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']]
# fmt: on
self.assertEqual(encoding.nodes , lowerCAmelCase_ )
self.assertEqual(encoding.xpaths , lowerCAmelCase_ )
# Test batched
UpperCamelCase__ = get_html_strings()
UpperCamelCase__ = feature_extractor(lowerCAmelCase_ )
# fmt: off
UpperCamelCase__ = expected_nodes + [['My First Heading', 'My first paragraph.']]
UpperCamelCase__ = expected_xpaths + [['/html/body/h1', '/html/body/p']]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , lowerCAmelCase_ )
self.assertEqual(encoding.xpaths , lowerCAmelCase_ )
| 718 |
"""simple docstring"""
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCamelCase ( _a ):
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' )
download_parser.set_defaults(func=snake_case_ )
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = model
UpperCamelCase__ = cache
UpperCamelCase__ = force
UpperCamelCase__ = trust_remote_code
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 20 | 0 |
"""simple docstring"""
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 719 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase ( _a ):
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = relative_attention
UpperCamelCase__ = position_biased_input
UpperCamelCase__ = pos_att_type
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = DebertaVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a : Dict =(
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Tuple =True
a : Union[str, Any] =False
a : Tuple =False
a : Union[str, Any] =False
a : Dict =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = DebertaVaModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@unittest.skip(reason='Model not available yet' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0]
# compare the actual values for a slice.
UpperCamelCase__ = torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
| 20 | 0 |
"""simple docstring"""
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Tuple= "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Any:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=_UpperCamelCase , default=_UpperCamelCase , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=_UpperCamelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=_UpperCamelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=_UpperCamelCase , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=_UpperCamelCase )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(_UpperCamelCase ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , _UpperCamelCase ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , _UpperCamelCase ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(_UpperCamelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(_UpperCamelCase )}' )
return
subprocess.run(_UpperCamelCase )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(_UpperCamelCase )
| 720 |
"""simple docstring"""
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = SwinConfig()
UpperCamelCase__ = swin_name.split('_' )
UpperCamelCase__ = name_split[1]
UpperCamelCase__ = int(name_split[4] )
UpperCamelCase__ = int(name_split[3][-1] )
if model_size == "tiny":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 6, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "small":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "base":
UpperCamelCase__ = 1_28
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (4, 8, 16, 32)
else:
UpperCamelCase__ = 1_92
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (6, 12, 24, 48)
if "in22k" in swin_name:
UpperCamelCase__ = 2_18_41
else:
UpperCamelCase__ = 10_00
UpperCamelCase__ = 'huggingface/label-files'
UpperCamelCase__ = 'imagenet-1k-id2label.json'
UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
UpperCamelCase__ = img_size
UpperCamelCase__ = num_classes
UpperCamelCase__ = embed_dim
UpperCamelCase__ = depths
UpperCamelCase__ = num_heads
UpperCamelCase__ = window_size
return config
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if "patch_embed.proj" in name:
UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
UpperCamelCase__ = 'encoder.' + name
if "attn.proj" in name:
UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
UpperCamelCase__ = name.replace('attn' , 'attention.self' )
if "norm1" in name:
UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if name == "norm.weight":
UpperCamelCase__ = 'layernorm.weight'
if name == "norm.bias":
UpperCamelCase__ = 'layernorm.bias'
if "head" in name:
UpperCamelCase__ = name.replace('head' , 'classifier' )
else:
UpperCamelCase__ = 'swin.' + name
return name
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
UpperCamelCase__ = key.split('.' )
UpperCamelCase__ = int(key_split[1] )
UpperCamelCase__ = int(key_split[3] )
UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[
dim : dim * 2, :
]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = val[
:dim
]
UpperCamelCase__ = val[
dim : dim * 2
]
UpperCamelCase__ = val[
-dim:
]
else:
UpperCamelCase__ = val
return orig_state_dict
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE )
timm_model.eval()
UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) )
UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
UpperCamelCase__ = timm_model(inputs['pixel_values'] )
UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
A__ : Optional[Any]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
A__ : Tuple= parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 20 | 0 |
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Optional[Any]:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = NystromformerModel(config=A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = model(A__ , attention_mask=A__ , token_type_ids=A__ )
UpperCamelCase__ = model(A__ , token_type_ids=A__ )
UpperCamelCase__ = model(A__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = NystromformerForMaskedLM(config=A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = NystromformerForQuestionAnswering(config=A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = model(
A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = NystromformerForSequenceClassification(A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = NystromformerForTokenClassification(config=A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = NystromformerForMultipleChoice(config=A__ )
model.to(A__ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( __a , __a , unittest.TestCase ):
a : Optional[int] =(
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
a : Optional[Any] =(
{
"""feature-extraction""": NystromformerModel,
"""fill-mask""": NystromformerForMaskedLM,
"""question-answering""": NystromformerForQuestionAnswering,
"""text-classification""": NystromformerForSequenceClassification,
"""token-classification""": NystromformerForTokenClassification,
"""zero-shot""": NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Optional[int] =False
a : Union[str, Any] =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = NystromformerModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=A__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase__ = type
self.model_tester.create_and_check_model(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A__ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = NystromformerModel.from_pretrained(A__ )
self.assertIsNotNone(A__ )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' )
UpperCamelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
UpperCamelCase__ = model(A__ )[0]
UpperCamelCase__ = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , A__ )
UpperCamelCase__ = torch.tensor(
[[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=1E-4 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = 'the [MASK] of Belgium is Brussels'
UpperCamelCase__ = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' )
UpperCamelCase__ = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' )
UpperCamelCase__ = tokenizer(A__ , return_tensors='pt' )
with torch.no_grad():
UpperCamelCase__ = model(encoding.input_ids ).logits
UpperCamelCase__ = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(A__ ) , 'capital' )
| 721 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
UpperCamelCase__ = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )]
for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = pentagonal_nums[j]
UpperCamelCase__ = pentagonal_i + pentagonal_j
UpperCamelCase__ = pentagonal_j - pentagonal_i
if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ = features.copy() if features else default_expected_features
UpperCamelCase__ = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
UpperCamelCase__ = features.copy() if features else default_expected_features
UpperCamelCase__ = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
UpperCamelCase__ = features.copy()
UpperCamelCase__ = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = jsonl_path
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [jsonl_path]
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> int:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for split in splits:
UpperCamelCase__ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCamelCase__ = JsonDatasetReader({'train': jsonl_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ = features.copy() if features else default_expected_features
UpperCamelCase__ = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCamelCase__ = JsonDatasetReader({'train': jsonl_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
if split:
UpperCamelCase__ = {split: jsonl_path}
else:
UpperCamelCase__ = 'train'
UpperCamelCase__ = {'train': jsonl_path, 'test': jsonl_path}
UpperCamelCase__ = tmp_path / 'cache'
UpperCamelCase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
UpperCamelCase__ = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return json.load(_SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
return [json.loads(_SCREAMING_SNAKE_CASE ) for line in buffer]
class __lowerCamelCase :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ ).write()
buffer.seek(0 )
UpperCamelCase__ = load_json_function(snake_case_ )
assert isinstance(snake_case_ , snake_case_ )
assert isinstance(exported_content[0] , snake_case_ )
assert len(snake_case_ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
with io.BytesIO() as buffer:
JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ ).write()
buffer.seek(0 )
UpperCamelCase__ = load_json(snake_case_ )
assert isinstance(snake_case_ , snake_case_ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(snake_case_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(snake_case_ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , num_proc=2 ).write()
buffer.seek(0 )
UpperCamelCase__ = load_json_function(snake_case_ )
assert isinstance(snake_case_ , snake_case_ )
assert isinstance(exported_content[0] , snake_case_ )
assert len(snake_case_ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
with io.BytesIO() as buffer:
JsonDatasetWriter(snake_case_ , snake_case_ , lines=snake_case_ , orient=snake_case_ , num_proc=2 ).write()
buffer.seek(0 )
UpperCamelCase__ = load_json(snake_case_ )
assert isinstance(snake_case_ , snake_case_ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(snake_case_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(snake_case_ ) == 10
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
with pytest.raises(snake_case_ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(snake_case_ , snake_case_ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = tmp_path_factory.mktemp('data' ) / F'test.json.{extension}'
UpperCamelCase__ = str(shared_datadir / F'test_file.json.{extension}' )
JsonDatasetWriter(snake_case_ , snake_case_ , compression=snake_case_ ).write()
with fsspec.open(snake_case_ , 'rb' , compression='infer' ) as f:
UpperCamelCase__ = f.read()
with fsspec.open(snake_case_ , 'rb' , compression='infer' ) as f:
UpperCamelCase__ = f.read()
assert exported_content == original_content
| 700 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = int((limit - 24) ** (1 / 2) )
UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) )
for primea in primes:
UpperCamelCase__ = primea * primea
for primea in primes:
UpperCamelCase__ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
UpperCamelCase__ = primea * primea * primea * primea
UpperCamelCase__ = square + cube + tetr
if total >= limit:
break
ret.add(SCREAMING_SNAKE_CASE )
return len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCamelCase ( __snake_case ):
a : Optional[int] =(DDIMParallelScheduler,)
a : Union[str, Any] =(("""eta""", 0.0), ("""num_inference_steps""", 5_0))
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Dict:
UpperCamelCase__ = {
'num_train_timesteps': 1000,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**__UpperCamelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Any:
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config(**__UpperCamelCase )
UpperCamelCase__ = scheduler_class(**__UpperCamelCase )
UpperCamelCase__ , UpperCamelCase__ = 10, 0.0
UpperCamelCase__ = self.dummy_model()
UpperCamelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCamelCase )
for t in scheduler.timesteps:
UpperCamelCase__ = model(__UpperCamelCase , __UpperCamelCase )
UpperCamelCase__ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__UpperCamelCase )
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCamelCase__ = scheduler_class(**__UpperCamelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
self.check_over_configs(thresholding=__UpperCamelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
for t in [1, 10, 49]:
self.check_over_forward(time_step=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=__UpperCamelCase , num_inference_steps=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__UpperCamelCase , eta=__UpperCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config()
UpperCamelCase__ = scheduler_class(**__UpperCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.scheduler_classes[0]
UpperCamelCase__ = self.get_scheduler_config()
UpperCamelCase__ = scheduler_class(**__UpperCamelCase )
UpperCamelCase__ , UpperCamelCase__ = 10, 0.0
scheduler.set_timesteps(__UpperCamelCase )
UpperCamelCase__ = self.dummy_model()
UpperCamelCase__ = self.dummy_sample_deter
UpperCamelCase__ = self.dummy_sample_deter + 0.1
UpperCamelCase__ = self.dummy_sample_deter - 0.1
UpperCamelCase__ = samplea.shape[0]
UpperCamelCase__ = torch.stack([samplea, samplea, samplea] , dim=0 )
UpperCamelCase__ = torch.arange(__UpperCamelCase )[0:3, None].repeat(1 , __UpperCamelCase )
UpperCamelCase__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
UpperCamelCase__ = scheduler.batch_step_no_noise(__UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __UpperCamelCase )
UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) )
UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2
assert abs(result_mean.item() - 0.4_982 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.full_loop()
UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) )
UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) )
assert abs(result_sum.item() - 172.0_067 ) < 1E-2
assert abs(result_mean.item() - 0.223_967 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.full_loop(prediction_type='v_prediction' )
UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) )
UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) )
assert abs(result_sum.item() - 52.5_302 ) < 1E-2
assert abs(result_mean.item() - 0.0_684 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 )
UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) )
UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) )
assert abs(result_sum.item() - 149.8_295 ) < 1E-2
assert abs(result_mean.item() - 0.1_951 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 )
UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) )
UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) )
assert abs(result_sum.item() - 149.0_784 ) < 1E-2
assert abs(result_mean.item() - 0.1_941 ) < 1E-3
| 701 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""]
A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only"""
if is_tf_available():
class __lowerCamelCase ( tf.keras.Model ):
def __init__( self , snake_case_ ) -> Optional[int]:
super().__init__()
UpperCamelCase__ = tokenizer
UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ )
UpperCamelCase__ = TFAutoModel.from_config(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = self.tokenizer(snake_case_ )
UpperCamelCase__ = self.bert(**snake_case_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
UpperCamelCase__ = [
BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCamelCase__ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf_tokenizer(self.paired_sentences )
UpperCamelCase__ = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf.function(snake_case_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tf.constant(snake_case_ )
UpperCamelCase__ = compiled_tokenizer(snake_case_ )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ )
UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences )
UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCamelCase__ = Path(snake_case_ ) / 'saved.model'
model.save(snake_case_ )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = loaded_model(snake_case_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Dict= {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any]= ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int= ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any]= [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict= [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
A__ : int= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 702 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]:
"""simple docstring"""
UpperCamelCase__ = len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE ):
if numbers[j] < numbers[i]:
UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip()
A__ : List[Any]= [int(item) for item in user_input.split(""",""")]
print(exchange_sort(unsorted))
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
A__ : Tuple= """Muhammad Umer Farooq"""
A__ : Any= """MIT"""
A__ : Optional[Any]= """1.0.0"""
A__ : Dict= """Muhammad Umer Farooq"""
A__ : Optional[Any]= """contact@muhammadumerfarooq.me"""
A__ : Union[str, Any]= """Alpha"""
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __lowerCamelCase ( _UpperCAmelCase ):
def __init__( self , snake_case_ ) -> List[str]:
super().__init__()
UpperCamelCase__ = []
UpperCamelCase__ = domain
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[str]:
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
UpperCamelCase__ = parse.urljoin(self.domain , lowercase__ )
self.urls.append(lowercase__ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE__ ).split('.' )[-2:] )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return parse.urlparse(SCREAMING_SNAKE_CASE__ ).netloc
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "https://github.com" ) -> str:
"""simple docstring"""
UpperCamelCase__ = get_domain_name(SCREAMING_SNAKE_CASE__ )
# Initialize the parser
UpperCamelCase__ = Parser(SCREAMING_SNAKE_CASE__ )
try:
# Open URL
UpperCamelCase__ = requests.get(SCREAMING_SNAKE_CASE__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
UpperCamelCase__ = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
UpperCamelCase__ = requests.get(SCREAMING_SNAKE_CASE__ )
# Get the valid email.
UpperCamelCase__ = re.findall('[a-zA-Z0-9]+@' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(SCREAMING_SNAKE_CASE__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
A__ : Any= emails_from_url("""https://github.com""")
print(F"""{len(emails)} emails found:""")
print("""\n""".join(sorted(emails)))
| 703 |
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
A__ : str= {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
A__ : str= {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE )
return images
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if images.ndim == 3:
UpperCamelCase__ = images[None, ...]
UpperCamelCase__ = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 20 | 0 |
"""simple docstring"""
import numpy as np
from PIL import Image
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = np.array(a_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
# compute the shape of the output matrix
UpperCamelCase__ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
UpperCamelCase__ = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
UpperCamelCase__ = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
return updated_arr
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ = np.array(a_ )
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix' )
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
# compute the shape of the output matrix
UpperCamelCase__ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
UpperCamelCase__ = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
UpperCamelCase__ = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
UpperCamelCase__ = 0
UpperCamelCase__ = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name="""avgpooling""", verbose=True)
# Loading the image
A__ : Union[str, Any]= Image.open("""path_to_image""")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 704 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """spiece.model"""}
A__ : Union[str, Any]= {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
}
}
# TODO(PVP) - this should be removed in Transformers v5
A__ : Union[str, Any]= {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
A__ : Optional[Any]= """▁"""
class __lowerCamelCase ( _a ):
a : Dict =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' )
UpperCamelCase__ = legacy
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = extra_ids
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case_ )) + [1]
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return list(
set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]:
if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
if token_ids_a is None:
return token_ids_a
else:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> Any:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' )
return super().tokenize(snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]:
if not self.legacy:
UpperCamelCase__ = text.startswith(snake_case_ )
if is_first:
UpperCamelCase__ = text[1:]
UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ )
if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ):
UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token.startswith('<extra_id_' ):
UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ )
UpperCamelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ )
else:
UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = []
UpperCamelCase__ = ''
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case_ )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 20 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
A__ : Tuple= logging.get_logger(__name__)
A__ : Tuple= {
"""Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""",
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __lowerCamelCase ( _a ):
a : Union[str, Any] ="marian"
a : List[Any] =["past_key_values"]
a : List[Any] ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case_=5_8101 , snake_case_=None , snake_case_=1024 , snake_case_=12 , snake_case_=4096 , snake_case_=16 , snake_case_=12 , snake_case_=4096 , snake_case_=16 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=1024 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=5_8100 , snake_case_=False , snake_case_=5_8100 , snake_case_=0 , snake_case_=0 , snake_case_=True , **snake_case_ , ) -> Optional[int]:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = decoder_vocab_size or vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = d_model
UpperCamelCase__ = encoder_ffn_dim
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = encoder_attention_heads
UpperCamelCase__ = decoder_ffn_dim
UpperCamelCase__ = decoder_layers
UpperCamelCase__ = decoder_attention_heads
UpperCamelCase__ = dropout
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = activation_dropout
UpperCamelCase__ = activation_function
UpperCamelCase__ = init_std
UpperCamelCase__ = encoder_layerdrop
UpperCamelCase__ = decoder_layerdrop
UpperCamelCase__ = use_cache
UpperCamelCase__ = encoder_layers
UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCamelCase__ = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , )
class __lowerCamelCase ( _a ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
UpperCamelCase__ = {0: 'batch'}
UpperCamelCase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'}
UpperCamelCase__ = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(snake_case_ , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
UpperCamelCase__ = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
for i in range(snake_case_ ):
UpperCamelCase__ = {0: 'batch', 2: 'past_sequence + sequence'}
UpperCamelCase__ = {0: 'batch', 2: 'past_sequence + sequence'}
else:
UpperCamelCase__ = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = super().outputs
else:
UpperCamelCase__ = super(snake_case_ , self ).outputs
if self.use_past:
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
for i in range(snake_case_ ):
UpperCamelCase__ = {0: 'batch', 2: 'past_sequence + sequence'}
UpperCamelCase__ = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]:
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Generate decoder inputs
UpperCamelCase__ = seq_length if not self.use_past else 1
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
UpperCamelCase__ = dict(**snake_case_ , **snake_case_ )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
UpperCamelCase__ , UpperCamelCase__ = common_inputs['input_ids'].shape
UpperCamelCase__ = common_inputs['decoder_input_ids'].shape[1]
UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads
UpperCamelCase__ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCamelCase__ = decoder_seq_length + 3
UpperCamelCase__ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
UpperCamelCase__ = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(snake_case_ , snake_case_ )] , dim=1 )
UpperCamelCase__ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
UpperCamelCase__ = min(snake_case_ , snake_case_ )
UpperCamelCase__ = max(snake_case_ , snake_case_ ) - min_num_layers
UpperCamelCase__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(snake_case_ ):
common_inputs["past_key_values"].append(
(
torch.zeros(snake_case_ ),
torch.zeros(snake_case_ ),
torch.zeros(snake_case_ ),
torch.zeros(snake_case_ ),
) )
# TODO: test this.
UpperCamelCase__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(snake_case_ , snake_case_ ):
common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) )
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]:
UpperCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
UpperCamelCase__ , UpperCamelCase__ = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
UpperCamelCase__ = seqlen + 2
UpperCamelCase__ , UpperCamelCase__ = self.num_layers
UpperCamelCase__ , UpperCamelCase__ = self.num_attention_heads
UpperCamelCase__ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
UpperCamelCase__ = common_inputs['attention_mask'].dtype
UpperCamelCase__ = torch.cat(
[common_inputs['attention_mask'], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 )
UpperCamelCase__ = [
(torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ )
]
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]:
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
UpperCamelCase__ = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) )
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ )
else:
UpperCamelCase__ = self._generate_dummy_inputs_for_causal_lm(
snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ )
return common_inputs
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
if self.task in ["default", "seq2seq-lm"]:
UpperCamelCase__ = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
else:
UpperCamelCase__ = super(snake_case_ , self )._flatten_past_key_values_(
snake_case_ , snake_case_ , snake_case_ , snake_case_ )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
| 705 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A__ : Any= TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , snake_case_ ) -> None:
UpperCamelCase__ = data
UpperCamelCase__ = self
UpperCamelCase__ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# create a new set with x as its member
UpperCamelCase__ = DisjointSetTreeNode(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
UpperCamelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
UpperCamelCase__ = nodea
else:
UpperCamelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# add an edge with the given weight
self.add_node(snake_case_ )
self.add_node(snake_case_ )
UpperCamelCase__ = weight
UpperCamelCase__ = weight
def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]:
UpperCamelCase__ = []
UpperCamelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case_ : x[2] )
# creating the disjoint set
UpperCamelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case_ )
# MST generation
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index]
index += 1
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case_ , snake_case_ , snake_case_ )
disjoint_set.union(snake_case_ , snake_case_ )
return graph
| 20 | 0 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __lowerCamelCase ( _UpperCamelCase ):
a : Any =["image_processor", "tokenizer"]
a : Tuple ="CLIPImageProcessor"
a : Optional[int] =("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , __a , )
UpperCamelCase__ = kwargs.pop('feature_extractor' )
UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(__a , __a )
def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Union[str, Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
UpperCamelCase__ = self.tokenizer(__a , return_tensors=__a , **__a )
if images is not None:
UpperCamelCase__ = self.image_processor(__a , return_tensors=__a , **__a )
if text is not None and images is not None:
UpperCamelCase__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__a ) , tensor_type=__a )
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*__a , **__a )
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> int:
'''simple docstring'''
return self.tokenizer.decode(*__a , **__a )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
UpperCamelCase__ = self.tokenizer.model_input_names
UpperCamelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , )
return self.image_processor
| 706 |
"""simple docstring"""
A__ : Tuple= """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
UpperCamelCase__ = Stack()
UpperCamelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
UpperCamelCase__ = operator_stack.peek()
operator_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
operand_stack.push(SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A__ : int= """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 20 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __lowerCamelCase ( UpperCAmelCase_ , unittest.TestCase ):
a : str =CTRLTokenizer
a : Union[str, Any] =False
a : Any =False
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase__ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>']
UpperCamelCase__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) )
UpperCamelCase__ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', '']
UpperCamelCase__ = {'unk_token': '<unk>'}
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_snake_case ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_snake_case ) )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Any:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **_snake_case )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = 'adapt react readapt apt'
UpperCamelCase__ = 'adapt react readapt apt'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ = 'adapt react readapt apt'
UpperCamelCase__ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split()
UpperCamelCase__ = tokenizer.tokenize(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
UpperCamelCase__ = tokens + [tokenizer.unk_token]
UpperCamelCase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
| 707 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 | 0 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
return number - int(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(decimal_isolate(1.5_3, 0))
print(decimal_isolate(35.3_45, 1))
print(decimal_isolate(35.3_45, 2))
print(decimal_isolate(35.3_45, 3))
print(decimal_isolate(-14.7_89, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.1_23, 1))
print(decimal_isolate(-14.1_23, 2))
print(decimal_isolate(-14.1_23, 3))
| 708 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = 1
UpperCamelCase__ = 3
UpperCamelCase__ = (32, 32)
UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
torch.manual_seed(0 )
UpperCamelCase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
torch.manual_seed(0 )
UpperCamelCase__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
UpperCamelCase__ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , )
return RobertaSeriesModelWithTransformation(_a )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
def extract(*snake_case_ , **snake_case_ ):
class __lowerCamelCase :
def __init__( self ) -> Any:
UpperCamelCase__ = torch.ones([0] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[Any]:
self.pixel_values.to(_a )
return self
return Out()
return extract
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase__ = self.dummy_cond_unet
UpperCamelCase__ = PNDMScheduler(skip_prk_steps=_a )
UpperCamelCase__ = self.dummy_vae
UpperCamelCase__ = self.dummy_text_encoder
UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
UpperCamelCase__ = 77
UpperCamelCase__ = self.dummy_image.to(_a )
UpperCamelCase__ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
UpperCamelCase__ = AltDiffusionImgaImgPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a )
UpperCamelCase__ = alt_pipe.to(_a )
alt_pipe.set_progress_bar_config(disable=_a )
UpperCamelCase__ = """A painting of a squirrel eating a burger"""
UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(0 )
UpperCamelCase__ = alt_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , )
UpperCamelCase__ = output.images
UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(0 )
UpperCamelCase__ = alt_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , return_dict=_a , )[0]
UpperCamelCase__ = image[0, -3:, -3:, -1]
UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCamelCase__ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = self.dummy_cond_unet
UpperCamelCase__ = PNDMScheduler(skip_prk_steps=_a )
UpperCamelCase__ = self.dummy_vae
UpperCamelCase__ = self.dummy_text_encoder
UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
UpperCamelCase__ = 77
UpperCamelCase__ = self.dummy_image.to(_a )
# put models in fp16
UpperCamelCase__ = unet.half()
UpperCamelCase__ = vae.half()
UpperCamelCase__ = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase__ = AltDiffusionImgaImgPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
UpperCamelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a )
UpperCamelCase__ = alt_pipe.to(_a )
alt_pipe.set_progress_bar_config(disable=_a )
UpperCamelCase__ = """A painting of a squirrel eating a burger"""
UpperCamelCase__ = torch.manual_seed(0 )
UpperCamelCase__ = alt_pipe(
[prompt] , generator=_a , num_inference_steps=2 , output_type='np' , image=_a , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
UpperCamelCase__ = init_image.resize((760, 504) )
UpperCamelCase__ = """BAAI/AltDiffusion"""
UpperCamelCase__ = AltDiffusionImgaImgPipeline.from_pretrained(
_a , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
UpperCamelCase__ = """A fantasy landscape, trending on artstation"""
UpperCamelCase__ = torch.manual_seed(0 )
UpperCamelCase__ = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , )
UpperCamelCase__ = output.images[0]
UpperCamelCase__ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
UpperCamelCase__ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
UpperCamelCase__ = init_image.resize((768, 512) )
UpperCamelCase__ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
UpperCamelCase__ = """BAAI/AltDiffusion"""
UpperCamelCase__ = AltDiffusionImgaImgPipeline.from_pretrained(
_a , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
UpperCamelCase__ = """A fantasy landscape, trending on artstation"""
UpperCamelCase__ = torch.manual_seed(0 )
UpperCamelCase__ = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , )
UpperCamelCase__ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 709 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
a : Optional[int] ="""timm_backbone"""
def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict:
super().__init__(**snake_case_ )
UpperCamelCase__ = backbone
UpperCamelCase__ = num_channels
UpperCamelCase__ = features_only
UpperCamelCase__ = use_pretrained_backbone
UpperCamelCase__ = True
UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
| 20 | 0 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = np.max(_outputs , axis=-1 , keepdims=__UpperCamelCase )
UpperCamelCase__ = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__UpperCamelCase )
class __lowerCamelCase ( SCREAMING_SNAKE_CASE_ ):
a : List[Any] ="""sigmoid"""
a : Tuple ="""softmax"""
a : List[str] ="""none"""
@add_end_docstrings(
SCREAMING_SNAKE_CASE_ , R"""\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n """ , )
class __lowerCamelCase ( SCREAMING_SNAKE_CASE_ ):
a : List[str] =False
a : Dict =ClassificationFunction.NONE
def __init__( self , **snake_case_ ) -> List[Any]:
super().__init__(**UpperCamelCase__ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None , snake_case_=None , snake_case_="" , **snake_case_ ) -> Dict:
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
UpperCamelCase__ = tokenizer_kwargs
UpperCamelCase__ = {}
if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None:
UpperCamelCase__ = self.model.config.return_all_scores
if isinstance(UpperCamelCase__ , UpperCamelCase__ ) or top_k is None:
UpperCamelCase__ = top_k
UpperCamelCase__ = False
elif return_all_scores is not None:
warnings.warn(
'`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'
' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , UpperCamelCase__ , )
if return_all_scores:
UpperCamelCase__ = None
else:
UpperCamelCase__ = 1
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
UpperCamelCase__ = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
UpperCamelCase__ = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *snake_case_ , **snake_case_ ) -> int:
UpperCamelCase__ = super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
UpperCamelCase__ = '''top_k''' not in kwargs
if isinstance(args[0] , UpperCamelCase__ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = self.framework
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return self.tokenizer(**UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1 and isinstance(inputs[0] , UpperCamelCase__ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'
' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' )
return self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.model(**UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=None , snake_case_=1 , snake_case_=True ) -> str:
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
UpperCamelCase__ = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
UpperCamelCase__ = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None:
UpperCamelCase__ = self.model.config.function_to_apply
else:
UpperCamelCase__ = ClassificationFunction.NONE
UpperCamelCase__ = model_outputs['''logits'''][0]
UpperCamelCase__ = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
UpperCamelCase__ = sigmoid(UpperCamelCase__ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
UpperCamelCase__ = softmax(UpperCamelCase__ )
elif function_to_apply == ClassificationFunction.NONE:
UpperCamelCase__ = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
UpperCamelCase__ = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(UpperCamelCase__ )
]
if not _legacy:
dict_scores.sort(key=lambda snake_case_ : x["score"] , reverse=UpperCamelCase__ )
if top_k is not None:
UpperCamelCase__ = dict_scores[:top_k]
return dict_scores
| 710 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A__ : Any= logging.get_logger(__name__)
A__ : str= {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : List[str] ="""layoutlmv3"""
def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
UpperCamelCase__ = max_ad_position_embeddings
UpperCamelCase__ = coordinate_size
UpperCamelCase__ = shape_size
UpperCamelCase__ = has_relative_attention_bias
UpperCamelCase__ = rel_pos_bins
UpperCamelCase__ = max_rel_pos
UpperCamelCase__ = has_spatial_attention_bias
UpperCamelCase__ = rel_ad_pos_bins
UpperCamelCase__ = max_rel_ad_pos
UpperCamelCase__ = text_embed
UpperCamelCase__ = visual_embed
UpperCamelCase__ = input_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_size
UpperCamelCase__ = classifier_dropout
class __lowerCamelCase ( _a ):
a : Tuple =version.parse("""1.12""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , 'apply_ocr' , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A__= {
"""configuration_owlvit""": [
"""OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""OwlViTConfig""",
"""OwlViTOnnxConfig""",
"""OwlViTTextConfig""",
"""OwlViTVisionConfig""",
],
"""processing_owlvit""": ["""OwlViTProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__= ["""OwlViTFeatureExtractor"""]
A__= ["""OwlViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__= [
"""OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""OwlViTModel""",
"""OwlViTPreTrainedModel""",
"""OwlViTTextModel""",
"""OwlViTVisionModel""",
"""OwlViTForObjectDetection""",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
A__= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 711 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 | 0 |
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class __lowerCamelCase ( pl.LightningModule ):
def __init__( self , snake_case_ ) -> Dict:
super().__init__()
UpperCamelCase__ = model
UpperCamelCase__ = 2
UpperCamelCase__ = nn.Linear(self.model.config.hidden_size , self.num_labels )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
pass
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = LongformerModel.from_pretrained(__snake_case )
UpperCamelCase__ = LightningModel(__snake_case )
UpperCamelCase__ = torch.load(__snake_case , map_location=torch.device('cpu' ) )
lightning_model.load_state_dict(ckpt['state_dict'] )
# init longformer question answering model
UpperCamelCase__ = LongformerForQuestionAnswering.from_pretrained(__snake_case )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(__snake_case )
print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' )
if __name__ == "__main__":
A__ : Tuple= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--longformer_model""",
default=None,
type=str,
required=True,
help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""",
)
parser.add_argument(
"""--longformer_question_answering_ckpt_path""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch Lightning Checkpoint.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
A__ : Union[str, Any]= parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 712 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
from __future__ import annotations
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = []
create_all_state(1 , a__ , a__ , [] , a__ )
return result
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(a__ , total_number - level + 2 ):
current_list.append(a__ )
create_all_state(i + 1 , a__ , level - 1 , a__ , a__ )
current_list.pop()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
for i in total_list:
print(*a__ )
if __name__ == "__main__":
A__ : Tuple= 4
A__ : Tuple= 2
A__ : Optional[int]= generate_all_combinations(n, k)
print_all_state(total_list)
| 713 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]:
UpperCamelCase__ = parent
UpperCamelCase__ = vocab_size
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = patch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase__ = (image_size // patch_size) ** 2
UpperCamelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitModel(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.type_sequence_label_size
UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase__ = 1
UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ )
UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase__ = model(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( _a , unittest.TestCase ):
a : int =(
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
UpperCamelCase__ = FlaxBeitModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , **snake_case_ ):
return model(pixel_values=snake_case_ , **snake_case_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ )
# forward pass
UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 196, 8192)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 1000)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 2_1841)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
| 20 | 0 |
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
A__ : Optional[Any]= logging.get_logger(__name__)
@dataclass
class __lowerCamelCase :
a : Optional[Any] =field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} )
a : int =field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a : Any =field(
default=1_2_8 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : Optional[Any] =field(
default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.task_name.lower()
class __lowerCamelCase ( UpperCamelCase__ ):
a : Optional[int] ="""train"""
a : List[str] ="""dev"""
a : List[Any] ="""test"""
class __lowerCamelCase ( UpperCamelCase__ ):
a : Optional[Any] =4_2
a : Optional[Any] =4_2
a : List[str] =4_2
def __init__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = Split.train , snake_case_ = None , ) -> List[Any]:
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , __A , )
UpperCamelCase__ = args
UpperCamelCase__ = glue_processors[args.task_name]()
UpperCamelCase__ = glue_output_modes[args.task_name]
if isinstance(__A , __A ):
try:
UpperCamelCase__ = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
UpperCamelCase__ = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
UpperCamelCase__ = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCamelCase__ , UpperCamelCase__ = label_list[2], label_list[1]
UpperCamelCase__ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase__ = cached_features_file + '.lock'
with FileLock(__A ):
if os.path.exists(__A ) and not args.overwrite_cache:
UpperCamelCase__ = time.time()
UpperCamelCase__ = torch.load(__A )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
UpperCamelCase__ = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
UpperCamelCase__ = self.processor.get_test_examples(args.data_dir )
else:
UpperCamelCase__ = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
UpperCamelCase__ = examples[:limit_length]
UpperCamelCase__ = glue_convert_examples_to_features(
__A , __A , max_length=args.max_seq_length , label_list=__A , output_mode=self.output_mode , )
UpperCamelCase__ = time.time()
torch.save(self.features , __A )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ) -> str:
return len(self.features )
def __getitem__( self , snake_case_ ) -> InputFeatures:
return self.features[i]
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
return self.label_list
| 714 |
"""simple docstring"""
import sys
from collections import defaultdict
class __lowerCamelCase :
def __init__( self ) -> Tuple:
UpperCamelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = pos
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCamelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCamelCase__ = 2 * start + 1
else:
UpperCamelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child]
UpperCamelCase__ , UpperCamelCase__ = (
heap[start],
positions[start],
)
UpperCamelCase__ , UpperCamelCase__ = temp, tempa
UpperCamelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , snake_case_ )
self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = position[index]
while index != 0:
UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCamelCase__ = heap[parent]
UpperCamelCase__ = position[parent]
self.set_position(position[parent] , snake_case_ )
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , snake_case_ )
break
UpperCamelCase__ = parent
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , 0 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = len(snake_case_ ) // 2 - 1
for i in range(snake_case_ , -1 , -1 ):
self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = positions[0]
UpperCamelCase__ = sys.maxsize
self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ )
return temp
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = Heap()
UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
UpperCamelCase__ = []
for vertex in range(len(SCREAMING_SNAKE_CASE ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE )
heap.node_position.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = []
UpperCamelCase__ = 1
UpperCamelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCamelCase__ = 0
UpperCamelCase__ = distance
heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCamelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )]
):
UpperCamelCase__ = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Dict= int(input("""Enter number of edges: """).strip())
A__ : Dict= defaultdict(list)
for _ in range(edges_number):
A__ : Dict= [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 20 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCamelCase ( __UpperCAmelCase ):
a : Union[str, Any] =['''image_processor''', '''tokenizer''']
a : List[str] ='''FlavaImageProcessor'''
a : str =('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> Tuple:
UpperCamelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , __SCREAMING_SNAKE_CASE , )
UpperCamelCase__ = kwargs.pop('feature_extractor' )
UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ = self.image_processor
def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> List[Any]:
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
UpperCamelCase__ = self.tokenizer(
text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if images is not None:
UpperCamelCase__ = self.image_processor(
__SCREAMING_SNAKE_CASE , return_image_mask=__SCREAMING_SNAKE_CASE , return_codebook_pixels=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if text is not None and images is not None:
encoding.update(__SCREAMING_SNAKE_CASE )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Tuple:
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> List[str]:
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.tokenizer.model_input_names
UpperCamelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __SCREAMING_SNAKE_CASE , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __SCREAMING_SNAKE_CASE , )
return self.image_processor
| 715 |
"""simple docstring"""
from copy import deepcopy
class __lowerCamelCase :
def __init__( self , snake_case_ = None , snake_case_ = None ) -> None:
if arr is None and size is not None:
UpperCamelCase__ = size
UpperCamelCase__ = [0] * size
elif arr is not None:
self.init(snake_case_ )
else:
raise ValueError('Either arr or size must be specified' )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
UpperCamelCase__ = len(snake_case_ )
UpperCamelCase__ = deepcopy(snake_case_ )
for i in range(1 , self.size ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]:
UpperCamelCase__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
UpperCamelCase__ = self.next_(snake_case_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
UpperCamelCase__ = self.next_(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
self.add(snake_case_ , value - self.get(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
if right == 0:
return 0
UpperCamelCase__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
UpperCamelCase__ = self.prev(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int:
return self.prefix(snake_case_ ) - self.prefix(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
return self.query(snake_case_ , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
value -= self.tree[0]
if value < 0:
return -1
UpperCamelCase__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
UpperCamelCase__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 | 0 |
"""simple docstring"""
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = VideoMAEConfig()
set_architecture_configs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if "finetuned" not in model_name:
UpperCamelCase__ = False
if "finetuned" in model_name:
UpperCamelCase__ = 'huggingface/label-files'
if "kinetics" in model_name:
UpperCamelCase__ = 4_00
UpperCamelCase__ = 'kinetics400-id2label.json'
elif "ssv2" in model_name:
UpperCamelCase__ = 1_74
UpperCamelCase__ = 'something-something-v2-id2label.json'
else:
raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' )
UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if "small" in model_name:
UpperCamelCase__ = 3_84
UpperCamelCase__ = 15_36
UpperCamelCase__ = 12
UpperCamelCase__ = 16
UpperCamelCase__ = 12
UpperCamelCase__ = 3
UpperCamelCase__ = 1_92
UpperCamelCase__ = 7_68
elif "large" in model_name:
UpperCamelCase__ = 10_24
UpperCamelCase__ = 40_96
UpperCamelCase__ = 24
UpperCamelCase__ = 16
UpperCamelCase__ = 12
UpperCamelCase__ = 8
UpperCamelCase__ = 5_12
UpperCamelCase__ = 20_48
elif "huge" in model_name:
UpperCamelCase__ = 12_80
UpperCamelCase__ = 51_20
UpperCamelCase__ = 32
UpperCamelCase__ = 16
UpperCamelCase__ = 12
UpperCamelCase__ = 8
UpperCamelCase__ = 6_40
UpperCamelCase__ = 25_60
elif "base" not in model_name:
raise ValueError('Model name should include either "small", "base", "large", or "huge"' )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
if "encoder." in name:
UpperCamelCase__ = name.replace('encoder.' , '' )
if "cls_token" in name:
UpperCamelCase__ = name.replace('cls_token' , 'videomae.embeddings.cls_token' )
if "decoder_pos_embed" in name:
UpperCamelCase__ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
UpperCamelCase__ = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
UpperCamelCase__ = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
UpperCamelCase__ = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' )
if "decoder.blocks" in name:
UpperCamelCase__ = name.replace('decoder.blocks' , 'decoder.decoder_layers' )
if "blocks" in name:
UpperCamelCase__ = name.replace('blocks' , 'videomae.encoder.layer' )
if "attn.proj" in name:
UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name and "bias" not in name:
UpperCamelCase__ = name.replace('attn' , 'attention.self' )
if "attn" in name:
UpperCamelCase__ = name.replace('attn' , 'attention.attention' )
if "norm1" in name:
UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if "decoder_embed" in name:
UpperCamelCase__ = name.replace('decoder_embed' , 'decoder.decoder_embed' )
if "decoder_norm" in name:
UpperCamelCase__ = name.replace('decoder_norm' , 'decoder.decoder_norm' )
if "decoder_pred" in name:
UpperCamelCase__ = name.replace('decoder_pred' , 'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase__ = name.replace('norm.weight' , 'videomae.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
UpperCamelCase__ = name.replace('norm.bias' , 'videomae.layernorm.bias' )
if "head" in name and "decoder" not in name:
UpperCamelCase__ = name.replace('head' , 'classifier' )
return name
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if key.startswith('encoder.' ):
UpperCamelCase__ = key.replace('encoder.' , '' )
if "qkv" in key:
UpperCamelCase__ = key.split('.' )
if key.startswith('decoder.blocks' ):
UpperCamelCase__ = config.decoder_hidden_size
UpperCamelCase__ = int(key_split[2] )
UpperCamelCase__ = 'decoder.decoder_layers.'
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[dim : dim * 2, :]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = config.hidden_size
UpperCamelCase__ = int(key_split[1] )
UpperCamelCase__ = 'videomae.encoder.layer.'
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[dim : dim * 2, :]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = val
return orig_state_dict
def lowerCAmelCase_( ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
UpperCamelCase__ = np.load(SCREAMING_SNAKE_CASE )
return list(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = get_videomae_config(SCREAMING_SNAKE_CASE )
if "finetuned" in model_name:
UpperCamelCase__ = VideoMAEForVideoClassification(SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE )
# download original checkpoint, hosted on Google Drive
UpperCamelCase__ = 'pytorch_model.bin'
gdown.cached_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , quiet=SCREAMING_SNAKE_CASE )
UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' )
if "model" in files:
UpperCamelCase__ = files['model']
else:
UpperCamelCase__ = files['module']
UpperCamelCase__ = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
model.eval()
# verify model on basic input
UpperCamelCase__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
UpperCamelCase__ = prepare_video()
UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE , return_tensors='pt' )
if "finetuned" not in model_name:
UpperCamelCase__ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' )
UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE )
UpperCamelCase__ = outputs.logits
UpperCamelCase__ = [
'videomae-small-finetuned-kinetics',
'videomae-small-finetuned-ssv2',
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
'videomae-base-short',
'videomae-base-short-finetuned-kinetics',
'videomae-base',
'videomae-base-finetuned-kinetics',
'videomae-large',
'videomae-large-finetuned-kinetics',
'videomae-huge-finetuned-kinetics',
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
'videomae-base-short-ssv2',
'videomae-base-short-finetuned-ssv2',
'videomae-base-ssv2',
'videomae-base-finetuned-ssv2',
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
UpperCamelCase__ = torch.Size([1, 4_00] )
UpperCamelCase__ = torch.tensor([-0.9291, -0.4061, -0.9307] )
elif model_name == "videomae-small-finetuned-ssv2":
UpperCamelCase__ = torch.Size([1, 1_74] )
UpperCamelCase__ = torch.tensor([0.2671, -0.4689, -0.8235] )
elif model_name == "videomae-base":
UpperCamelCase__ = torch.Size([1, 14_08, 15_36] )
UpperCamelCase__ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] )
elif model_name == "videomae-base-short":
UpperCamelCase__ = torch.Size([1, 14_08, 15_36] )
UpperCamelCase__ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] )
# we verified the loss both for normalized and unnormalized targets for this one
UpperCamelCase__ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] )
elif model_name == "videomae-large":
UpperCamelCase__ = torch.Size([1, 14_08, 15_36] )
UpperCamelCase__ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] )
elif model_name == "videomae-large-finetuned-kinetics":
UpperCamelCase__ = torch.Size([1, 4_00] )
UpperCamelCase__ = torch.tensor([0.0771, 0.0011, -0.3625] )
elif model_name == "videomae-huge-finetuned-kinetics":
UpperCamelCase__ = torch.Size([1, 4_00] )
UpperCamelCase__ = torch.tensor([0.2433, 0.1632, -0.4894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
UpperCamelCase__ = torch.Size([1, 4_00] )
UpperCamelCase__ = torch.tensor([0.6588, 0.0990, -0.2493] )
elif model_name == "videomae-base-finetuned-kinetics":
UpperCamelCase__ = torch.Size([1, 4_00] )
UpperCamelCase__ = torch.tensor([0.3669, -0.0688, -0.2421] )
elif model_name == "videomae-base-short-ssv2":
UpperCamelCase__ = torch.Size([1, 14_08, 15_36] )
UpperCamelCase__ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
UpperCamelCase__ = torch.Size([1, 1_74] )
UpperCamelCase__ = torch.tensor([-0.0537, -0.1539, -0.3266] )
elif model_name == "videomae-base-ssv2":
UpperCamelCase__ = torch.Size([1, 14_08, 15_36] )
UpperCamelCase__ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] )
elif model_name == "videomae-base-finetuned-ssv2":
UpperCamelCase__ = torch.Size([1, 1_74] )
UpperCamelCase__ = torch.tensor([0.1961, -0.8337, -0.6389] )
else:
raise ValueError(F'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
else:
print('Logits:' , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Logits ok!' )
# verify loss, if applicable
if model_name == "videomae-base-short":
UpperCamelCase__ = outputs.loss
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Loss ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print('Pushing to the hub...' )
model.push_to_hub(SCREAMING_SNAKE_CASE , organization='nielsr' )
if __name__ == "__main__":
A__ : Optional[Any]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
A__ : Optional[Any]= parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 716 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
A__ : Union[str, Any]= logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple:
UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )]
if identifier is not None:
UpperCamelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(snake_case_ , snake_case_ ):
for n_ in n_identifier:
UpperCamelCase__ = [file for file in files if n_ not in file]
else:
UpperCamelCase__ = [file for file in files if n_identifier not in file]
UpperCamelCase__ = ignore_files or []
ignore_files.append('__init__.py' )
UpperCamelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , snake_case_ )
if only_modules:
UpperCamelCase__ = file.split('.' )[0]
try:
UpperCamelCase__ = getattr(snake_case_ , snake_case_ )
UpperCamelCase__ = doctest.DocTestSuite(snake_case_ )
UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'modeling'
UpperCamelCase__ = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'tokenization'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = 'configuration'
self.analyze_directory(snake_case_ , identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = Path('src/transformers' )
UpperCamelCase__ = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(snake_case_ , n_identifier=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = Path('docs/source' )
UpperCamelCase__ = ['favicon.ico']
self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
| 20 | 0 |
"""simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase ( _a , unittest.TestCase ):
a : List[str] =LayoutLMTokenizer
a : Optional[Any] =LayoutLMTokenizerFast
a : List[str] =True
a : Optional[int] =True
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
super().setUp()
UpperCamelCase__ = [
'[UNK]',
'[CLS]',
'[SEP]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> Optional[Any]:
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__A )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = 'UNwant\u00E9d,running'
UpperCamelCase__ = 'unwanted, running'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = self.tokenizer_class(self.vocab_file )
UpperCamelCase__ = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(__A , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [7, 4, 5, 10, 8, 9] )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
pass
| 717 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : str= logging.get_logger(__name__)
A__ : List[Any]= {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCamelCase ( _a ):
a : Any ="""segformer"""
def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple:
super().__init__(**snake_case_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , )
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_encoder_blocks
UpperCamelCase__ = depths
UpperCamelCase__ = sr_ratios
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = classifier_dropout_prob
UpperCamelCase__ = initializer_range
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = decoder_hidden_size
UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ )
UpperCamelCase__ = semantic_loss_ignore_index
class __lowerCamelCase ( _a ):
a : Any =version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-4
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
| 20 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : Optional[int]= {
"""Visual-Attention-Network/van-base""": (
"""https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"""
),
}
class __lowerCamelCase ( __snake_case ):
a : Dict ="""van"""
def __init__( self , snake_case_=224 , snake_case_=3 , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[64, 128, 320, 512] , snake_case_=[3, 3, 12, 3] , snake_case_=[8, 8, 4, 4] , snake_case_="gelu" , snake_case_=0.02 , snake_case_=1E-6 , snake_case_=1E-2 , snake_case_=0.0 , snake_case_=0.0 , **snake_case_ , ) -> Optional[int]:
super().__init__(**_lowercase )
UpperCamelCase__ = image_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_sizes
UpperCamelCase__ = strides
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = depths
UpperCamelCase__ = mlp_ratios
UpperCamelCase__ = hidden_act
UpperCamelCase__ = initializer_range
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = layer_scale_init_value
UpperCamelCase__ = drop_path_rate
UpperCamelCase__ = dropout_rate
| 718 |
"""simple docstring"""
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __lowerCamelCase ( _a ):
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' )
download_parser.set_defaults(func=snake_case_ )
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = model
UpperCamelCase__ = cache
UpperCamelCase__ = force
UpperCamelCase__ = trust_remote_code
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A__ : Optional[int]= {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any]= ['PoolFormerFeatureExtractor']
A__ : int= ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple= [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A__ : Dict= _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 719 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase ( _a ):
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = relative_attention
UpperCamelCase__ = position_biased_input
UpperCamelCase__ = pos_att_type
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = DebertaVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0]
UpperCamelCase__ = model(snake_case_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCamelCase__ = model(
snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a : Dict =(
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Tuple =True
a : Union[str, Any] =False
a : Tuple =False
a : Union[str, Any] =False
a : Dict =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = DebertaVaModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
@unittest.skip(reason='Model not available yet' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0]
# compare the actual values for a slice.
UpperCamelCase__ = torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
| 20 | 0 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list:
"""simple docstring"""
if len(lowerCAmelCase__ ) < 2:
return collection
def circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool:
UpperCamelCase__ = False
if low == high:
return swapped
UpperCamelCase__ = low
UpperCamelCase__ = high
while left < right:
if collection[left] > collection[right]:
UpperCamelCase__ , UpperCamelCase__ = (
collection[right],
collection[left],
)
UpperCamelCase__ = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
UpperCamelCase__ , UpperCamelCase__ = (
collection[right + 1],
collection[left],
)
UpperCamelCase__ = True
UpperCamelCase__ = low + int((high - low) / 2 )
UpperCamelCase__ = circle_sort_util(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCamelCase__ = circle_sort_util(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ )
return swapped or left_swap or right_swap
UpperCamelCase__ = True
while is_not_sorted is True:
UpperCamelCase__ = circle_sort_util(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) - 1 )
return collection
if __name__ == "__main__":
A__ : Tuple= input("""Enter numbers separated by a comma:\n""").strip()
A__ : List[str]= [int(item) for item in user_input.split(""",""")]
print(circle_sort(unsorted))
| 720 |
"""simple docstring"""
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = SwinConfig()
UpperCamelCase__ = swin_name.split('_' )
UpperCamelCase__ = name_split[1]
UpperCamelCase__ = int(name_split[4] )
UpperCamelCase__ = int(name_split[3][-1] )
if model_size == "tiny":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 6, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "small":
UpperCamelCase__ = 96
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (3, 6, 12, 24)
elif model_size == "base":
UpperCamelCase__ = 1_28
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (4, 8, 16, 32)
else:
UpperCamelCase__ = 1_92
UpperCamelCase__ = (2, 2, 18, 2)
UpperCamelCase__ = (6, 12, 24, 48)
if "in22k" in swin_name:
UpperCamelCase__ = 2_18_41
else:
UpperCamelCase__ = 10_00
UpperCamelCase__ = 'huggingface/label-files'
UpperCamelCase__ = 'imagenet-1k-id2label.json'
UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
UpperCamelCase__ = img_size
UpperCamelCase__ = num_classes
UpperCamelCase__ = embed_dim
UpperCamelCase__ = depths
UpperCamelCase__ = num_heads
UpperCamelCase__ = window_size
return config
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if "patch_embed.proj" in name:
UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
UpperCamelCase__ = 'encoder.' + name
if "attn.proj" in name:
UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
UpperCamelCase__ = name.replace('attn' , 'attention.self' )
if "norm1" in name:
UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' )
if name == "norm.weight":
UpperCamelCase__ = 'layernorm.weight'
if name == "norm.bias":
UpperCamelCase__ = 'layernorm.bias'
if "head" in name:
UpperCamelCase__ = name.replace('head' , 'classifier' )
else:
UpperCamelCase__ = 'swin.' + name
return name
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "mask" in key:
continue
elif "qkv" in key:
UpperCamelCase__ = key.split('.' )
UpperCamelCase__ = int(key_split[1] )
UpperCamelCase__ = int(key_split[3] )
UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCamelCase__ = val[:dim, :]
UpperCamelCase__ = val[
dim : dim * 2, :
]
UpperCamelCase__ = val[-dim:, :]
else:
UpperCamelCase__ = val[
:dim
]
UpperCamelCase__ = val[
dim : dim * 2
]
UpperCamelCase__ = val[
-dim:
]
else:
UpperCamelCase__ = val
return orig_state_dict
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE )
timm_model.eval()
UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) )
UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
UpperCamelCase__ = timm_model(inputs['pixel_values'] )
UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
A__ : Optional[Any]= argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
A__ : Tuple= parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A__ : Union[str, Any]= {
"""configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[int]= ["""ConvNextFeatureExtractor"""]
A__ : Optional[int]= ["""ConvNextImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Tuple= [
"""CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvNextForImageClassification""",
"""ConvNextModel""",
"""ConvNextPreTrainedModel""",
"""ConvNextBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any]= [
"""TFConvNextForImageClassification""",
"""TFConvNextModel""",
"""TFConvNextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
A__ : List[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 721 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
UpperCamelCase__ = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )]
for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = pentagonal_nums[j]
UpperCamelCase__ = pentagonal_i + pentagonal_j
UpperCamelCase__ = pentagonal_j - pentagonal_i
if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
import os
from pathlib import Path
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, nicht wahr?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
UpperCamelCase__ = {
'wmt16-en-de-dist-12-1': [28.3, 27.52],
'wmt16-en-de-dist-6-1': [27.4, 27.11],
'wmt16-en-de-12-1': [26.9, 25.75],
}
UpperCamelCase__ = F'{src_lang}-{tgt_lang}'
UpperCamelCase__ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'README.md' )
print(F'Generating {path}' )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
f.write(SCREAMING_SNAKE_CASE )
# make sure we are under the root of the project
A__ : List[str]= Path(__file__).resolve().parent.parent.parent
A__ : Dict= repo_dir / """model_cards"""
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
A__ : Optional[Any]= model_cards_dir / """allenai""" / model_name
write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
| 700 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = int((limit - 24) ** (1 / 2) )
UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) )
for primea in primes:
UpperCamelCase__ = primea * primea
for primea in primes:
UpperCamelCase__ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
UpperCamelCase__ = primea * primea * primea * primea
UpperCamelCase__ = square + cube + tetr
if total >= limit:
break
ret.add(SCREAMING_SNAKE_CASE )
return len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
A__ : str= numpy.array([0, 0])
A__ : Optional[int]= numpy.array([0.5, 0.8_6_6_0_2_5_4])
A__ : Dict= numpy.array([1, 0])
A__ : Tuple= [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[numpy.ndarray]:
"""simple docstring"""
UpperCamelCase__ = initial_vectors
for _ in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = iteration_step(SCREAMING_SNAKE_CASE_ )
return vectors
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[numpy.ndarray]:
"""simple docstring"""
UpperCamelCase__ = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCamelCase__ = vectors[i + 1]
new_vectors.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> numpy.ndarray:
"""simple docstring"""
UpperCamelCase__ = numpy.radians(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = numpy.cos(SCREAMING_SNAKE_CASE_ ), numpy.sin(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = numpy.array(((c, -s), (s, c)) )
return numpy.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
UpperCamelCase__ = plt.gca()
axes.set_aspect('equal' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCamelCase__ = zip(*SCREAMING_SNAKE_CASE_ )
plt.plot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
A__ : List[str]= iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 701 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""]
A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only"""
if is_tf_available():
class __lowerCamelCase ( tf.keras.Model ):
def __init__( self , snake_case_ ) -> Optional[int]:
super().__init__()
UpperCamelCase__ = tokenizer
UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ )
UpperCamelCase__ = TFAutoModel.from_config(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
UpperCamelCase__ = self.tokenizer(snake_case_ )
UpperCamelCase__ = self.bert(**snake_case_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __lowerCamelCase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
super().setUp()
UpperCamelCase__ = [
BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCamelCase__ = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf_tokenizer(self.paired_sentences )
UpperCamelCase__ = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = tf.function(snake_case_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
UpperCamelCase__ = tf.constant(snake_case_ )
UpperCamelCase__ = compiled_tokenizer(snake_case_ )
UpperCamelCase__ = tf_tokenizer(snake_case_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ )
UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences )
UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCamelCase__ = Path(snake_case_ ) / 'saved.model'
model.save(snake_case_ )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = loaded_model(snake_case_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 20 | 0 |
"""simple docstring"""
import random
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> dict:
"""simple docstring"""
UpperCamelCase__ = {i: [] for i in range(SCREAMING_SNAKE_CASE_ )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(SCREAMING_SNAKE_CASE_ )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(SCREAMING_SNAKE_CASE_ ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ):
if random.random() < probability:
graph[i].append(SCREAMING_SNAKE_CASE_ )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(SCREAMING_SNAKE_CASE_ )
return graph
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> dict:
"""simple docstring"""
return {
i: [j for j in range(SCREAMING_SNAKE_CASE_ ) if i != j] for i in range(SCREAMING_SNAKE_CASE_ )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]:
"""simple docstring"""
UpperCamelCase__ = len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE ):
if numbers[j] < numbers[i]:
UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip()
A__ : List[Any]= [int(item) for item in user_input.split(""",""")]
print(exchange_sort(unsorted))
| 20 | 0 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
A__ : Optional[int]= logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
A__ : int= list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
A__ : List[str]= tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __lowerCamelCase :
a : str =field(
default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} )
a : Optional[int] =field(
default=__A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
a : int =field(
default=__A , metadata={"""help""": """The column name of the images in the files. If not set, will try to use \'image\' or \'img\'."""} , )
a : List[Any] =field(default=__A , metadata={"""help""": """A folder containing the training data."""} )
a : Any =field(default=__A , metadata={"""help""": """A folder containing the validation data."""} )
a : List[Any] =field(
default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} )
a : str =field(default=3_2 , metadata={"""help""": """The size of the square patches to use for masking."""} )
a : Union[str, Any] =field(
default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , )
a : int =field(
default=__A , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : int =field(
default=__A , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
UpperCamelCase__ = {}
if self.train_dir is not None:
UpperCamelCase__ = self.train_dir
if self.validation_dir is not None:
UpperCamelCase__ = self.validation_dir
UpperCamelCase__ = data_files if data_files else None
@dataclass
class __lowerCamelCase :
a : str =field(
default=__A , metadata={
"""help""": (
"""The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """
"""checkpoint identifier on the hub. """
"""Don\'t set if you want to train a model from scratch."""
)
} , )
a : Optional[Any] =field(
default=__A , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__A )} , )
a : str =field(
default=__A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : List[Any] =field(
default=__A , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
a : List[Any] =field(
default=__A , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , )
a : int =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : int =field(default=__A , metadata={"""help""": """Name or path of preprocessor config."""} )
a : Any =field(
default=__A , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
a : int =field(
default=__A , metadata={
"""help""": (
"""The size (resolution) of each image. If not specified, will use `image_size` of the configuration."""
)
} , )
a : List[Any] =field(
default=__A , metadata={
"""help""": (
"""The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."""
)
} , )
a : Tuple =field(
default=__A , metadata={"""help""": """Stride to use for the encoder."""} , )
class __lowerCamelCase :
def __init__( self , snake_case_=192 , snake_case_=32 , snake_case_=4 , snake_case_=0.6 ) -> List[Any]:
UpperCamelCase__ = input_size
UpperCamelCase__ = mask_patch_size
UpperCamelCase__ = model_patch_size
UpperCamelCase__ = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError('Input size must be divisible by mask patch size' )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError('Mask patch size must be divisible by model patch size' )
UpperCamelCase__ = self.input_size // self.mask_patch_size
UpperCamelCase__ = self.mask_patch_size // self.model_patch_size
UpperCamelCase__ = self.rand_size**2
UpperCamelCase__ = int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self ) -> str:
UpperCamelCase__ = np.random.permutation(self.token_count )[: self.mask_count]
UpperCamelCase__ = np.zeros(self.token_count , dtype=snake_case_ )
UpperCamelCase__ = 1
UpperCamelCase__ = mask.reshape((self.rand_size, self.rand_size) )
UpperCamelCase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = torch.stack([example['pixel_values'] for example in examples] )
UpperCamelCase__ = torch.stack([example['mask'] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def lowerCAmelCase_( ) -> Any:
"""simple docstring"""
UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCamelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mim' , __lowercase , __lowercase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCamelCase__ = training_args.get_process_log_level()
logger.setLevel(__lowercase )
transformers.utils.logging.set_verbosity(__lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
UpperCamelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCamelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
UpperCamelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
UpperCamelCase__ = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0:
UpperCamelCase__ = ds['train'].train_test_split(data_args.train_val_split )
UpperCamelCase__ = split['train']
UpperCamelCase__ = split['test']
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCamelCase__ = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
UpperCamelCase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase )
elif model_args.model_name_or_path:
UpperCamelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
UpperCamelCase__ = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'Overriding config: {model_args.config_overrides}' )
config.update_from_string(model_args.config_overrides )
logger.info(F'New config: {config}' )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(__lowercase , 'decoder_type' ):
UpperCamelCase__ = 'simmim'
# adapt config
UpperCamelCase__ = model_args.image_size if model_args.image_size is not None else config.image_size
UpperCamelCase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size
UpperCamelCase__ = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
'image_size': model_args.image_size,
'patch_size': model_args.patch_size,
'encoder_stride': model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
UpperCamelCase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase )
elif model_args.model_name_or_path:
UpperCamelCase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
UpperCamelCase__ = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
UpperCamelCase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
UpperCamelCase__ = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
UpperCamelCase__ = AutoModelForMaskedImageModeling.from_config(__lowercase )
if training_args.do_train:
UpperCamelCase__ = ds['train'].column_names
else:
UpperCamelCase__ = ds['validation'].column_names
if data_args.image_column_name is not None:
UpperCamelCase__ = data_args.image_column_name
elif "image" in column_names:
UpperCamelCase__ = 'image'
elif "img" in column_names:
UpperCamelCase__ = 'img'
else:
UpperCamelCase__ = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
UpperCamelCase__ = Compose(
[
Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
UpperCamelCase__ = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [transforms(__lowercase ) for image in examples[image_column_name]]
UpperCamelCase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
UpperCamelCase__ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(__lowercase )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
UpperCamelCase__ = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(__lowercase )
# Initialize our trainer
UpperCamelCase__ = Trainer(
model=__lowercase , args=__lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
UpperCamelCase__ = None
if training_args.resume_from_checkpoint is not None:
UpperCamelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCamelCase__ = last_checkpoint
UpperCamelCase__ = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCamelCase__ = trainer.evaluate()
trainer.log_metrics('eval' , __lowercase )
trainer.save_metrics('eval' , __lowercase )
# Write model card and (optionally) push to hub
UpperCamelCase__ = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'masked-image-modeling',
'dataset': data_args.dataset_name,
'tags': ['masked-image-modeling'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase )
else:
trainer.create_model_card(**__lowercase )
if __name__ == "__main__":
main()
| 703 |
"""simple docstring"""
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
A__ : str= {
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
A__ : str= {
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE )
return images
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if images.ndim == 3:
UpperCamelCase__ = images[None, ...]
UpperCamelCase__ = (images * 2_55).round().astype('uint8' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images]
else:
UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 20 | 0 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Any= logging.get_logger(__name__)
A__ : List[Any]= {
"""google/pix2struct-textcaps-base""": (
"""https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"""
),
}
class __lowerCamelCase ( __lowercase ):
a : List[Any] ="""pix2struct_text_model"""
a : List[Any] =["""past_key_values"""]
a : Union[str, Any] ={
"""hidden_size""": """hidden_size""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , snake_case_=5_0244 , snake_case_=768 , snake_case_=64 , snake_case_=2048 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ) -> Dict:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = d_kv
UpperCamelCase__ = d_ff
UpperCamelCase__ = num_layers
UpperCamelCase__ = num_heads
UpperCamelCase__ = relative_attention_num_buckets
UpperCamelCase__ = relative_attention_max_distance
UpperCamelCase__ = dropout_rate
UpperCamelCase__ = layer_norm_epsilon
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = use_cache
UpperCamelCase__ = eos_token_id
UpperCamelCase__ = decoder_start_token_id
# for backwards compatibility
UpperCamelCase__ = dense_act_fn
super().__init__(
pad_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , tie_word_embeddings=_A , is_decoder=_A , **_A , )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> Optional[Any]:
cls._set_token_in_kwargs(_A )
UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_A , **_A )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('model_type' ) == "pix2struct":
UpperCamelCase__ = config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class __lowerCamelCase ( __lowercase ):
a : List[str] ="""pix2struct_vision_model"""
def __init__( self , snake_case_=768 , snake_case_=768 , snake_case_=2048 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=4096 , snake_case_=32 , snake_case_=128 , **snake_case_ , ) -> Tuple:
super().__init__(**_A )
UpperCamelCase__ = hidden_size
UpperCamelCase__ = patch_embed_hidden_size
UpperCamelCase__ = d_ff
UpperCamelCase__ = dropout_rate
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = initializer_range
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = layer_norm_eps
UpperCamelCase__ = dense_act_fn
UpperCamelCase__ = seq_len
UpperCamelCase__ = relative_attention_num_buckets
UpperCamelCase__ = relative_attention_max_distance
UpperCamelCase__ = d_kv
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> Optional[Any]:
cls._set_token_in_kwargs(_A )
UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_A , **_A )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('model_type' ) == "pix2struct":
UpperCamelCase__ = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A , **_A )
class __lowerCamelCase ( __lowercase ):
a : Union[str, Any] ="""pix2struct"""
a : int =True
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ) -> Any:
super().__init__(tie_word_embeddings=_A , is_encoder_decoder=_A , **_A )
if text_config is None:
UpperCamelCase__ = {}
logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' )
if vision_config is None:
UpperCamelCase__ = {}
logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' )
UpperCamelCase__ = PixaStructTextConfig(**_A )
UpperCamelCase__ = PixaStructVisionConfig(**_A )
UpperCamelCase__ = self.text_config.decoder_start_token_id
UpperCamelCase__ = self.text_config.pad_token_id
UpperCamelCase__ = self.text_config.eos_token_id
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = initializer_range
UpperCamelCase__ = self.initializer_range
UpperCamelCase__ = self.initializer_range
UpperCamelCase__ = is_vqa
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = copy.deepcopy(self.__dict__ )
UpperCamelCase__ = self.text_config.to_dict()
UpperCamelCase__ = self.vision_config.to_dict()
UpperCamelCase__ = self.__class__.model_type
return output
| 704 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : str= {"""vocab_file""": """spiece.model"""}
A__ : Union[str, Any]= {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
}
}
# TODO(PVP) - this should be removed in Transformers v5
A__ : Union[str, Any]= {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
A__ : Optional[Any]= """▁"""
class __lowerCamelCase ( _a ):
a : Dict =VOCAB_FILES_NAMES
a : str =PRETRAINED_VOCAB_FILES_MAP
a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : List[str] =["""input_ids""", """attention_mask"""]
def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'
' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'
' tokens' )
if legacy:
logger.warning_once(
F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'
' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' )
UpperCamelCase__ = legacy
UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , )
UpperCamelCase__ = vocab_file
UpperCamelCase__ = extra_ids
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'This tokenizer was incorrectly instantiated with a model max length of'
F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'
' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'
' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'
F' {pretrained_model_name_or_path} automatically truncating your input to'
F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'
F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'
' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'
' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(snake_case_ )) + [1]
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return list(
set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]:
if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
if token_ids_a is None:
return token_ids_a
else:
UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ )
return token_ids_a + token_ids_a
def __getstate__( self ) -> str:
UpperCamelCase__ = self.__dict__.copy()
UpperCamelCase__ = None
return state
def __setstate__( self , snake_case_ ) -> Any:
UpperCamelCase__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
UpperCamelCase__ = {}
UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' )
return super().tokenize(snake_case_ , **snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]:
if not self.legacy:
UpperCamelCase__ = text.startswith(snake_case_ )
if is_first:
UpperCamelCase__ = text[1:]
UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ )
if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ):
UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
if token.startswith('<extra_id_' ):
UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ )
UpperCamelCase__ = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]:
if index < self.sp_model.get_piece_size():
UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ )
else:
UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>'
return token
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = []
UpperCamelCase__ = ''
UpperCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(snake_case_ ) + token
UpperCamelCase__ = True
UpperCamelCase__ = []
else:
current_sub_tokens.append(snake_case_ )
UpperCamelCase__ = False
out_string += self.sp_model.decode(snake_case_ )
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]:
if not os.path.isdir(snake_case_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , 'wb' ) as fi:
UpperCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 20 | 0 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A__ : List[Any]= logging.get_logger(__name__)
A__ : Any= {
'''vocab_file''': '''vocab.json''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
'''merges_file''': '''merges.txt''',
}
A__ : Optional[Any]= {
'''vocab_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'''
),
},
'''tokenizer_config_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'''
),
},
'''merges_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'''
),
},
}
A__ : Optional[Any]= '''</w>'''
A__ : Union[str, Any]= '''@@ '''
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
UpperCamelCase__ = set()
UpperCamelCase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase__ = char
return pairs
# Speech2Text2 has no max input length
A__ : int= {'''facebook/s2t-wav2vec2-large-en-de''': 10_24}
class __lowerCamelCase ( __a ):
a : str =VOCAB_FILES_NAMES
a : List[str] =PRETRAINED_VOCAB_FILES_MAP
a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : str =['''input_ids''', '''attention_mask''']
def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="<pad>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_=False , snake_case_=None , **snake_case_ , ) -> Optional[Any]:
super().__init__(
unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , do_lower_case=snake_case__ , **snake_case__ , )
UpperCamelCase__ = do_lower_case
with open(snake_case__ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase__ = json.load(snake_case__ )
UpperCamelCase__ = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' )
UpperCamelCase__ = None
UpperCamelCase__ = None
else:
with open(snake_case__ , encoding='utf-8' ) as merges_handle:
UpperCamelCase__ = merges_handle.read().split('\n' )[:-1]
UpperCamelCase__ = [tuple(merge.split()[:2] ) for merge in merges]
UpperCamelCase__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCamelCase__ = {}
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
return len(self.decoder )
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
UpperCamelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
UpperCamelCase__ = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCamelCase__ = min(snake_case__ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case__ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase__ , UpperCamelCase__ = bigram
UpperCamelCase__ = []
UpperCamelCase__ = 0
while i < len(snake_case__ ):
try:
UpperCamelCase__ = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCamelCase__ = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase__ = tuple(snake_case__ )
UpperCamelCase__ = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCamelCase__ = get_pairs(snake_case__ )
UpperCamelCase__ = ' '.join(snake_case__ )
if word == "\n " + BPE_TOKEN_MERGES:
UpperCamelCase__ = '\n' + BPE_TOKEN_MERGES
if word.endswith(snake_case__ ):
UpperCamelCase__ = word.replace(snake_case__ , '' )
UpperCamelCase__ = word.replace(' ' , snake_case__ )
UpperCamelCase__ = word
return word
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
UpperCamelCase__ = text.lower()
UpperCamelCase__ = text.split()
UpperCamelCase__ = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(snake_case__ ).split(' ' ) ) )
return split_tokens
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any:
UpperCamelCase__ = self.decoder.get(snake_case__ , self.unk_token )
return result
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
UpperCamelCase__ = ' '.join(snake_case__ )
# make sure @@ tokens are concatenated
UpperCamelCase__ = ''.join(string.split(snake_case__ ) )
return string
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple:
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCamelCase__ = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase__ = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(snake_case__ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '\n' )
UpperCamelCase__ = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(snake_case__ , 'w' , encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
UpperCamelCase__ = token_index
writer.write(' '.join(snake_case__ ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 705 |
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A__ : Any= TypeVar("""T""")
class __lowerCamelCase ( Generic[T] ):
def __init__( self , snake_case_ ) -> None:
UpperCamelCase__ = data
UpperCamelCase__ = self
UpperCamelCase__ = 0
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# map from node name to the node object
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# create a new set with x as its member
UpperCamelCase__ = DisjointSetTreeNode(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
UpperCamelCase__ = self.map[data]
if elem_ref != elem_ref.parent:
UpperCamelCase__ = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
UpperCamelCase__ = nodea
else:
UpperCamelCase__ = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) )
class __lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
UpperCamelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None:
# add an edge with the given weight
self.add_node(snake_case_ )
self.add_node(snake_case_ )
UpperCamelCase__ = weight
UpperCamelCase__ = weight
def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]:
UpperCamelCase__ = []
UpperCamelCase__ = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda snake_case_ : x[2] )
# creating the disjoint set
UpperCamelCase__ = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(snake_case_ )
# MST generation
UpperCamelCase__ = 0
UpperCamelCase__ = 0
UpperCamelCase__ = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index]
index += 1
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
UpperCamelCase__ = disjoint_set.find_set(snake_case_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(snake_case_ , snake_case_ , snake_case_ )
disjoint_set.union(snake_case_ , snake_case_ )
return graph
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ = []
create_all_state(1 , lowerCAmelCase_ , lowerCAmelCase_ , [] , lowerCAmelCase_ )
return result
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(lowerCAmelCase_ , total_number - level + 2 ):
current_list.append(lowerCAmelCase_ )
create_all_state(i + 1 , lowerCAmelCase_ , level - 1 , lowerCAmelCase_ , lowerCAmelCase_ )
current_list.pop()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
for i in total_list:
print(*lowerCAmelCase_ )
if __name__ == "__main__":
A__ : str= 4
A__ : int= 2
A__ : int= generate_all_combinations(n, k)
print_all_state(total_list)
| 706 |
"""simple docstring"""
A__ : Tuple= """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
UpperCamelCase__ = Stack()
UpperCamelCase__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
UpperCamelCase__ = operator_stack.peek()
operator_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operand_stack.peek()
operand_stack.pop()
UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
operand_stack.push(SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
A__ : int= """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 20 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Dict= logging.get_logger(__name__)
A__ : Any= {
"""funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""",
"""funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""",
"""funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""",
"""funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""",
"""funnel-transformer/intermediate""": (
"""https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"""
),
"""funnel-transformer/intermediate-base""": (
"""https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"""
),
"""funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""",
"""funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""",
"""funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""",
"""funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : Any ="""funnel"""
a : Any ={
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
}
def __init__( self , snake_case_=3_0522 , snake_case_=[4, 4, 4] , snake_case_=None , snake_case_=2 , snake_case_=768 , snake_case_=12 , snake_case_=64 , snake_case_=3072 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=None , snake_case_=1E-9 , snake_case_="mean" , snake_case_="relative_shift" , snake_case_=True , snake_case_=True , snake_case_=True , **snake_case_ , ) -> Union[str, Any]:
UpperCamelCase__ = vocab_size
UpperCamelCase__ = block_sizes
UpperCamelCase__ = [1] * len(snake_case_ ) if block_repeats is None else block_repeats
assert len(snake_case_ ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
UpperCamelCase__ = num_decoder_layers
UpperCamelCase__ = d_model
UpperCamelCase__ = n_head
UpperCamelCase__ = d_head
UpperCamelCase__ = d_inner
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = activation_dropout
UpperCamelCase__ = initializer_range
UpperCamelCase__ = initializer_std
UpperCamelCase__ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'
UpperCamelCase__ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'
UpperCamelCase__ = attention_type
UpperCamelCase__ = separate_cls
UpperCamelCase__ = truncate_seq
UpperCamelCase__ = pool_q_only
super().__init__(**snake_case_ )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return sum(self.block_sizes )
@num_hidden_layers.setter
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int:
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return len(self.block_sizes )
@num_blocks.setter
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict:
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
| 707 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
A__ : Any= """src/diffusers"""
# Matches is_xxx_available()
A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
A__ : Optional[Any]= """
{0} = None
"""
A__ : List[Any]= """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
A__ : Dict= """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) == 0:
return None
return "_and_".join(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( ) -> str:
"""simple docstring"""
with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
UpperCamelCase__ = 0
UpperCamelCase__ = {}
# Go through the end of the file
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
UpperCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
UpperCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1:
UpperCamelCase__ = lines[line_index]
UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(SCREAMING_SNAKE_CASE ) > 0:
UpperCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE )
elif name.islower():
return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
if backend_specific_objects is None:
UpperCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
UpperCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']'
UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] )
UpperCamelCase__ = dummy_file
return dummy_files
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int:
"""simple docstring"""
UpperCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
UpperCamelCase__ = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' )
UpperCamelCase__ = {
backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' )
for backend in dummy_files.keys()
}
UpperCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(SCREAMING_SNAKE_CASE ):
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase__ = f.read()
else:
UpperCamelCase__ = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main '
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` '
'to fix this.' )
if __name__ == "__main__":
A__ : Any= argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[int]= parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 20 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=6 , snake_case_=17 , snake_case_=23 , snake_case_=11 , snake_case_=True , ) -> List[str]:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = act_dim
UpperCamelCase__ = state_dim
UpperCamelCase__ = hidden_size
UpperCamelCase__ = max_length
UpperCamelCase__ = is_training
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCamelCase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCamelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCamelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCamelCase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 )
UpperCamelCase__ = random_attention_mask((self.batch_size, self.seq_length) )
UpperCamelCase__ = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) -> str:
UpperCamelCase__ = DecisionTransformerModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {
'states': states,
'actions': actions,
'rewards': rewards,
'returns_to_go': returns_to_go,
'timesteps': timesteps,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
a : Tuple =(DecisionTransformerModel,) if is_torch_available() else ()
a : Union[str, Any] =()
a : List[str] ={"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
a : Optional[int] =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
a : List[Any] =False
a : Optional[Any] =False
a : Tuple =False
a : str =False
a : Dict =False
a : List[str] =False
a : Any =False
a : Any =False
a : Dict =False
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = DecisionTransformerModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = DecisionTransformerModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = [
'states',
'actions',
'rewards',
'returns_to_go',
'timesteps',
'attention_mask',
]
self.assertListEqual(arg_names[: len(_SCREAMING_SNAKE_CASE )] , _SCREAMING_SNAKE_CASE )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = 2 # number of steps of autoregressive prediction we will perform
UpperCamelCase__ = 10 # defined by the RL environment, may be normalized
UpperCamelCase__ = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' )
UpperCamelCase__ = model.to(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ = model.config
torch.manual_seed(0 )
UpperCamelCase__ = torch.randn(1 , 1 , config.state_dim ).to(device=_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) # env.reset()
UpperCamelCase__ = torch.tensor(
[[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_SCREAMING_SNAKE_CASE )
UpperCamelCase__ = torch.tensor(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCamelCase__ = state
UpperCamelCase__ = torch.zeros(1 , 0 , config.act_dim , device=_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
UpperCamelCase__ = torch.zeros(1 , 0 , device=_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
UpperCamelCase__ = torch.tensor(0 , device=_SCREAMING_SNAKE_CASE , dtype=torch.long ).reshape(1 , 1 )
for step in range(_SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_SCREAMING_SNAKE_CASE )] , dim=1 )
UpperCamelCase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=_SCREAMING_SNAKE_CASE )] , dim=1 )
UpperCamelCase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = model(
states=_SCREAMING_SNAKE_CASE , actions=_SCREAMING_SNAKE_CASE , rewards=_SCREAMING_SNAKE_CASE , returns_to_go=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=_SCREAMING_SNAKE_CASE , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCamelCase__ = action_pred[0, -1]
UpperCamelCase__ = torch.cat([states, state] , dim=1 )
UpperCamelCase__ = returns_to_go[0, -1] - reward
UpperCamelCase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCamelCase__ = torch.cat(
[timesteps, torch.ones((1, 1) , device=_SCREAMING_SNAKE_CASE , dtype=torch.long ) * (step + 1)] , dim=1 )
| 708 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`."""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description )
else:
UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
UpperCamelCase__ = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
UpperCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
UpperCamelCase__ = defaults.commands
if not args.tpu_name:
UpperCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
UpperCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
UpperCamelCase__ = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = F'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
UpperCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
UpperCamelCase__ = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [F'pip install {args.accelerate_version}']
new_cmd += args.command
UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
UpperCamelCase__ = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' )
return
subprocess.run(SCREAMING_SNAKE_CASE )
print('Successfully setup pod.' )
def lowerCAmelCase_( ) -> int:
"""simple docstring"""
UpperCamelCase__ = tpu_command_parser()
UpperCamelCase__ = parser.parse_args()
tpu_command_launcher(SCREAMING_SNAKE_CASE )
| 20 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
A__ : Tuple= {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str= ['GPTNeoXTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any]= [
'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoXForCausalLM',
'GPTNeoXForQuestionAnswering',
'GPTNeoXForSequenceClassification',
'GPTNeoXForTokenClassification',
'GPTNeoXLayer',
'GPTNeoXModel',
'GPTNeoXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
A__ : Any= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 709 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str]= logging.get_logger(__name__)
class __lowerCamelCase ( _a ):
a : Optional[int] ="""timm_backbone"""
def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict:
super().__init__(**snake_case_ )
UpperCamelCase__ = backbone
UpperCamelCase__ = num_channels
UpperCamelCase__ = features_only
UpperCamelCase__ = use_pretrained_backbone
UpperCamelCase__ = True
UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
| 20 | 0 |
"""simple docstring"""
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError('iterations must be defined as integers' )
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not number >= 1:
raise ValueError(
'starting number must be\n and integer and be more than 0' )
if not iterations >= 1:
raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' )
UpperCamelCase__ = ''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(SCREAMING_SNAKE_CASE )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
A__ : Any= logging.get_logger(__name__)
A__ : str= {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class __lowerCamelCase ( _a ):
a : List[str] ="""layoutlmv3"""
def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
super().__init__(
vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
UpperCamelCase__ = max_ad_position_embeddings
UpperCamelCase__ = coordinate_size
UpperCamelCase__ = shape_size
UpperCamelCase__ = has_relative_attention_bias
UpperCamelCase__ = rel_pos_bins
UpperCamelCase__ = max_rel_pos
UpperCamelCase__ = has_spatial_attention_bias
UpperCamelCase__ = rel_ad_pos_bins
UpperCamelCase__ = max_rel_ad_pos
UpperCamelCase__ = text_embed
UpperCamelCase__ = visual_embed
UpperCamelCase__ = input_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = patch_size
UpperCamelCase__ = classifier_dropout
class __lowerCamelCase ( _a ):
a : Tuple =version.parse("""1.12""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> float:
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
return 12
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]:
setattr(processor.image_processor , 'apply_ocr' , snake_case_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ )
UpperCamelCase__ = compute_effective_axis_dimension(
snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ )
# Generate dummy inputs according to compute batch and sequence
UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
UpperCamelCase__ = dict(
processor(
snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) )
return inputs
| 20 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: # This function is recursive
"""simple docstring"""
UpperCamelCase__ = len(__snake_case )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
UpperCamelCase__ = array[0]
UpperCamelCase__ = False
UpperCamelCase__ = 1
UpperCamelCase__ = []
while not is_found and i < array_length:
if array[i] < pivot:
UpperCamelCase__ = True
UpperCamelCase__ = [element for element in array[i:] if element >= array[i]]
UpperCamelCase__ = longest_subsequence(__snake_case )
if len(__snake_case ) > len(__snake_case ):
UpperCamelCase__ = temp_array
else:
i += 1
UpperCamelCase__ = [element for element in array[1:] if element >= pivot]
UpperCamelCase__ = [pivot, *longest_subsequence(__snake_case )]
if len(__snake_case ) > len(__snake_case ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple:
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = 384
UpperCamelCase__ = 2
UpperCamelCase__ = 4
UpperCamelCase__ = 37
UpperCamelCase__ = 'gelu'
UpperCamelCase__ = 0.1
UpperCamelCase__ = 0.1
UpperCamelCase__ = 512
UpperCamelCase__ = 16
UpperCamelCase__ = 2
UpperCamelCase__ = 0.02
UpperCamelCase__ = 3
UpperCamelCase__ = 4
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 9
UpperCamelCase__ = 1
UpperCamelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_token_type_ids:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ = None
UpperCamelCase__ = None
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertModel(config=snake_case_ )
UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
UpperCamelCase__ = [input_ids, input_mask]
UpperCamelCase__ = model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int:
UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple:
UpperCamelCase__ = self.num_choices
UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
UpperCamelCase__ = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.num_labels
UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ )
UpperCamelCase__ = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( _a , _a , unittest.TestCase ):
a : Any =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : str =(
{
"""feature-extraction""": TFConvBertModel,
"""fill-mask""": TFConvBertForMaskedLM,
"""question-answering""": TFConvBertForQuestionAnswering,
"""text-classification""": TFConvBertForSequenceClassification,
"""token-classification""": TFConvBertForTokenClassification,
"""zero-shot""": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Any =False
a : Dict =False
a : str =False
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = TFConvBertModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = True
if hasattr(snake_case_ , 'use_cache' ):
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
for model_class in self.all_model_classes:
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' )
UpperCamelCase__ = tf.keras.models.load_model(snake_case_ )
UpperCamelCase__ = model(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = outputs['encoder_hidden_states']
UpperCamelCase__ = outputs['encoder_attentions']
else:
UpperCamelCase__ = outputs['hidden_states']
UpperCamelCase__ = outputs['attentions']
self.assertEqual(len(snake_case_ ) , snake_case_ )
UpperCamelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = True
UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
UpperCamelCase__ = outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
UpperCamelCase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCamelCase__ = model(snake_case_ )[0]
UpperCamelCase__ = [1, 6, 768]
self.assertEqual(output.shape , snake_case_ )
UpperCamelCase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 20 | 0 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
A__ : Union[str, Any]= (
"""This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"""
)
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
warnings.warn(lowerCamelCase_ , lowerCamelCase_ )
requires_backends(lowerCamelCase_ , 'sklearn' )
return (preds == labels).mean()
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
warnings.warn(lowerCamelCase_ , lowerCamelCase_ )
requires_backends(lowerCamelCase_ , 'sklearn' )
UpperCamelCase__ = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase__ = fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
warnings.warn(lowerCamelCase_ , lowerCamelCase_ )
requires_backends(lowerCamelCase_ , 'sklearn' )
UpperCamelCase__ = pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0]
UpperCamelCase__ = spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
warnings.warn(lowerCamelCase_ , lowerCamelCase_ )
requires_backends(lowerCamelCase_ , 'sklearn' )
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F'Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}'
if task_name == "cola":
return {"mcc": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "mrpc":
return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ )
elif task_name == "sts-b":
return pearson_and_spearman(lowerCamelCase_ , lowerCamelCase_ )
elif task_name == "qqp":
return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "qnli":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "rte":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "wnli":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
elif task_name == "hans":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
else:
raise KeyError(lowerCamelCase_ )
def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(lowerCamelCase_ , lowerCamelCase_ )
requires_backends(lowerCamelCase_ , 'sklearn' )
if len(lowerCamelCase_ ) != len(lowerCamelCase_ ):
raise ValueError(F'Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}' )
if task_name == "xnli":
return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
else:
raise KeyError(lowerCamelCase_ )
| 712 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int:
"""simple docstring"""
UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
UpperCamelCase__ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
UpperCamelCase__ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 20 | 0 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
return np.maximum(0 , A__ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 713 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]:
UpperCamelCase__ = parent
UpperCamelCase__ = vocab_size
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = patch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout_prob
UpperCamelCase__ = attention_probs_dropout_prob
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase__ = (image_size // patch_size) ** 2
UpperCamelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitModel(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = self.type_sequence_label_size
UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ )
UpperCamelCase__ = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase__ = 1
UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ )
UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase__ = model(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) = config_and_inputs
UpperCamelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( _a , unittest.TestCase ):
a : int =(
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__ ( self ) -> None:
UpperCamelCase__ = FlaxBeitModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ )
UpperCamelCase__ = model_class(snake_case_ )
@jax.jit
def model_jitted(snake_case_ , **snake_case_ ):
return model(pixel_values=snake_case_ , **snake_case_ )
with self.subTest('JIT Enabled' ):
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple()
self.assertEqual(len(snake_case_ ) , len(snake_case_ ) )
for jitted_output, output in zip(snake_case_ , snake_case_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values
# prepare bool_masked_pos
UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ )
# forward pass
UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 196, 8192)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 1000)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 281
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' )
# forward pass
UpperCamelCase__ = model(**snake_case_ )
UpperCamelCase__ = outputs.logits
# verify the logits
UpperCamelCase__ = (1, 2_1841)
self.assertEqual(logits.shape , snake_case_ )
UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] )
self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) )
UpperCamelCase__ = 2396
self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
| 20 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCamelCase :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=32 , snake_case_=3 , snake_case_=4 , snake_case_=[10, 20, 30, 40] , snake_case_=[2, 2, 3, 2] , snake_case_=True , snake_case_=True , snake_case_=37 , snake_case_="gelu" , snake_case_=10 , snake_case_=0.02 , snake_case_=["stage2", "stage3", "stage4"] , snake_case_=[2, 3, 4] , snake_case_=None , ) -> Optional[Any]:
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = image_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = num_stages
UpperCamelCase__ = hidden_sizes
UpperCamelCase__ = depths
UpperCamelCase__ = is_training
UpperCamelCase__ = use_labels
UpperCamelCase__ = intermediate_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = num_labels
UpperCamelCase__ = initializer_range
UpperCamelCase__ = out_features
UpperCamelCase__ = out_indices
UpperCamelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> str:
UpperCamelCase__ = ConvNextVaModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]:
UpperCamelCase__ = ConvNextVaForImageClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]:
UpperCamelCase__ = ConvNextVaBackbone(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase__ = None
UpperCamelCase__ = ConvNextVaBackbone(config=snake_case_ )
model.to(snake_case_ )
model.eval()
UpperCamelCase__ = model(snake_case_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
UpperCamelCase__ = self.prepare_config_and_inputs()
UpperCamelCase__ = config_and_inputs
UpperCamelCase__ = {"pixel_values": pixel_values}
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.prepare_config_and_inputs()
UpperCamelCase__ = config_and_inputs
UpperCamelCase__ = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
a : Union[str, Any] =(
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
a : Tuple =(
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
a : List[str] =False
a : Optional[Any] =False
a : List[Any] =False
a : str =False
a : Optional[int] =False
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
UpperCamelCase__ = ConvNextVaModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return
@unittest.skip(reason='ConvNextV2 does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
pass
@unittest.skip(reason='ConvNextV2 does not support input and output embeddings' )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
pass
@unittest.skip(reason='ConvNextV2 does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
pass
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCamelCase__ = True
if model_class.__name__ in [
*get_values(snake_case_ ),
*get_values(snake_case_ ),
]:
continue
UpperCamelCase__ = model_class(snake_case_ )
model.to(snake_case_ )
model.train()
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
UpperCamelCase__ = model(**snake_case_ ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCamelCase__ = False
UpperCamelCase__ = True
if (
model_class.__name__
in [*get_values(snake_case_ ), *get_values(snake_case_ )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase__ = model_class(snake_case_ )
model.to(snake_case_ )
model.gradient_checkpointing_enable()
model.train()
UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ )
UpperCamelCase__ = model(**snake_case_ ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(snake_case_ )
UpperCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ = [*signature.parameters.keys()]
UpperCamelCase__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ):
UpperCamelCase__ = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
UpperCamelCase__ = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase__ = self.model_tester.num_stages
self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase__ = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case_ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = ConvNextVaModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def lowerCAmelCase_( ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
UpperCamelCase__ = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(snake_case_ )
UpperCamelCase__ = self.default_image_processor
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = preprocessor(images=snake_case_ , return_tensors='pt' ).to(snake_case_ )
# forward pass
with torch.no_grad():
UpperCamelCase__ = model(**snake_case_ )
# verify the logits
UpperCamelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case_ )
UpperCamelCase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(snake_case_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
| 714 |
"""simple docstring"""
import sys
from collections import defaultdict
class __lowerCamelCase :
def __init__( self ) -> Tuple:
UpperCamelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]:
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]:
UpperCamelCase__ = pos
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCamelCase__ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCamelCase__ = 2 * start + 1
else:
UpperCamelCase__ = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child]
UpperCamelCase__ , UpperCamelCase__ = (
heap[start],
positions[start],
)
UpperCamelCase__ , UpperCamelCase__ = temp, tempa
UpperCamelCase__ = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , snake_case_ )
self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = position[index]
while index != 0:
UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCamelCase__ = heap[parent]
UpperCamelCase__ = position[parent]
self.set_position(position[parent] , snake_case_ )
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , snake_case_ )
break
UpperCamelCase__ = parent
else:
UpperCamelCase__ = val
UpperCamelCase__ = temp
self.set_position(snake_case_ , 0 )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any:
UpperCamelCase__ = len(snake_case_ ) // 2 - 1
for i in range(snake_case_ , -1 , -1 ):
self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ )
def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]:
UpperCamelCase__ = positions[0]
UpperCamelCase__ = sys.maxsize
self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ )
return temp
def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ = Heap()
UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex
UpperCamelCase__ = []
for vertex in range(len(SCREAMING_SNAKE_CASE ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE )
heap.node_position.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ = []
UpperCamelCase__ = 1
UpperCamelCase__ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCamelCase__ = 0
UpperCamelCase__ = distance
heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ):
UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCamelCase__ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )]
):
UpperCamelCase__ = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Dict= int(input("""Enter number of edges: """).strip())
A__ : Dict= defaultdict(list)
for _ in range(edges_number):
A__ : Dict= [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 20 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.