code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A__ : Dict= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : List[str] =["""pixel_values"""] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> None: '''simple docstring''' super().__init__(**snake_case_ ) UpperCamelCase__ = size if size is not None else {'shortest_edge': 256} UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ ) -> np.ndarray: '''simple docstring''' return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> Tuple: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(snake_case_ , default_to_square=snake_case_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(snake_case_ , param_name='crop_size' ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(snake_case_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] UpperCamelCase__ = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(snake_case_ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(snake_case_ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case_ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__ : str= ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__ : list[int]= [ord(letter) for letter in string.ascii_lowercase] A__ : set[int]= {ord(char) for char in VALID_CHARS} A__ : list[str]= ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str | None: """simple docstring""" UpperCamelCase__ = '' UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE ) return decoded def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" UpperCamelCase__ = [] for key in product(SCREAMING_SNAKE_CASE , repeat=3 ): UpperCamelCase__ = try_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE ) return possibles def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ) -> int: """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding='utf-8' ) UpperCamelCase__ = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split(',' )] UpperCamelCase__ = filter_valid_chars(SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: UpperCamelCase__ = filter_common_word(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: break UpperCamelCase__ = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( _a , _a , _a , unittest.TestCase ): a : Tuple =StableDiffusionInstructPixaPixPipeline a : Optional[Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} a : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : Dict =IMAGE_TO_IMAGE_IMAGE_PARAMS a : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase__ = PNDMScheduler(skip_prk_steps=snake_case_ ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ = CLIPTextModel(snake_case_ ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=0 ) -> Union[str, Any]: UpperCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(snake_case_ ) ).convert('RGB' ) if str(snake_case_ ).startswith('mps' ): UpperCamelCase__ = torch.manual_seed(snake_case_ ) else: UpperCamelCase__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) UpperCamelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = 'french fries' UpperCamelCase__ = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) UpperCamelCase__ = output.images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = [inputs['prompt']] * 2 UpperCamelCase__ = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 UpperCamelCase__ = torch.from_numpy(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) UpperCamelCase__ = image / 2 + 0.5 UpperCamelCase__ = image.permute(0 , 3 , 1 , 2 ) UpperCamelCase__ = image.repeat(2 , 1 , 1 , 1 ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCamelCase__ = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = self.get_dummy_inputs(snake_case_ ) UpperCamelCase__ = sd_pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = [round(snake_case_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(snake_case_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case_ ) UpperCamelCase__ = VaeImageProcessor(do_resize=snake_case_ , do_normalize=snake_case_ ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) )[0] UpperCamelCase__ = components['vae'] UpperCamelCase__ = self.get_dummy_inputs_by_type(snake_case_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCamelCase__ = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCamelCase__ = pipe(**snake_case_ )[0] UpperCamelCase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 ) -> Tuple: UpperCamelCase__ = torch.manual_seed(snake_case_ ) UpperCamelCase__ = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) UpperCamelCase__ = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) UpperCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ ) UpperCamelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase__ = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = 0 def callback_fn(snake_case_ , snake_case_ , snake_case_ ) -> None: UpperCamelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ = latents[0, -3:, -3:, -1] UpperCamelCase__ = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCamelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCamelCase__ = latents[0, -3:, -3:, -1] UpperCamelCase__ = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCamelCase__ = False UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case_ , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase__ = self.get_inputs() UpperCamelCase__ = pipe(**snake_case_ ) UpperCamelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase__ = inputs['image'].resize((504, 504) ) UpperCamelCase__ = 'timbrooks/instruct-pix2pix' UpperCamelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case_ , safety_checker=snake_case_ , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() UpperCamelCase__ = pipe(**snake_case_ ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCamelCase__ = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( _a ): a : Tuple ="""dandelin/vilt-b32-finetuned-vqa""" a : str =( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) a : Optional[Any] ="""image_qa""" a : Dict =AutoProcessor a : int =AutoModelForVisualQuestionAnswering a : str =["""image""", """text"""] a : List[Any] =["""text"""] def __init__( self , *snake_case_ , **snake_case_ ) -> Optional[Any]: requires_backends(self , ['vision'] ) super().__init__(*snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: return self.pre_processor(snake_case_ , snake_case_ , return_tensors='pt' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: with torch.no_grad(): return self.model(**snake_case_ ).logits def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[Any]: UpperCamelCase__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCamelCase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ = 1 if upper_limit > 0: UpperCamelCase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: A__ : List[str]= int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__= get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __lowerCamelCase ( _a , unittest.TestCase ): a : str =BartphoTokenizer a : Union[str, Any] =False a : str =True def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = ['▁This', '▁is', '▁a', '▁t', 'est'] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = {'unk_token': '<unk>'} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: UpperCamelCase__ = 'This is a là test' UpperCamelCase__ = 'This is a<unk><unk> test' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = BartphoTokenizer(snake_case_ , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase__ = 'This is a là test' UpperCamelCase__ = '▁This ▁is ▁a ▁l à ▁t est'.split() UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , ) -> Optional[int]: UpperCamelCase__ = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCamelCase ( _a , unittest.TestCase ): a : Dict =DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case_ , 'image_std' ) ) self.assertTrue(hasattr(snake_case_ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase__ = image_processing(snake_case_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : List[str]= { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str]= ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int= [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any]= [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int= [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A__ : Optional[Any]= _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A__ : Tuple= logging.get_logger(__name__) # pylint: disable=invalid-name A__ : List[str]= """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=8 ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5_12 , SCREAMING_SNAKE_CASE=5_12 ) -> Tuple: """simple docstring""" UpperCamelCase__ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCamelCase__ = np.array(pil_image.convert('RGB' ) ) UpperCamelCase__ = arr.astype(np.floataa ) / 127.5 - 1 UpperCamelCase__ = np.transpose(SCREAMING_SNAKE_CASE , [2, 0, 1] ) UpperCamelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) return image class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_ , snake_case_ , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=snake_case_ , scheduler=snake_case_ , movq=snake_case_ , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: # get the original timestep using init_timestep UpperCamelCase__ = min(int(num_inference_steps * strength ) , snake_case_ ) UpperCamelCase__ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> str: if not isinstance(snake_case_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case_ )}' ) UpperCamelCase__ = image.to(device=snake_case_ , dtype=snake_case_ ) UpperCamelCase__ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase__ = image else: if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(snake_case_ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case_ ) ] UpperCamelCase__ = torch.cat(snake_case_ , dim=0 ) else: UpperCamelCase__ = self.movq.encode(snake_case_ ).latent_dist.sample(snake_case_ ) UpperCamelCase__ = self.movq.config.scaling_factor * init_latents UpperCamelCase__ = torch.cat([init_latents] , dim=0 ) UpperCamelCase__ = init_latents.shape UpperCamelCase__ = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) # get latents UpperCamelCase__ = self.scheduler.add_noise(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCamelCase__ = torch.device(F'cuda:{gpu_id}' ) UpperCamelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCamelCase__ = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase__ , UpperCamelCase__ = cpu_offload_with_hook(snake_case_ , snake_case_ , prev_module_hook=snake_case_ ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 512 , snake_case_ = 512 , snake_case_ = 100 , snake_case_ = 4.0 , snake_case_ = 0.3 , snake_case_ = 1 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ) -> List[str]: UpperCamelCase__ = self._execution_device UpperCamelCase__ = guidance_scale > 1.0 if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = torch.cat(snake_case_ , dim=0 ) UpperCamelCase__ = image_embeds.shape[0] if isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = torch.cat(snake_case_ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(snake_case_ , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(snake_case_ , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = [image] if not all(isinstance(snake_case_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'Input is in incorrect format: {[type(snake_case_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) UpperCamelCase__ = torch.cat([prepare_image(snake_case_ , snake_case_ , snake_case_ ) for i in image] , dim=0 ) UpperCamelCase__ = image.to(dtype=image_embeds.dtype , device=snake_case_ ) UpperCamelCase__ = self.movq.encode(snake_case_ )['latents'] UpperCamelCase__ = latents.repeat_interleave(snake_case_ , dim=0 ) self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = self.get_timesteps(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase__ , UpperCamelCase__ = downscale_height_and_width(snake_case_ , snake_case_ , self.movq_scale_factor ) UpperCamelCase__ = self.prepare_latents( snake_case_ , snake_case_ , snake_case_ , snake_case_ , image_embeds.dtype , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {'image_embeds': image_embeds} UpperCamelCase__ = self.unet( sample=snake_case_ , timestep=snake_case_ , encoder_hidden_states=snake_case_ , added_cond_kwargs=snake_case_ , return_dict=snake_case_ , )[0] if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ , UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ , )[0] # post-processing UpperCamelCase__ = self.movq.decode(snake_case_ , force_not_quantize=snake_case_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" from PIL import Image def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Image: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = image.size UpperCamelCase__ = 0 UpperCamelCase__ = image.load() for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = pixels[j, i] mean += pixel mean //= width * height for j in range(SCREAMING_SNAKE_CASE ): for i in range(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": A__ : List[str]= mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A__ : Dict= """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") A__ : str= F"""https://www.google.com/search?q={query}&num=100""" A__ : Optional[Any]= requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: A__ : Tuple= ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: A__ : Optional[Any]= parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase__ , UpperCamelCase__ = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase__ , UpperCamelCase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = name UpperCamelCase__ = val def __str__( self ) -> Any: return F'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , snake_case_ ) -> List[Any]: return self.val < other.val class __lowerCamelCase : def __init__( self , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = {} UpperCamelCase__ = {} UpperCamelCase__ = self.build_heap(snake_case_ ) def __getitem__( self , snake_case_ ) -> Optional[Any]: return self.get_value(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]: return (idx - 1) // 2 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: return idx * 2 + 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Union[str, Any]: return idx * 2 + 2 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[Any]: return self.heap_dict[key] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: UpperCamelCase__ = len(snake_case_ ) - 1 UpperCamelCase__ = self.get_parent_idx(snake_case_ ) for idx, i in enumerate(snake_case_ ): UpperCamelCase__ = idx UpperCamelCase__ = i.val for i in range(snake_case_ , -1 , -1 ): self.sift_down(snake_case_ , snake_case_ ) return array def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: while True: UpperCamelCase__ = self.get_left_child_idx(snake_case_ ) # noqa: E741 UpperCamelCase__ = self.get_right_child_idx(snake_case_ ) UpperCamelCase__ = idx if l < len(snake_case_ ) and array[l] < array[idx]: UpperCamelCase__ = l if r < len(snake_case_ ) and array[r] < array[smallest]: UpperCamelCase__ = r if smallest != idx: UpperCamelCase__ , UpperCamelCase__ = array[smallest], array[idx] ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCamelCase__ = smallest else: break def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> str: UpperCamelCase__ = self.get_parent_idx(snake_case_ ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCamelCase__ , UpperCamelCase__ = self.heap[idx], self.heap[p] UpperCamelCase__ , UpperCamelCase__ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCamelCase__ = p UpperCamelCase__ = self.get_parent_idx(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: return self.heap[0] def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ , UpperCamelCase__ = self.heap[-1], self.heap[0] UpperCamelCase__ , UpperCamelCase__ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCamelCase__ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: self.heap.append(snake_case_ ) UpperCamelCase__ = len(self.heap ) - 1 UpperCamelCase__ = node.val self.sift_up(len(self.heap ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return len(self.heap ) == 0 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Tuple: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCamelCase__ = new_value UpperCamelCase__ = new_value self.sift_up(self.idx_of_element[node] ) A__ : Any= Node("""R""", -1) A__ : Any= Node("""B""", 6) A__ : Optional[int]= Node("""A""", 3) A__ : List[str]= Node("""X""", 1) A__ : int= Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A__ : str= MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: UpperCamelCase__ = parser.add_parser('env' ) download_parser.set_defaults(func=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = huggingface_hub.__version__ UpperCamelCase__ = 'not installed' UpperCamelCase__ = 'NA' if is_torch_available(): import torch UpperCamelCase__ = torch.__version__ UpperCamelCase__ = torch.cuda.is_available() UpperCamelCase__ = 'not installed' if is_transformers_available(): import transformers UpperCamelCase__ = transformers.__version__ UpperCamelCase__ = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase__ = accelerate.__version__ UpperCamelCase__ = 'not installed' if is_xformers_available(): import xformers UpperCamelCase__ = xformers.__version__ UpperCamelCase__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ : Optional[Any]= TypeVar("""T""") A__ : Optional[Any]= TypeVar("""U""") class __lowerCamelCase ( Generic[T, U] ): def __init__( self , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self ) -> str: return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCamelCase ( Generic[T, U] ): def __init__( self ) -> None: UpperCamelCase__ = DoubleLinkedListNode(snake_case_ , snake_case_ ) UpperCamelCase__ = DoubleLinkedListNode(snake_case_ , snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self ) -> str: UpperCamelCase__ = ['DoubleLinkedList'] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(snake_case_ ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class __lowerCamelCase ( Generic[T, U] ): a : dict[Callable[[T], U], LRUCache[T, U]] ={} def __init__( self , snake_case_ ) -> Tuple: UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self ) -> str: return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , snake_case_ ) -> bool: return key in self.cache def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case_ ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(snake_case_ , snake_case_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(snake_case_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(snake_case_ ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case_ ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(snake_case_ ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*snake_case_ ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case_ , 'cache_info' , snake_case_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) UpperCamelCase__ = str(bin(SCREAMING_SNAKE_CASE ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) UpperCamelCase__ = str(bin(SCREAMING_SNAKE_CASE ) )[2:] if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b0" UpperCamelCase__ = binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number UpperCamelCase__ = '0' + str(bin(SCREAMING_SNAKE_CASE ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase__ = len(bin(SCREAMING_SNAKE_CASE )[3:] ) # Find 2's complement of number UpperCamelCase__ = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] UpperCamelCase__ = ( '1' + '0' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + binary_number ) if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00_00_00 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = int((limit - 24) ** (1 / 2) ) UpperCamelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE ) ) ) for primea in primes: UpperCamelCase__ = primea * primea for primea in primes: UpperCamelCase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase__ = primea * primea * primea * primea UpperCamelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE ) return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = int(number**0.5 ) return number == sq * sq def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" UpperCamelCase__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCamelCase__ = x_den * y_den * z_den UpperCamelCase__ = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" UpperCamelCase__ = set() UpperCamelCase__ = 42 UpperCamelCase__ = Fraction(0 ) UpperCamelCase__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCamelCase__ = x_num * y_den + x_den * y_num UpperCamelCase__ = x_den * y_den UpperCamelCase__ = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 UpperCamelCase__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCamelCase__ = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = int(sqrt(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = int(sqrt(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=-1 UpperCamelCase__ = x_num * y_num UpperCamelCase__ = x_den * y_num + x_num * y_den UpperCamelCase__ = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 UpperCamelCase__ = x_num * x_num * y_num * y_num UpperCamelCase__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = int(sqrt(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = int(sqrt(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCamelCase__ = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
701
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
0
"""simple docstring""" A__ : dict[str, float]= { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } A__ : dict[str, float]= { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: UpperCamelCase__ = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(SCREAMING_SNAKE_CASE )}' ) raise ValueError(SCREAMING_SNAKE_CASE ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A__ : Union[str, Any]= input("""Enter numbers separated by a comma:\n""").strip() A__ : List[Any]= [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
20
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any]= logging.get_logger(__name__) A__ : Any= { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __lowerCamelCase ( _a ): a : int ="""glpn""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=64 , snake_case_=10 , snake_case_=-1 , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = max_depth UpperCamelCase__ = head_in_index
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products UpperCamelCase__ = numbers[i] if number < 0: UpperCamelCase__ , UpperCamelCase__ = min_till_now, max_till_now UpperCamelCase__ = max(SCREAMING_SNAKE_CASE , max_till_now * number ) UpperCamelCase__ = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now UpperCamelCase__ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
704
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ : Dict= logging.get_logger(__name__) A__ : str= {"""vocab_file""": """spiece.model"""} A__ : Union[str, Any]= { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 A__ : Union[str, Any]= { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } A__ : Optional[Any]= """▁""" class __lowerCamelCase ( _a ): a : Dict =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_=100 , snake_case_=None , snake_case_ = None , snake_case_=True , **snake_case_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [F'<extra_id_{i}>' for i in range(snake_case_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCamelCase__ = len(set(filter(lambda snake_case_ : bool('extra_id' in str(snake_case_ ) ) , snake_case_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) UpperCamelCase__ = legacy UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , extra_ids=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy=snake_case_ , **snake_case_ , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = extra_ids UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , snake_case_ , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self ) -> Any: return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case_ )) + [1] return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return list( set(filter(lambda snake_case_ : bool(re.search(r'<extra_id_\d+>' , snake_case_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: return [self._convert_token_to_id(snake_case_ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[int]: if len(snake_case_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) if token_ids_a is None: return token_ids_a else: UpperCamelCase__ = self._add_eos_if_not_present(snake_case_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> str: UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self , snake_case_ ) -> Any: UpperCamelCase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCamelCase__ = SPIECE_UNDERLINE + text.replace(snake_case_ , ' ' ) return super().tokenize(snake_case_ , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , **snake_case_ ) -> List[Any]: if not self.legacy: UpperCamelCase__ = text.startswith(snake_case_ ) if is_first: UpperCamelCase__ = text[1:] UpperCamelCase__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(snake_case_ ): UpperCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: if token.startswith('<extra_id_' ): UpperCamelCase__ = re.match(r'<extra_id_(\d+)>' , snake_case_ ) UpperCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: if index < self.sp_model.get_piece_size(): UpperCamelCase__ = self.sp_model.IdToPiece(snake_case_ ) else: UpperCamelCase__ = F'<extra_id_{self.vocab_size - 1 - index}>' return token def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = [] UpperCamelCase__ = '' UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(snake_case_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(snake_case_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , 'wb' ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
20
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A__ : Optional[int]= logging.get_logger(__name__) @add_end_docstrings(_a ) class __lowerCamelCase ( _a ): def __init__( self , *snake_case_ , **snake_case_ ) -> str: super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = {}, {} if padding is not None: UpperCamelCase__ = padding if truncation is not None: UpperCamelCase__ = truncation if top_k is not None: UpperCamelCase__ = top_k return preprocess_params, {}, postprocess_params def __call__( self , snake_case_ , snake_case_ = None , **snake_case_ ) -> Any: if isinstance(snake_case_ , (Image.Image, str) ) and isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = {'image': image, 'question': question} else: UpperCamelCase__ = image UpperCamelCase__ = super().__call__(snake_case_ , **snake_case_ ) return results def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=False , snake_case_=False ) -> Tuple: UpperCamelCase__ = load_image(inputs['image'] ) UpperCamelCase__ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=snake_case_ , truncation=snake_case_ ) UpperCamelCase__ = self.image_processor(images=snake_case_ , return_tensors=self.framework ) model_inputs.update(snake_case_ ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = self.model(**snake_case_ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_=5 ) -> int: if top_k > self.model.config.num_labels: UpperCamelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCamelCase__ = model_outputs.logits.sigmoid()[0] UpperCamelCase__ , UpperCamelCase__ = probs.topk(snake_case_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ = scores.tolist() UpperCamelCase__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
705
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A__ : Any= TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , snake_case_ ) -> None: UpperCamelCase__ = data UpperCamelCase__ = self UpperCamelCase__ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # create a new set with x as its member UpperCamelCase__ = DisjointSetTreeNode(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) UpperCamelCase__ = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # helper function for union operation if nodea.rank > nodea.rank: UpperCamelCase__ = nodea else: UpperCamelCase__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: # merge 2 disjoint sets self.link(self.find_set(snake_case_ ) , self.find_set(snake_case_ ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> None: # add an edge with the given weight self.add_node(snake_case_ ) self.add_node(snake_case_ ) UpperCamelCase__ = weight UpperCamelCase__ = weight def SCREAMING_SNAKE_CASE__ ( self ) -> GraphUndirectedWeighted[T]: UpperCamelCase__ = [] UpperCamelCase__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set UpperCamelCase__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edges[index] index += 1 UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) UpperCamelCase__ = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ , snake_case_ , snake_case_ ) disjoint_set.union(snake_case_ , snake_case_ ) return graph
20
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() A__ : List[Any]= logging.get_logger(__name__) def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = downstream_dict['projector.weight'] UpperCamelCase__ = downstream_dict['projector.bias'] UpperCamelCase__ = downstream_dict['model.post_net.linear.weight'] UpperCamelCase__ = downstream_dict['model.post_net.linear.bias'] return model def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = downstream_dict['model.linear.weight'] UpperCamelCase__ = downstream_dict['model.linear.bias'] return model def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = downstream_dict['connector.weight'] UpperCamelCase__ = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCamelCase__ = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] UpperCamelCase__ = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] UpperCamelCase__ = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase__ = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase__ = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase__ = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase__ = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) UpperCamelCase__ = checkpoint['Downstream'] UpperCamelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE ) UpperCamelCase__ = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): UpperCamelCase__ = convert_classification(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif arch.endswith('ForAudioFrameClassification' ): UpperCamelCase__ = convert_diarization(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif arch.endswith('ForXVector' ): UpperCamelCase__ = convert_xvector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: UpperCamelCase__ = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : str= argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A__ : List[Any]= parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
706
"""simple docstring""" A__ : Tuple= """Alexander Joslin""" import operator as op from .stack import Stack def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) operand_stack.push(SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A__ : int= """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
20
0
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ , UpperCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase__ = 'A painting of a squirrel eating a burger' UpperCamelCase__ = jax.device_count() UpperCamelCase__ = num_samples * [prompt] UpperCamelCase__ = sd_pipe.prepare_inputs(snake_case_ ) UpperCamelCase__ = replicate(snake_case_ ) UpperCamelCase__ = shard(snake_case_ ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case_ , jax.device_count() ) UpperCamelCase__ = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=25 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = 'stabilityai/stable-diffusion-2' UpperCamelCase__ , UpperCamelCase__ = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case_ , subfolder='scheduler' ) UpperCamelCase__ , UpperCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase__ = scheduler_params UpperCamelCase__ = 'A painting of a squirrel eating a burger' UpperCamelCase__ = jax.device_count() UpperCamelCase__ = num_samples * [prompt] UpperCamelCase__ = sd_pipe.prepare_inputs(snake_case_ ) UpperCamelCase__ = replicate(snake_case_ ) UpperCamelCase__ = shard(snake_case_ ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case_ , jax.device_count() ) UpperCamelCase__ = sd_pipe(snake_case_ , snake_case_ , snake_case_ , num_inference_steps=25 , jit=snake_case_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any]= logging.get_logger(__name__) A__ : List[str]= { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowerCamelCase ( _a ): a : List[str] ="""pix2struct_text_model""" a : Any =["""past_key_values"""] a : str ={ """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case_=5_0244 , snake_case_=768 , snake_case_=64 , snake_case_=2048 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[Any]: UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_layers UpperCamelCase__ = num_heads UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = use_cache UpperCamelCase__ = eos_token_id UpperCamelCase__ = decoder_start_token_id # for backwards compatibility UpperCamelCase__ = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __lowerCamelCase ( _a ): a : Tuple ="""pix2struct_vision_model""" def __init__( self , snake_case_=768 , snake_case_=768 , snake_case_=2048 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=4096 , snake_case_=32 , snake_case_=128 , **snake_case_ , ) -> Union[str, Any]: super().__init__(**snake_case_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = patch_embed_hidden_size UpperCamelCase__ = d_ff UpperCamelCase__ = dropout_rate UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = initializer_range UpperCamelCase__ = initializer_factor UpperCamelCase__ = attention_dropout UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = dense_act_fn UpperCamelCase__ = seq_len UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __lowerCamelCase ( _a ): a : Any ="""pix2struct""" a : Any =True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: UpperCamelCase__ = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCamelCase__ = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCamelCase__ = PixaStructTextConfig(**snake_case_ ) UpperCamelCase__ = PixaStructVisionConfig(**snake_case_ ) UpperCamelCase__ = self.text_config.decoder_start_token_id UpperCamelCase__ = self.text_config.pad_token_id UpperCamelCase__ = self.text_config.eos_token_id UpperCamelCase__ = initializer_factor UpperCamelCase__ = initializer_range UpperCamelCase__ = self.initializer_range UpperCamelCase__ = self.initializer_range UpperCamelCase__ = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
708
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ : Optional[Any]= """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('tpu-config' , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=SCREAMING_SNAKE_CASE , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=SCREAMING_SNAKE_CASE , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) UpperCamelCase__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=SCREAMING_SNAKE_CASE , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": UpperCamelCase__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = '; '.join(SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(SCREAMING_SNAKE_CASE )}' ) return subprocess.run(SCREAMING_SNAKE_CASE ) print('Successfully setup pod.' ) def lowerCAmelCase_( ) -> int: """simple docstring""" UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(SCREAMING_SNAKE_CASE )
20
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" UpperCamelCase__ = 2 UpperCamelCase__ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE ) if n > 1: factors.append(SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str]= logging.get_logger(__name__) class __lowerCamelCase ( _a ): a : Optional[int] ="""timm_backbone""" def __init__( self , snake_case_=None , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Dict: super().__init__(**snake_case_ ) UpperCamelCase__ = backbone UpperCamelCase__ = num_channels UpperCamelCase__ = features_only UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = True UpperCamelCase__ = out_indices if out_indices is not None else (-1,)
20
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A__ : Dict= get_tests_dir("""fixtures/test_sentencepiece.model""") A__ : Union[str, Any]= {"""target_lang""": """fi""", """source_lang""": """en"""} A__ : int= """>>zh<<""" A__ : List[str]= """Helsinki-NLP/""" if is_torch_available(): A__ : Union[str, Any]= """pt""" elif is_tf_available(): A__ : Dict= """tf""" else: A__ : Optional[Any]= """jax""" @require_sentencepiece class __lowerCamelCase ( _a , unittest.TestCase ): a : Tuple =MarianTokenizer a : List[str] =False a : int =True def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) UpperCamelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Dict: return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = '</s>' UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case_ ) , 9 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) UpperCamelCase__ = en_de_tokenizer(['I am a small frog'] , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) UpperCamelCase__ = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(snake_case_ , batch.input_ids[0] ) UpperCamelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case_ ) UpperCamelCase__ = [x.name for x in Path(snake_case_ ).glob('*' )] self.assertIn('source.spm' , snake_case_ ) MarianTokenizer.from_pretrained(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=snake_case_ , truncation=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tok(['I am a tiny frog', 'I am a small frog'] , padding=snake_case_ , return_tensors=snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # fmt: off UpperCamelCase__ = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) UpperCamelCase__ = 'Tämä on testi' UpperCamelCase__ = 'This is a test' UpperCamelCase__ = [76, 7, 2047, 2] UpperCamelCase__ = [69, 12, 11, 940, 2] UpperCamelCase__ = tokenizer(snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer(text_target=snake_case_ ).input_ids self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
710
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ : Any= logging.get_logger(__name__) A__ : str= { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class __lowerCamelCase ( _a ): a : List[str] ="""layoutlmv3""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=1024 , snake_case_=128 , snake_case_=128 , snake_case_=True , snake_case_=32 , snake_case_=128 , snake_case_=64 , snake_case_=256 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=224 , snake_case_=3 , snake_case_=16 , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) UpperCamelCase__ = max_ad_position_embeddings UpperCamelCase__ = coordinate_size UpperCamelCase__ = shape_size UpperCamelCase__ = has_relative_attention_bias UpperCamelCase__ = rel_pos_bins UpperCamelCase__ = max_rel_pos UpperCamelCase__ = has_spatial_attention_bias UpperCamelCase__ = rel_ad_pos_bins UpperCamelCase__ = max_rel_ad_pos UpperCamelCase__ = text_embed UpperCamelCase__ = visual_embed UpperCamelCase__ = input_size UpperCamelCase__ = num_channels UpperCamelCase__ = patch_size UpperCamelCase__ = classifier_dropout class __lowerCamelCase ( _a ): a : Tuple =version.parse("""1.12""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 40 , snake_case_ = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) UpperCamelCase__ = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
20
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
711
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> Tuple: UpperCamelCase__ = parent UpperCamelCase__ = 13 UpperCamelCase__ = 7 UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = 99 UpperCamelCase__ = 384 UpperCamelCase__ = 2 UpperCamelCase__ = 4 UpperCamelCase__ = 37 UpperCamelCase__ = 'gelu' UpperCamelCase__ = 0.1 UpperCamelCase__ = 0.1 UpperCamelCase__ = 512 UpperCamelCase__ = 16 UpperCamelCase__ = 2 UpperCamelCase__ = 0.02 UpperCamelCase__ = 3 UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = 2 UpperCamelCase__ = 9 UpperCamelCase__ = 1 UpperCamelCase__ = None def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertModel(config=snake_case_ ) UpperCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = TFConvBertForMaskedLM(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForSequenceClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFConvBertForMultipleChoice(config=snake_case_ ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFConvBertForTokenClassification(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = TFConvBertForQuestionAnswering(config=snake_case_ ) UpperCamelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a : str =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a : Any =False a : Dict =False a : str =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = TFConvBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = True if hasattr(snake_case_ , 'use_cache' ): UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) for model_class in self.all_model_classes: UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) UpperCamelCase__ = os.path.join(snake_case_ , 'saved_model' , '1' ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = model(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = outputs['encoder_hidden_states'] UpperCamelCase__ = outputs['encoder_attentions'] else: UpperCamelCase__ = outputs['hidden_states'] UpperCamelCase__ = outputs['attentions'] self.assertEqual(len(snake_case_ ) , snake_case_ ) UpperCamelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True UpperCamelCase__ = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) UpperCamelCase__ = getattr(self.model_tester , 'key_length' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): UpperCamelCase__ = len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__ = outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): UpperCamelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) UpperCamelCase__ = len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(snake_case_ )[0] UpperCamelCase__ = [1, 6, 768] self.assertEqual(output.shape , snake_case_ ) UpperCamelCase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
20
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( _a , unittest.TestCase ): a : Dict =DebertaTokenizer a : Optional[int] =True a : Optional[Any] =DebertaTokenizerFast def SCREAMING_SNAKE_CASE__ ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ = {'unk_token': '[UNK]'} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: UpperCamelCase__ = 'lower newer' UpperCamelCase__ = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = 'lower newer' UpperCamelCase__ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = tokenizer('Hello' , 'World' ) UpperCamelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case_ ) UpperCamelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) UpperCamelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase__ = tokenizer_class.from_pretrained('microsoft/deberta-base' ) UpperCamelCase__ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] UpperCamelCase__ = tokenizer(snake_case_ , padding=snake_case_ ) UpperCamelCase__ = [tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) for seq in encoding['input_ids']] # fmt: off UpperCamelCase__ = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase__ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , snake_case_ ) for expected, decoded in zip(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ )
712
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
0
import argparse from collections import defaultdict import yaml A__ : Optional[Any]= """docs/source/en/_toctree.yml""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for doc in model_doc: counts[doc["local"]] += 1 UpperCamelCase__ = [key for key, value in counts.items() if value > 1] UpperCamelCase__ = [] for duplicate_key in duplicates: UpperCamelCase__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: UpperCamelCase__ = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ = content[api_idx]['sections'] # Then to the model doc UpperCamelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCamelCase__ = api_doc[model_idx]['sections'] UpperCamelCase__ = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE ) if 'sections' in section] UpperCamelCase__ = False for idx, modality_doc in modalities_docs: UpperCamelCase__ = modality_doc['sections'] UpperCamelCase__ = clean_model_doc_toc(SCREAMING_SNAKE_CASE ) if old_modality_doc != new_modality_doc: UpperCamelCase__ = True if overwrite: UpperCamelCase__ = new_modality_doc if diff: if overwrite: UpperCamelCase__ = model_doc UpperCamelCase__ = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A__ : Union[str, Any]= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Union[str, Any]= parser.parse_args() check_model_doc(args.fix_and_overwrite)
713
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=100 , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , ) -> Optional[int]: UpperCamelCase__ = parent UpperCamelCase__ = vocab_size UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitModel(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = FlaxBeitForImageClassification(config=snake_case_ ) UpperCamelCase__ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = FlaxBeitForImageClassification(snake_case_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __lowerCamelCase ( _a , unittest.TestCase ): a : int =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ) -> None: UpperCamelCase__ = FlaxBeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(snake_case_ ) UpperCamelCase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case_ , snake_case_ ) UpperCamelCase__ = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase__ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase_( ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class __lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase__ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass UpperCamelCase__ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> int: UpperCamelCase__ = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=snake_case_ , return_tensors='np' ) # forward pass UpperCamelCase__ = model(**snake_case_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) UpperCamelCase__ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
20
0
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=32 , snake_case_=True , ) -> List[str]: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size_divisor UpperCamelCase__ = do_rescale def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCamelCase ( _a , unittest.TestCase ): a : List[str] =GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case_ , 'size_divisor' ) ) self.assertTrue(hasattr(snake_case_ , 'resample' ) ) self.assertTrue(hasattr(snake_case_ , 'do_rescale' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
715
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: UpperCamelCase__ = size UpperCamelCase__ = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> None: UpperCamelCase__ = len(snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ) for i in range(1 , self.size ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: UpperCamelCase__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase__ = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase__ = self.next_(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: if right == 0: return 0 UpperCamelCase__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase__ = self.prev(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 UpperCamelCase__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
20
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: A__ : List[str]= None try: import msvcrt except ImportError: A__ : Dict= None try: import fcntl except ImportError: A__ : Dict= None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : Optional[int]= OSError # Data # ------------------------------------------------ A__ : str= [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] A__ : Union[str, Any]= """3.0.12""" A__ : Any= None def lowerCAmelCase_( ) -> int: """simple docstring""" global _logger UpperCamelCase__ = _logger or logging.getLogger(__name__ ) return _logger class __lowerCamelCase ( _a ): def __init__( self , snake_case_ ) -> Any: UpperCamelCase__ = lock_file return None def __str__( self ) -> Optional[int]: UpperCamelCase__ = F'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __lowerCamelCase : def __init__( self , snake_case_ ) -> List[Any]: UpperCamelCase__ = lock return None def __enter__( self ) -> int: return self.lock def __exit__( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: self.lock.release() return None class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> Dict: UpperCamelCase__ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase__ = self.hash_filename_if_too_long(snake_case_ , snake_case_ ) # The path to the lock file. UpperCamelCase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase__ = None # The default timeout value. UpperCamelCase__ = timeout # We use this lock primarily for the lock counter. UpperCamelCase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase__ = 0 return None @property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return self._lock_file @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: UpperCamelCase__ = float(snake_case_ ) return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: raise NotImplementedError() @property def SCREAMING_SNAKE_CASE__ ( self ) -> str: return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None , snake_case_=0.05 ) -> int: # Use the default timeout, if no timeout is provided. if timeout is None: UpperCamelCase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase__ = id(self ) UpperCamelCase__ = self._lock_file UpperCamelCase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(F'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(snake_case_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase__ = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_=False ) -> Tuple: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase__ = id(self ) UpperCamelCase__ = self._lock_file logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() UpperCamelCase__ = 0 logger().debug(F'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self ) -> List[Any]: self.acquire() return self def __exit__( self , snake_case_ , snake_case_ , snake_case_ ) -> Union[str, Any]: self.release() return None def __del__( self ) -> Optional[Any]: self.release(force=snake_case_ ) return None def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = os.path.basename(snake_case_ ) if len(snake_case_ ) > max_length and max_length > 0: UpperCamelCase__ = os.path.dirname(snake_case_ ) UpperCamelCase__ = str(hash(snake_case_ ) ) UpperCamelCase__ = filename[: max_length - len(snake_case_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(snake_case_ , snake_case_ ) else: return path class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) UpperCamelCase__ = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) except OSError: pass else: try: msvcrt.locking(snake_case_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(snake_case_ ) else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self._lock_file_fd UpperCamelCase__ = None msvcrt.locking(snake_case_ , msvcrt.LK_UNLCK , 1 ) os.close(snake_case_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=-1 , snake_case_=None ) -> int: UpperCamelCase__ = os.statvfs(os.path.dirname(snake_case_ ) ).f_namemax super().__init__(snake_case_ , timeout=snake_case_ , max_filename_length=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) try: fcntl.flock(snake_case_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(snake_case_ ) else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition UpperCamelCase__ = self._lock_file_fd UpperCamelCase__ = None fcntl.flock(snake_case_ , fcntl.LOCK_UN ) os.close(snake_case_ ) return None class __lowerCamelCase ( _a ): def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase__ = os.open(self._lock_file , snake_case_ ) except OSError: pass else: UpperCamelCase__ = fd return None def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: os.close(self._lock_file_fd ) UpperCamelCase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : Union[str, Any]= None if msvcrt: A__ : List[Any]= WindowsFileLock elif fcntl: A__ : Optional[Any]= UnixFileLock else: A__ : Dict= SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
716
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A__ : Union[str, Any]= logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = True , ) -> Tuple: UpperCamelCase__ = [file for file in os.listdir(snake_case_ ) if os.path.isfile(os.path.join(snake_case_ , snake_case_ ) )] if identifier is not None: UpperCamelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case_ , snake_case_ ): for n_ in n_identifier: UpperCamelCase__ = [file for file in files if n_ not in file] else: UpperCamelCase__ = [file for file in files if n_identifier not in file] UpperCamelCase__ = ignore_files or [] ignore_files.append('__init__.py' ) UpperCamelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , snake_case_ ) if only_modules: UpperCamelCase__ = file.split('.' )[0] try: UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) UpperCamelCase__ = doctest.DocTestSuite(snake_case_ ) UpperCamelCase__ = unittest.TextTestRunner().run(snake_case_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCamelCase__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'modeling' UpperCamelCase__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case_ , identifier=snake_case_ , ignore_files=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'tokenization' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = 'configuration' self.analyze_directory(snake_case_ , identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = Path('src/transformers' ) UpperCamelCase__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case_ , n_identifier=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = Path('docs/source' ) UpperCamelCase__ = ['favicon.ico'] self.analyze_directory(snake_case_ , ignore_files=snake_case_ , only_modules=snake_case_ )
20
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=snake_case_ ).to(snake_case_ ) UpperCamelCase__ = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase__ = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCamelCase__ = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCamelCase__ = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss UpperCamelCase__ = -(labels.shape[-1] * loss.item()) UpperCamelCase__ = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ : Any= """▁""" A__ : List[str]= get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __lowerCamelCase ( _a , unittest.TestCase ): a : List[Any] =BertGenerationTokenizer a : Union[str, Any] =False a : List[str] =True def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: super().setUp() UpperCamelCase__ = BertGenerationTokenizer(snake_case_ , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = '<s>' UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(snake_case_ ) , 1002 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: UpperCamelCase__ = BertGenerationTokenizer(snake_case_ , keep_accents=snake_case_ ) UpperCamelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [285, 46, 10, 170, 382] , ) UpperCamelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = 'Hello World!' UpperCamelCase__ = [1_8536, 2260, 101] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCamelCase__ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(snake_case_ , self.big_tokenizer.encode(snake_case_ ) ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCamelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase__ = ' '.join(snake_case_ ) UpperCamelCase__ = self.big_tokenizer.encode_plus(snake_case_ , return_tensors='pt' , return_token_type_ids=snake_case_ ) UpperCamelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=snake_case_ ) UpperCamelCase__ = BertGenerationConfig() UpperCamelCase__ = BertGenerationEncoder(snake_case_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case_ ) model(**snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: # fmt: off UpperCamelCase__ = {'input_ids': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A__ : List[Any]= logging.get_logger(__name__) A__ : Tuple= OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) A__ : Optional[Any]= _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase__ = model_type_to_module_name(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , '__name__' , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase__ = importlib.import_module('transformers' ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" UpperCamelCase__ = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class __lowerCamelCase : def __init__( self ) -> Any: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( cls , snake_case_ , **snake_case_ ) -> Optional[int]: UpperCamelCase__ = kwargs.pop('config' , snake_case_ ) UpperCamelCase__ = kwargs.pop('trust_remote_code' , snake_case_ ) UpperCamelCase__ = True UpperCamelCase__ , UpperCamelCase__ = ImageProcessingMixin.get_image_processor_dict(snake_case_ , **snake_case_ ) UpperCamelCase__ = config_dict.get('image_processor_type' , snake_case_ ) UpperCamelCase__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase__ = config_dict.pop('feature_extractor_type' , snake_case_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCamelCase__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCamelCase__ = config_dict['auto_map']['AutoFeatureExtractor'] UpperCamelCase__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.image_processor_type`` UpperCamelCase__ = getattr(snake_case_ , 'image_processor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: UpperCamelCase__ = image_processor_class_from_name(snake_case_ ) UpperCamelCase__ = image_processor_auto_map is not None UpperCamelCase__ = image_processor_class is not None or type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase__ = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: UpperCamelCase__ = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) UpperCamelCase__ = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case_ , **snake_case_ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase__ = IMAGE_PROCESSOR_MAPPING[type(snake_case_ )] return image_processor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> Any: IMAGE_PROCESSOR_MAPPING.register(snake_case_ , snake_case_ )
720
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = SwinConfig() UpperCamelCase__ = swin_name.split('_' ) UpperCamelCase__ = name_split[1] UpperCamelCase__ = int(name_split[4] ) UpperCamelCase__ = int(name_split[3][-1] ) if model_size == "tiny": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 6, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase__ = 96 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase__ = 1_28 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (4, 8, 16, 32) else: UpperCamelCase__ = 1_92 UpperCamelCase__ = (2, 2, 18, 2) UpperCamelCase__ = (6, 12, 24, 48) if "in22k" in swin_name: UpperCamelCase__ = 2_18_41 else: UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = img_size UpperCamelCase__ = num_classes UpperCamelCase__ = embed_dim UpperCamelCase__ = depths UpperCamelCase__ = num_heads UpperCamelCase__ = window_size return config def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if "patch_embed.proj" in name: UpperCamelCase__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase__ = 'encoder.' + name if "attn.proj" in name: UpperCamelCase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": UpperCamelCase__ = 'layernorm.weight' if name == "norm.bias": UpperCamelCase__ = 'layernorm.bias' if "head" in name: UpperCamelCase__ = name.replace('head' , 'classifier' ) else: UpperCamelCase__ = 'swin.' + name return name def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase__ = key.split('.' ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[3] ) UpperCamelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[ dim : dim * 2, : ] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[ :dim ] UpperCamelCase__ = val[ dim : dim * 2 ] UpperCamelCase__ = val[ -dim: ] else: UpperCamelCase__ = val return orig_state_dict def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() UpperCamelCase__ = get_swin_config(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) UpperCamelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase__ = timm_model(inputs['pixel_values'] ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : Tuple= parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
20
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A__ : List[str]= logging.getLogger(__name__) @dataclass class __lowerCamelCase : a : str a : List[str] a : Optional[List[str]] @dataclass class __lowerCamelCase : a : List[int] a : List[int] a : Optional[List[int]] =None a : Optional[List[int]] =None class __lowerCamelCase ( _a ): a : Optional[Any] ="""train""" a : List[Any] ="""dev""" a : Optional[Any] ="""test""" class __lowerCamelCase : @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ ) -> List[InputExample]: raise NotImplementedError @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: raise NotImplementedError @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_="[CLS]" , snake_case_=1 , snake_case_="[SEP]" , snake_case_=False , snake_case_=False , snake_case_=0 , snake_case_=0 , snake_case_=-100 , snake_case_=0 , snake_case_=True , ) -> List[InputFeatures]: UpperCamelCase__ = {label: i for i, label in enumerate(snake_case_ )} UpperCamelCase__ = [] for ex_index, example in enumerate(snake_case_ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' , snake_case_ , len(snake_case_ ) ) UpperCamelCase__ = [] UpperCamelCase__ = [] for word, label in zip(example.words , example.labels ): UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case_ ) > 0: tokens.extend(snake_case_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. UpperCamelCase__ = tokenizer.num_special_tokens_to_add() if len(snake_case_ ) > max_seq_length - special_tokens_count: UpperCamelCase__ = tokens[: (max_seq_length - special_tokens_count)] UpperCamelCase__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] UpperCamelCase__ = [sequence_a_segment_id] * len(snake_case_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: UpperCamelCase__ = [cls_token] + tokens UpperCamelCase__ = [pad_token_label_id] + label_ids UpperCamelCase__ = [cls_token_segment_id] + segment_ids UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. UpperCamelCase__ = [1 if mask_padding_with_zero else 0] * len(snake_case_ ) # Zero-pad up to the sequence length. UpperCamelCase__ = max_seq_length - len(snake_case_ ) if pad_on_left: UpperCamelCase__ = ([pad_token] * padding_length) + input_ids UpperCamelCase__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask UpperCamelCase__ = ([pad_token_segment_id] * padding_length) + segment_ids UpperCamelCase__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(snake_case_ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(snake_case_ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(snake_case_ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(snake_case_ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(snake_case_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: UpperCamelCase__ = None features.append( InputFeatures( input_ids=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , label_ids=snake_case_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __lowerCamelCase ( _a ): a : List[InputFeatures] a : int =nn.CrossEntropyLoss().ignore_index def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_=False , snake_case_ = Split.train , ) -> Tuple: # Load data features from cache or dataset file UpperCamelCase__ = os.path.join( snake_case_ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(snake_case_ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ = cached_features_file + '.lock' with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) UpperCamelCase__ = torch.load(snake_case_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) UpperCamelCase__ = token_classification_task.read_examples_from_file(snake_case_ , snake_case_ ) # TODO clean up all this to leverage built-in features of tokenizers UpperCamelCase__ = token_classification_task.convert_examples_to_features( snake_case_ , snake_case_ , snake_case_ , snake_case_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features , snake_case_ ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , snake_case_ ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class __lowerCamelCase : a : List[InputFeatures] a : int =-1_0_0 def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_=False , snake_case_ = Split.train , ) -> List[Any]: UpperCamelCase__ = token_classification_task.read_examples_from_file(snake_case_ , snake_case_ ) # TODO clean up all this to leverage built-in features of tokenizers UpperCamelCase__ = token_classification_task.convert_examples_to_features( snake_case_ , snake_case_ , snake_case_ , snake_case_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: UpperCamelCase__ = tf.data.Dataset.from_generator( snake_case_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: UpperCamelCase__ = tf.data.Dataset.from_generator( snake_case_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , snake_case_ ) -> InputFeatures: return self.features[i]
721
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" UpperCamelCase__ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 50_00 ) -> int: """simple docstring""" UpperCamelCase__ = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = pentagonal_nums[j] UpperCamelCase__ = pentagonal_i + pentagonal_j UpperCamelCase__ = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
20
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring __lowerCAmelCase : List[str] = '''MobileNetV1Config''' # Base docstring __lowerCAmelCase : Union[str, Any] = '''google/mobilenet_v1_1.0_224''' __lowerCAmelCase : int = [1, 1024, 7, 7] # Image classification docstring __lowerCAmelCase : Union[str, Any] = '''google/mobilenet_v1_1.0_224''' __lowerCAmelCase : Dict = '''tabby, tabby cat''' __lowerCAmelCase : List[str] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' snake_case_ : Tuple = {} if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[Any] = model.mobilenet_va else: snake_case_ : Union[str, Any] = model snake_case_ : Union[str, Any] = """MobilenetV1/Conv2d_0/""" snake_case_ : Dict = backbone.conv_stem.convolution.weight snake_case_ : Optional[int] = backbone.conv_stem.normalization.bias snake_case_ : Any = backbone.conv_stem.normalization.weight snake_case_ : Optional[Any] = backbone.conv_stem.normalization.running_mean snake_case_ : Any = backbone.conv_stem.normalization.running_var for i in range(1_3 ): snake_case_ : List[str] = i + 1 snake_case_ : Optional[int] = i * 2 snake_case_ : int = backbone.layer[pt_index] snake_case_ : Any = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' snake_case_ : str = pointer.convolution.weight snake_case_ : str = pointer.normalization.bias snake_case_ : Optional[int] = pointer.normalization.weight snake_case_ : Dict = pointer.normalization.running_mean snake_case_ : Dict = pointer.normalization.running_var snake_case_ : Optional[Any] = backbone.layer[pt_index + 1] snake_case_ : List[str] = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' snake_case_ : List[str] = pointer.convolution.weight snake_case_ : Tuple = pointer.normalization.bias snake_case_ : List[str] = pointer.normalization.weight snake_case_ : str = pointer.normalization.running_mean snake_case_ : Union[str, Any] = pointer.normalization.running_var if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = """MobilenetV1/Logits/Conv2d_1c_1x1/""" snake_case_ : str = model.classifier.weight snake_case_ : Any = model.classifier.bias return tf_to_pt_map def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model snake_case_ : Optional[int] = tf.train.list_variables(__UpperCamelCase ) snake_case_ : Dict = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) snake_case_ : Any = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = array # Build TF to PyTorch weights loading map snake_case_ : str = _build_tf_to_pytorch_map(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue snake_case_ : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) snake_case_ : Optional[int] = np.transpose(__UpperCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer snake_case_ : Tuple = array.squeeze().transpose() else: snake_case_ : Optional[int] = np.transpose(__UpperCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) snake_case_ : Optional[Any] = torch.from_numpy(__UpperCamelCase ) tf_weights.pop(__UpperCamelCase , __UpperCamelCase ) tf_weights.pop(name + """/RMSProp""" , __UpperCamelCase ) tf_weights.pop(name + """/RMSProp_1""" , __UpperCamelCase ) tf_weights.pop(name + """/ExponentialMovingAverage""" , __UpperCamelCase ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCAmelCase ( __UpperCamelCase : torch.Tensor , __UpperCamelCase : nn.Convad ): '''simple docstring''' snake_case_ , snake_case_ : Optional[int] = features.shape[-2:] snake_case_ , snake_case_ : int = conv_layer.stride snake_case_ , snake_case_ : Dict = conv_layer.kernel_size if in_height % stride_height == 0: snake_case_ : Any = max(kernel_height - stride_height , 0 ) else: snake_case_ : Any = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: snake_case_ : Any = max(kernel_width - stride_width , 0 ) else: snake_case_ : Optional[int] = max(kernel_width - (in_width % stride_width) , 0 ) snake_case_ : int = pad_along_width // 2 snake_case_ : Optional[Any] = pad_along_width - pad_left snake_case_ : Any = pad_along_height // 2 snake_case_ : List[str] = pad_along_height - pad_top snake_case_ : Dict = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__UpperCamelCase , __UpperCamelCase , """constant""" , 0.0 ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = 1 , _lowercase = False , _lowercase = True , _lowercase = True , ) -> None: '''simple docstring''' super().__init__() snake_case_ : Optional[int] = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) snake_case_ : Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) snake_case_ : Dict = nn.Convad( in_channels=_lowercase , out_channels=_lowercase , kernel_size=_lowercase , stride=_lowercase , padding=_lowercase , groups=_lowercase , bias=_lowercase , padding_mode="""zeros""" , ) if use_normalization: snake_case_ : Tuple = nn.BatchNormad( num_features=_lowercase , eps=config.layer_norm_eps , momentum=0.9997 , affine=_lowercase , track_running_stats=_lowercase , ) else: snake_case_ : Union[str, Any] = None if use_activation: if isinstance(_lowercase , _lowercase ): snake_case_ : str = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowercase ): snake_case_ : Optional[int] = ACTaFN[config.hidden_act] else: snake_case_ : Union[str, Any] = config.hidden_act else: snake_case_ : Tuple = None def UpperCAmelCase__ ( self , _lowercase ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: snake_case_ : Dict = apply_tf_padding(_lowercase , self.convolution ) snake_case_ : str = self.convolution(_lowercase ) if self.normalization is not None: snake_case_ : List[str] = self.normalization(_lowercase ) if self.activation is not None: snake_case_ : List[Any] = self.activation(_lowercase ) return features class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = MobileNetVaConfig _lowerCamelCase = load_tf_weights_in_mobilenet_va _lowerCamelCase = '''mobilenet_v1''' _lowerCamelCase = '''pixel_values''' _lowerCamelCase = False def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' if isinstance(_lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowerCAmelCase : List[str] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowerCAmelCase : Optional[Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase = True ) -> Tuple: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : str = config snake_case_ : int = 3_2 snake_case_ : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) snake_case_ : Union[str, Any] = MobileNetVaConvLayer( _lowercase , in_channels=config.num_channels , out_channels=_lowercase , kernel_size=3 , stride=2 , ) snake_case_ : Tuple = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] snake_case_ : Union[str, Any] = nn.ModuleList() for i in range(1_3 ): snake_case_ : Optional[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 snake_case_ : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowercase , in_channels=_lowercase , out_channels=_lowercase , kernel_size=3 , stride=strides[i] , groups=_lowercase , ) ) self.layer.append( MobileNetVaConvLayer( _lowercase , in_channels=_lowercase , out_channels=_lowercase , kernel_size=1 , ) ) snake_case_ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' snake_case_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) snake_case_ : List[Any] = self.conv_stem(_lowercase ) snake_case_ : Union[str, Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): snake_case_ : int = layer_module(_lowercase ) if output_hidden_states: snake_case_ : Optional[Any] = all_hidden_states + (hidden_states,) snake_case_ : Tuple = hidden_states if self.pooler is not None: snake_case_ : Optional[Any] = torch.flatten(self.pooler(_lowercase ) , start_dim=1 ) else: snake_case_ : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=_lowercase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE__ , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase ) -> None: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = config.num_labels snake_case_ : Optional[Any] = MobileNetVaModel(_lowercase ) snake_case_ : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head snake_case_ : str = nn.Dropout(config.classifier_dropout_prob , inplace=_lowercase ) snake_case_ : List[str] = nn.Linear(_lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' snake_case_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Dict = self.mobilenet_va(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) snake_case_ : str = outputs.pooler_output if return_dict else outputs[1] snake_case_ : Optional[int] = self.classifier(self.dropout(_lowercase ) ) snake_case_ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ : Optional[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ : List[Any] = """single_label_classification""" else: snake_case_ : Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": snake_case_ : Any = MSELoss() if self.num_labels == 1: snake_case_ : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ : Optional[int] = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": snake_case_ : Dict = CrossEntropyLoss() snake_case_ : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ : Tuple = BCEWithLogitsLoss() snake_case_ : Optional[int] = loss_fct(_lowercase , _lowercase ) if not return_dict: snake_case_ : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states , )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __lowerCAmelCase : Any = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __lowerCAmelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCAmelCase : Union[str, Any] = dict(zip(vocab, range(len(vocab)))) __lowerCAmelCase : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : str = Path(tmpdirname) __lowerCAmelCase : Optional[Any] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __lowerCAmelCase : int = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __lowerCAmelCase : int = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __lowerCAmelCase : Optional[int] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __lowerCAmelCase : Optional[int] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __lowerCAmelCase : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __lowerCAmelCase : Tuple = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __lowerCAmelCase : str = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" import cmath import math def __lowerCAmelCase ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : List[Any] = math.radians(__UpperCamelCase ) snake_case_ : Union[str, Any] = math.radians(__UpperCamelCase ) # Convert voltage and current to rectangular form snake_case_ : Union[str, Any] = cmath.rect(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = cmath.rect(__UpperCamelCase , __UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @slow @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) snake_case_ : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ : int = bertabert.config.encoder.vocab_size snake_case_ : Optional[Any] = tokenizer.sep_token_id snake_case_ : List[str] = tokenizer.cls_token_id snake_case_ : Union[str, Any] = 1_2_8 snake_case_ : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) snake_case_ : Any = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) snake_case_ : Optional[int] = train_dataset.select(range(3_2 ) ) snake_case_ : List[Any] = val_dataset.select(range(1_6 ) ) snake_case_ : Any = 4 def _map_to_encoder_decoder_inputs(_lowercase ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case_ : List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_lowercase , max_length=5_1_2 ) snake_case_ : Any = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_lowercase , max_length=1_2_8 ) snake_case_ : Optional[Any] = inputs.input_ids snake_case_ : Any = inputs.attention_mask snake_case_ : Dict = outputs.input_ids snake_case_ : Tuple = outputs.input_ids.copy() snake_case_ : Dict = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] snake_case_ : List[str] = outputs.attention_mask assert all(len(_lowercase ) == 5_1_2 for x in inputs.input_ids ) assert all(len(_lowercase ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(_lowercase ): snake_case_ : Optional[int] = pred.label_ids snake_case_ : Union[str, Any] = pred.predictions # all unnecessary tokens are removed snake_case_ : Optional[Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowercase ) )] ) / len(_lowercase ) return {"accuracy": accuracy} # map train dataset snake_case_ : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowercase , batch_size=_lowercase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset snake_case_ : int = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowercase , batch_size=_lowercase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Any = SeqaSeqTrainingArguments( output_dir=_lowercase , per_device_train_batch_size=_lowercase , per_device_eval_batch_size=_lowercase , predict_with_generate=_lowercase , evaluation_strategy="""steps""" , do_train=_lowercase , do_eval=_lowercase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case_ : Dict = SeqaSeqTrainer( model=_lowercase , args=_lowercase , compute_metrics=_compute_metrics , train_dataset=_lowercase , eval_dataset=_lowercase , tokenizer=_lowercase , ) # start training trainer.train()
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''upernet''' def __init__( self , _lowercase=None , _lowercase=5_1_2 , _lowercase=0.02 , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=3_8_4 , _lowercase=2_5_6 , _lowercase=1 , _lowercase=False , _lowercase=2_5_5 , **_lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowercase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_lowercase , _lowercase ): snake_case_ : List[Any] = backbone_config.get("""model_type""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] snake_case_ : Any = config_class.from_dict(_lowercase ) snake_case_ : str = backbone_config snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = initializer_range snake_case_ : Union[str, Any] = pool_scales snake_case_ : Optional[Any] = use_auxiliary_head snake_case_ : Any = auxiliary_loss_weight snake_case_ : List[Any] = auxiliary_in_channels snake_case_ : str = auxiliary_channels snake_case_ : Dict = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : int = loss_ignore_index def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Optional[int] = self.backbone_config.to_dict() snake_case_ : Dict = self.__class__.model_type return output
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) snake_case_ : int = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case_ : str = model(_lowercase )["""last_hidden_state"""] snake_case_ : int = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. snake_case_ : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCAmelCase : Optional[int] = 4 __lowerCAmelCase : Union[str, Any] = 3 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' for shard in shards: for i in range(__UpperCamelCase ): yield {"i": i, "shard": shard} def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = int(os.environ["""RANK"""] ) snake_case_ : int = int(os.environ["""WORLD_SIZE"""] ) snake_case_ : Union[str, Any] = ArgumentParser() parser.add_argument("""--streaming""" , type=__UpperCamelCase ) parser.add_argument("""--local_rank""" , type=__UpperCamelCase ) parser.add_argument("""--num_workers""" , type=__UpperCamelCase , default=0 ) snake_case_ : Tuple = parser.parse_args() snake_case_ : int = args.streaming snake_case_ : Any = args.num_workers snake_case_ : List[Any] = {"""shards""": [F'shard_{shard_idx}' for shard_idx in range(__UpperCamelCase )]} snake_case_ : Any = IterableDataset.from_generator(__UpperCamelCase , gen_kwargs=__UpperCamelCase ) if not streaming: snake_case_ : Any = Dataset.from_list(list(__UpperCamelCase ) ) snake_case_ : List[Any] = split_dataset_by_node(__UpperCamelCase , rank=__UpperCamelCase , world_size=__UpperCamelCase ) snake_case_ : List[str] = torch.utils.data.DataLoader(__UpperCamelCase , num_workers=__UpperCamelCase ) snake_case_ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD snake_case_ : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) snake_case_ : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] , __UpperCamelCase : Any ): '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(__UpperCamelCase ): print(F'{i}\t\t{d}' ) def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : list[float] , __UpperCamelCase : int ): '''simple docstring''' for j in range(__UpperCamelCase ): snake_case_ , snake_case_ , snake_case_ : Any = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [float("""inf""" )] * vertex_count snake_case_ : List[str] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__UpperCamelCase ): snake_case_ , snake_case_ , snake_case_ : Tuple = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: snake_case_ : Optional[Any] = distance[u] + w snake_case_ : Tuple = check_negative_cycle(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = int(input('''Enter number of vertices: ''').strip()) __lowerCAmelCase : List[Any] = int(input('''Enter number of edges: ''').strip()) __lowerCAmelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) __lowerCAmelCase : List[str] = {'''src''': src, '''dst''': dest, '''weight''': weight} __lowerCAmelCase : List[Any] = int(input('''\nEnter shortest path source:''').strip()) __lowerCAmelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase : int = 25_0004 __lowerCAmelCase : Union[str, Any] = 25_0020 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MBartTokenizer _lowerCamelCase = MBartTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = MBartTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = MBartTokenizer(_lowercase , keep_accents=_lowercase ) snake_case_ : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : Tuple = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : str = tokenizer_r.save_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case_ : int = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : List[str] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : List[str] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : str = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : List[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : str = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : Optional[Any] = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : str = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Dict = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = '''facebook/mbart-large-en-ro''' _lowerCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCAmelCase__ ( cls ) -> Union[str, Any]: '''simple docstring''' snake_case_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case_ : Union[str, Any] = 1 return cls def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' self.assertIn(_lowercase , self.tokenizer.all_special_ids ) snake_case_ : Tuple = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case_ : Optional[int] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , _lowercase ) snake_case_ : int = 1_0 snake_case_ : str = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _lowercase ) self.assertEqual(len(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = tempfile.mkdtemp() snake_case_ : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) snake_case_ : str = MBartTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors="""pt""" ) snake_case_ : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case_ : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) snake_case_ : Dict = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=1_0 , return_tensors="""pt""" ) snake_case_ : Tuple = targets["""input_ids"""] snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_lowercase ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''segformer''' def __init__( self , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[3_2, 6_4, 1_6_0, 2_5_6] , _lowercase=[7, 3, 3, 3] , _lowercase=[4, 2, 2, 2] , _lowercase=[1, 2, 5, 8] , _lowercase=[4, 4, 4, 4] , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=0.1 , _lowercase=1E-6 , _lowercase=2_5_6 , _lowercase=2_5_5 , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _lowercase , ) snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[int] = num_encoder_blocks snake_case_ : Union[str, Any] = depths snake_case_ : Optional[int] = sr_ratios snake_case_ : Dict = hidden_sizes snake_case_ : str = patch_sizes snake_case_ : Optional[int] = strides snake_case_ : Union[str, Any] = mlp_ratios snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Union[str, Any] = classifier_dropout_prob snake_case_ : str = initializer_range snake_case_ : Optional[int] = drop_path_rate snake_case_ : Tuple = layer_norm_eps snake_case_ : List[str] = decoder_hidden_size snake_case_ : Optional[Any] = kwargs.get("""reshape_last_stage""" , _lowercase ) snake_case_ : List[str] = semantic_loss_ignore_index class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 1_2
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = 1.5 snake_case_ : Any = int(factor * num_class_images ) snake_case_ : Any = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=__UpperCamelCase ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: snake_case_ : Dict = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: snake_case_ : Union[str, Any] = int(factor * num_images ) snake_case_ : str = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) snake_case_ : Optional[Any] = 0 snake_case_ : int = 0 snake_case_ : str = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F'{class_data_dir}/caption.txt' , """w""" ) as fa, open(F'{class_data_dir}/urls.txt' , """w""" ) as fa, open( F'{class_data_dir}/images.txt' , """w""" ) as fa: while total < num_class_images: snake_case_ : int = class_images[count] count += 1 try: snake_case_ : List[Any] = requests.get(images["""url"""] ) if img.status_code == 2_0_0: snake_case_ : List[str] = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'{class_data_dir}/images/{total}.jpg' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=2_0_0 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = None # Automatically constructed _lowerCamelCase = "dict" _lowerCamelCase = None _lowerCamelCase = field(default='''Translation''' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self ) -> List[Any]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None # Automatically constructed _lowerCamelCase = "dict" _lowerCamelCase = None _lowerCamelCase = field(default='''TranslationVariableLanguages''' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = sorted(set(self.languages ) ) if self.languages else None snake_case_ : Optional[int] = len(self.languages ) if self.languages else None def __call__( self ) -> str: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : int = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({", ".join(_lowercase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. snake_case_ : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. snake_case_ , snake_case_ : str = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = (IPNDMScheduler,) _lowerCamelCase = (('''num_inference_steps''', 50),) def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' snake_case_ : Tuple = {"""num_train_timesteps""": 1_0_0_0} config.update(**_lowercase ) return config def UpperCAmelCase__ ( self , _lowercase=0 , **_lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = dict(self.forward_default_kwargs ) snake_case_ : Union[str, Any] = kwargs.pop("""num_inference_steps""" , _lowercase ) snake_case_ : List[Any] = self.dummy_sample snake_case_ : Optional[Any] = 0.1 * sample snake_case_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ : int = self.get_scheduler_config(**_lowercase ) snake_case_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals snake_case_ : str = dummy_past_residuals[:] if time_step is None: snake_case_ : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) snake_case_ : int = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals snake_case_ : Optional[Any] = dummy_past_residuals[:] snake_case_ : Dict = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Dict = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case_ : Union[str, Any] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Dict = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self , _lowercase=0 , **_lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Dict = dict(self.forward_default_kwargs ) snake_case_ : Optional[int] = kwargs.pop("""num_inference_steps""" , _lowercase ) snake_case_ : int = self.dummy_sample snake_case_ : Dict = 0.1 * sample snake_case_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ : List[Any] = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ : int = dummy_past_residuals[:] if time_step is None: snake_case_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) snake_case_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) snake_case_ : List[str] = dummy_past_residuals[:] snake_case_ : Tuple = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Optional[Any] = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case_ : Any = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Any = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , **_lowercase ) -> int: '''simple docstring''' snake_case_ : Dict = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config(**_lowercase ) snake_case_ : Tuple = scheduler_class(**_lowercase ) snake_case_ : Optional[Any] = 1_0 snake_case_ : List[Any] = self.dummy_model() snake_case_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[str] = model(_lowercase , _lowercase ) snake_case_ : int = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): snake_case_ : str = model(_lowercase , _lowercase ) snake_case_ : Optional[Any] = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = dict(self.forward_default_kwargs ) snake_case_ : Dict = kwargs.pop("""num_inference_steps""" , _lowercase ) for scheduler_class in self.scheduler_classes: snake_case_ : Tuple = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_lowercase ) snake_case_ : str = self.dummy_sample snake_case_ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , """set_timesteps""" ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , """set_timesteps""" ): snake_case_ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ : int = dummy_past_residuals[:] snake_case_ : Optional[int] = scheduler.timesteps[5] snake_case_ : Dict = scheduler.timesteps[6] snake_case_ : List[str] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Optional[int] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ : Optional[Any] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Union[str, Any] = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase , time_step=_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=_lowercase , time_step=_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = self.full_loop() snake_case_ : Tuple = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} __lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __lowerCAmelCase ( __UpperCamelCase : list[int] , __UpperCamelCase : tuple[int, ...] ): '''simple docstring''' snake_case_ : str = "" snake_case_ : int snake_case_ : int snake_case_ : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) , __UpperCamelCase ): snake_case_ : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def __lowerCAmelCase ( __UpperCamelCase : list[int] ): '''simple docstring''' snake_case_ : list[str] = [] for key in product(__UpperCamelCase , repeat=3 ): snake_case_ : Dict = try_key(__UpperCamelCase , __UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def __lowerCAmelCase ( __UpperCamelCase : list[str] , __UpperCamelCase : str ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __lowerCAmelCase ( __UpperCamelCase : str = "p059_cipher.txt" ): '''simple docstring''' snake_case_ : list[int] snake_case_ : list[str] snake_case_ : str snake_case_ : str snake_case_ : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding="""utf-8""" ) snake_case_ : int = [int(__UpperCamelCase ) for number in data.strip().split(""",""" )] snake_case_ : Tuple = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: snake_case_ : Optional[int] = filter_common_word(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: break snake_case_ : Optional[int] = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCAmelCase : List[Any] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[str] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(_lowercase ): snake_case_ : Dict = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' with self.assertRaises(_lowercase ): snake_case_ : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' import PIL.Image snake_case_ : int = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_lowercase ) as mock_cast_to_python_objects: snake_case_ : Any = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) snake_case_ , snake_case_ : List[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _lowercase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[str] = pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) snake_case_ : Optional[Any] = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = pa.BufferOutputStream() snake_case_ : List[Any] = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ , snake_case_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : Optional[Any] = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) snake_case_ , snake_case_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ : int = pa.BufferReader(output.getvalue() ) snake_case_ : Optional[int] = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ : pa.Table = f.read_all() snake_case_ : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) snake_case_ , snake_case_ : List[Any] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) snake_case_ , snake_case_ : Dict = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) snake_case_ , snake_case_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : int = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) snake_case_ , snake_case_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : str = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) snake_case_ , snake_case_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : List[str] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = pa.BufferOutputStream() snake_case_ : Optional[int] = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) snake_case_ , snake_case_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCAmelCase ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : str = {"""col_1""": pa.string(), """col_2""": pa.intaa()} snake_case_ : Any = os.path.join(__UpperCamelCase , """test.arrow""" ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) snake_case_ , snake_case_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Dict ): '''simple docstring''' if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: snake_case_ : Tuple = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : str = pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ : Any = copy.deepcopy(__UpperCamelCase ) snake_case_ : List[str] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : List[str] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = """mock://dataset-train.arrow""" with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ , snake_case_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ , snake_case_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ : Optional[int] = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): '''simple docstring''' import PIL.Image snake_case_ : int = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format="""png""" ) snake_case_ : List[str] = pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() snake_case_ : Tuple = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(__UpperCamelCase ) snake_case_ : List[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __UpperCamelCase ) with open(__UpperCamelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__UpperCamelCase )] ) snake_case_ : Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" from typing import Any def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : dict , ): '''simple docstring''' _validation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # Creates data structures and fill initial step snake_case_ : dict = {} snake_case_ : dict = {} for state in states_space: snake_case_ : List[str] = observations_space[0] snake_case_ : Optional[int] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case_ : List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__UpperCamelCase ) ): snake_case_ : List[Any] = observations_space[o] snake_case_ : int = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case_ : int = """""" snake_case_ : List[str] = -1 for k_state in states_space: snake_case_ : List[str] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case_ : List[str] = probability snake_case_ : List[Any] = k_state # Update probabilities and pointers dicts snake_case_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case_ : str = arg_max # The final observation snake_case_ : List[str] = observations_space[len(__UpperCamelCase ) - 1] # argmax for given final observation snake_case_ : int = """""" snake_case_ : Optional[int] = -1 for k_state in states_space: snake_case_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case_ : Any = probability snake_case_ : Tuple = k_state snake_case_ : Union[str, Any] = arg_max # Process pointers backwards snake_case_ : Tuple = last_state snake_case_ : Optional[Any] = [] for o in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): result.append(__UpperCamelCase ) snake_case_ : Dict = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , ): '''simple docstring''' _validate_not_empty( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) _validate_lists(__UpperCamelCase , __UpperCamelCase ) _validate_dicts( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' _validate_list(__UpperCamelCase , """observations_space""" ) _validate_list(__UpperCamelCase , """states_space""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : str ): '''simple docstring''' if not isinstance(_object , __UpperCamelCase ): snake_case_ : Any = F'{var_name} must be a list' raise ValueError(__UpperCamelCase ) else: for x in _object: if not isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : str = F'{var_name} must be a list of strings' raise ValueError(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Any , ): '''simple docstring''' _validate_dict(__UpperCamelCase , """initial_probabilities""" , __UpperCamelCase ) _validate_nested_dict(__UpperCamelCase , """transition_probabilities""" ) _validate_nested_dict(__UpperCamelCase , """emission_probabilities""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : str ): '''simple docstring''' _validate_dict(_object , __UpperCamelCase , __UpperCamelCase ) for x in _object.values(): _validate_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : type , __UpperCamelCase : bool = False ): '''simple docstring''' if not isinstance(_object , __UpperCamelCase ): snake_case_ : str = F'{var_name} must be a dict' raise ValueError(__UpperCamelCase ) if not all(isinstance(__UpperCamelCase , __UpperCamelCase ) for x in _object ): snake_case_ : Any = F'{var_name} all keys must be strings' raise ValueError(__UpperCamelCase ) if not all(isinstance(__UpperCamelCase , __UpperCamelCase ) for x in _object.values() ): snake_case_ : int = """nested dictionary """ if nested else """""" snake_case_ : str = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = CanineTokenizer _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() snake_case_ : List[str] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained("""google/canine-s""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> CanineTokenizer: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) snake_case_ : Any = 1_0_2_4 return tokenizer @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.canine_tokenizer snake_case_ : Any = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off snake_case_ : str = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on snake_case_ : str = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) snake_case_ : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowercase , _lowercase ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = self.canine_tokenizer snake_case_ : Dict = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] snake_case_ : str = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertIn("""token_type_ids""" , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.canine_tokenizer snake_case_ : List[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] snake_case_ : Union[str, Any] = tokenizer( text_target=_lowercase , max_length=3_2 , padding="""max_length""" , truncation=_lowercase , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Any = tempfile.mkdtemp() snake_case_ : List[Any] = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) snake_case_ : int = tokenizer.__class__.from_pretrained(_lowercase ) snake_case_ : int = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) shutil.rmtree(_lowercase ) snake_case_ : List[str] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Tuple = tempfile.mkdtemp() snake_case_ : Any = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : Union[str, Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case_ : Tuple = chr(0Xe0_07 ) additional_special_tokens.append(_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) snake_case_ : Tuple = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer.__class__.from_pretrained(_lowercase ) snake_case_ : Any = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertIn(_lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case_ : str = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : int = self.get_clean_sequence(_lowercase ) # a special token for Canine can be defined as follows: snake_case_ : int = 0Xe0_05 snake_case_ : Dict = chr(_lowercase ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Dict = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[str] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowercase ) snake_case_ : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(_lowercase , input_encoded + special_token_id ) snake_case_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : str = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Any = chr(0Xe0_05 ) snake_case_ : Optional[int] = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) snake_case_ : Tuple = tokenizer.tokenize(_lowercase ) snake_case_ : Optional[Any] = tokenizer.tokenize(_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(token_a[0] , _lowercase ) self.assertEqual(token_a[0] , _lowercase ) @require_tokenizers def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: snake_case_ : Tuple = 0Xe0_06 snake_case_ : Any = chr(_lowercase ) snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowercase ) tokenizer.from_pretrained(_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: snake_case_ : Optional[int] = json.load(_lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: snake_case_ : str = json.load(_lowercase ) # a special token for Canine can be defined as follows: snake_case_ : Tuple = 0Xe0_06 snake_case_ : List[Any] = chr(_lowercase ) snake_case_ : List[Any] = [new_token_a] snake_case_ : List[str] = [new_token_a] with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ : Any = tokenizer_class.from_pretrained(_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) snake_case_ : Any = 0Xe0_07 snake_case_ : int = chr(_lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ : Tuple = [AddedToken(_lowercase , lstrip=_lowercase )] snake_case_ : Dict = tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """hello world""" if self.space_between_special_tokens: snake_case_ : str = """[CLS] hello world [SEP]""" else: snake_case_ : List[Any] = input snake_case_ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = tokenizer.decode(_lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowercase , [output, output.lower()] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] snake_case_ : int = """a""" snake_case_ : Dict = ord(_lowercase ) for attr in attributes_list: setattr(_lowercase , attr + """_id""" , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + """_id""" ) , _lowercase ) setattr(_lowercase , attr + """_id""" , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + """_id""" ) , _lowercase ) setattr(_lowercase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens_ids""" ) , [] ) snake_case_ : Dict = 0Xe0_06 snake_case_ : Dict = chr(_lowercase ) setattr(_lowercase , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : int=None , __UpperCamelCase : Dict=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) _lowerCamelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) _lowerCamelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Benchmark training of model'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Verbose memory tracing'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Trace memory line by line'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Save result to a CSV file'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Save all print statements in a log file'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to print environment information'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) _lowerCamelCase = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) _lowerCamelCase = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) _lowerCamelCase = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) _lowerCamelCase = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) _lowerCamelCase = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) _lowerCamelCase = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) _lowerCamelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , _lowercase , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = XCLIPTextConfig() # derive patch size from model name snake_case_ : List[str] = model_name.find("""patch""" ) snake_case_ : Optional[Any] = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) snake_case_ : Tuple = XCLIPVisionConfig(patch_size=__UpperCamelCase , num_frames=__UpperCamelCase ) if "large" in model_name: snake_case_ : int = 7_6_8 snake_case_ : Optional[int] = 3_0_7_2 snake_case_ : List[Any] = 1_2 snake_case_ : List[Any] = 1_0_2_4 snake_case_ : List[str] = 4_0_9_6 snake_case_ : Tuple = 1_6 snake_case_ : Optional[Any] = 2_4 snake_case_ : Any = 7_6_8 snake_case_ : Optional[Any] = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": snake_case_ : int = 3_3_6 snake_case_ : str = XCLIPConfig.from_text_vision_configs(__UpperCamelCase , __UpperCamelCase ) if "large" in model_name: snake_case_ : Any = 7_6_8 return config def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' if name == "token_embedding.weight": snake_case_ : List[Any] = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": snake_case_ : Tuple = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: snake_case_ : str = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: snake_case_ : Any = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: snake_case_ : Dict = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: snake_case_ : Optional[Any] = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): snake_case_ : Tuple = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: snake_case_ : List[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: snake_case_ : List[str] = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": snake_case_ : Optional[Any] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": snake_case_ : Optional[Any] = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): snake_case_ : List[Any] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: snake_case_ : List[Any] = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: snake_case_ : str = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: snake_case_ : Optional[Any] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: snake_case_ : Dict = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: snake_case_ : Optional[Any] = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: snake_case_ : Dict = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: snake_case_ : Optional[Any] = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": snake_case_ : Dict = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): snake_case_ : Tuple = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): snake_case_ : int = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ : str = orig_state_dict.pop(__UpperCamelCase ) if "attn.in_proj" in key: snake_case_ : List[Any] = key.split(""".""" ) if key.startswith("""visual""" ): snake_case_ : Union[str, Any] = key_split[3] snake_case_ : Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: snake_case_ : str = val[ :dim, : ] snake_case_ : Dict = val[ dim : dim * 2, : ] snake_case_ : Union[str, Any] = val[ -dim:, : ] else: snake_case_ : Tuple = val[ :dim ] snake_case_ : int = val[ dim : dim * 2 ] snake_case_ : Any = val[ -dim: ] else: if "weight" in key: snake_case_ : Optional[Any] = val[ :dim, : ] snake_case_ : List[str] = val[ dim : dim * 2, : ] snake_case_ : str = val[ -dim:, : ] else: snake_case_ : List[Any] = val[:dim] snake_case_ : List[Any] = val[ dim : dim * 2 ] snake_case_ : Any = val[-dim:] elif key.startswith("""mit""" ): snake_case_ : Tuple = key_split[2] snake_case_ : Any = config.vision_config.mit_hidden_size if "weight" in key: snake_case_ : Dict = val[:dim, :] snake_case_ : str = val[dim : dim * 2, :] snake_case_ : Optional[int] = val[-dim:, :] else: snake_case_ : int = val[:dim] snake_case_ : Optional[Any] = val[dim : dim * 2] snake_case_ : int = val[-dim:] else: snake_case_ : Any = key_split[2] snake_case_ : int = config.text_config.hidden_size if "weight" in key: snake_case_ : List[str] = val[:dim, :] snake_case_ : List[str] = val[ dim : dim * 2, : ] snake_case_ : Tuple = val[-dim:, :] else: snake_case_ : Tuple = val[:dim] snake_case_ : int = val[ dim : dim * 2 ] snake_case_ : Tuple = val[-dim:] else: snake_case_ : str = rename_key(__UpperCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: snake_case_ : Tuple = val.T snake_case_ : Any = val return orig_state_dict def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' if num_frames == 8: snake_case_ : Optional[int] = """eating_spaghetti_8_frames.npy""" elif num_frames == 1_6: snake_case_ : Tuple = """eating_spaghetti.npy""" elif num_frames == 3_2: snake_case_ : Union[str, Any] = """eating_spaghetti_32_frames.npy""" snake_case_ : str = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=__UpperCamelCase , repo_type="""dataset""" , ) snake_case_ : str = np.load(__UpperCamelCase ) return list(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=False ): '''simple docstring''' snake_case_ : int = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } snake_case_ : Optional[int] = model_to_url[model_name] snake_case_ : str = 8 if "16-frames" in model_name: snake_case_ : str = 1_6 elif "shot" in model_name: snake_case_ : Optional[int] = 3_2 snake_case_ : Optional[Any] = get_xclip_config(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = XCLIPModel(__UpperCamelCase ) model.eval() if "drive" in checkpoint_url: snake_case_ : Any = """pytorch_model.bin""" gdown.cached_download(__UpperCamelCase , __UpperCamelCase , quiet=__UpperCamelCase ) snake_case_ : List[Any] = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] else: snake_case_ : List[Any] = torch.hub.load_state_dict_from_url(__UpperCamelCase )["""model"""] snake_case_ : int = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) snake_case_ : int = XCLIPModel(__UpperCamelCase ) snake_case_ , snake_case_ : int = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() snake_case_ : Union[str, Any] = 3_3_6 if model_name == """xclip-large-patch14-16-frames""" else 2_2_4 snake_case_ : List[Any] = VideoMAEImageProcessor(size=__UpperCamelCase ) snake_case_ : List[str] = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ : Tuple = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ : List[str] = XCLIPProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) snake_case_ : List[str] = prepare_video(__UpperCamelCase ) snake_case_ : List[str] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): snake_case_ : str = model(**__UpperCamelCase ) # Verify outputs snake_case_ : Optional[Any] = outputs.logits_per_video snake_case_ : List[Any] = logits_per_video.softmax(dim=1 ) print("""Probs:""" , __UpperCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": snake_case_ : Optional[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": snake_case_ : List[str] = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": snake_case_ : int = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": snake_case_ : Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": snake_case_ : int = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": snake_case_ : str = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": snake_case_ : Optional[Any] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": snake_case_ : Optional[Any] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": snake_case_ : Dict = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": snake_case_ : List[str] = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": snake_case_ : Optional[int] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": snake_case_ : str = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": snake_case_ : Optional[Any] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": snake_case_ : Optional[int] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": snake_case_ : List[str] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": snake_case_ : Tuple = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": snake_case_ : List[Any] = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": snake_case_ : Union[str, Any] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(F'Model name {model_name} not supported' ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) processor.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) slow_tokenizer.push_to_hub(__UpperCamelCase , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'''vocab_file''': '''spiece.model'''} __lowerCAmelCase : Optional[Any] = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __lowerCAmelCase : Optional[Any] = { '''AI-Sweden/gpt-sw3-126m''': 2048, '''AI-Sweden/gpt-sw3-350m''': 2048, '''AI-Sweden/gpt-sw3-1.6b''': 2048, '''AI-Sweden/gpt-sw3-6.7b''': 2048, '''AI-Sweden/gpt-sw3-20b''': 2048, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = None , **_lowercase , ) -> None: '''simple docstring''' snake_case_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ : Optional[int] = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) snake_case_ : Optional[int] = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case_ : Tuple = """<|endoftext|>""" if eos_token is None else eos_token snake_case_ : str = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case_ : str = unk_token if pad_token is None else pad_token snake_case_ : Union[str, Any] = eos_token if bos_token is None else bos_token else: snake_case_ : Tuple = """<pad>""" if pad_token is None else pad_token snake_case_ : Tuple = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) snake_case_ : List[str] = do_lower_case snake_case_ : int = remove_space snake_case_ : str = keep_accents snake_case_ : List[str] = vocab_file snake_case_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) # Used for whitespace normalization in input texts # fmt : off snake_case_ : int = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case_ : Dict = re.compile( f'[{"".join(map(_lowercase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.__dict__.copy() snake_case_ : List[str] = None return state def __setstate__( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ : Any = {} snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : str = self.non_printing_characters_re.sub("""""" , _lowercase ) # Normalize whitespaces snake_case_ : Any = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization snake_case_ : Optional[int] = unicodedata.normalize("""NFC""" , _lowercase ) return text def UpperCAmelCase__ ( self , _lowercase , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = self.preprocess_text(_lowercase ) return self.sp_model.encode(_lowercase , out_type=_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' return self.sp_model.PieceToId(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(_lowercase ) @staticmethod def UpperCAmelCase__ ( _lowercase ) -> str: '''simple docstring''' return out_string def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : str = [] snake_case_ : str = """""" snake_case_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token snake_case_ : List[Any] = True snake_case_ : str = [] else: current_sub_tokens.append(_lowercase ) snake_case_ : List[Any] = False out_string += self.sp_model.decode(_lowercase ) return out_string def UpperCAmelCase__ ( self ) -> Dict[str, int]: '''simple docstring''' snake_case_ : Dict = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : List[Any] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , """wb""" ) as fi: snake_case_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def UpperCAmelCase__ ( self , _lowercase , _lowercase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(_lowercase , _lowercase ): snake_case_ : Optional[int] = self.preprocess_text(_lowercase ) snake_case_ : int = self.sp_model.encode(_lowercase ) else: snake_case_ : str = [self.preprocess_text(_lowercase ) for t in text] snake_case_ : List[Any] = self.sp_model.encode(_lowercase ) if return_tensors is True or return_tensors == "pt": snake_case_ : List[str] = torch.tensor(_lowercase ) return token_ids def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' return self.sp_model.decode(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] snake_case_ : Dict = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(_lowercase ) + f'{self.bos_token}Bot:' ) return self.encode(text=_lowercase )
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" _lowerCamelCase = 10_000 _lowerCamelCase = None _lowerCamelCase = None class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCamelCase = ParquetConfig def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case_ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowercase , (str, list, tuple) ): snake_case_ : Union[str, Any] = data_files if isinstance(_lowercase , _lowercase ): snake_case_ : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ : str = [dl_manager.iter_files(_lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] snake_case_ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase ): snake_case_ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ : List[str] = [dl_manager.iter_files(_lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowercase ): with open(_lowercase , """rb""" ) as f: snake_case_ : List[str] = datasets.Features.from_arrow_schema(pq.read_schema(_lowercase ) ) break splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self , _lowercase ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(_lowercase , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowercase ) ): with open(_lowercase , """rb""" ) as f: snake_case_ : int = pq.ParquetFile(_lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ : Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(_lowercase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowercase )}: {e}' ) raise
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase=1_2_5 , _lowercase=None , **_lowercase , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: snake_case_ : Dict = [f'<extra_id_{i}>' for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ : Optional[Any] = len(set(filter(lambda _lowercase : bool("""extra_id""" in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token super().__init__( eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) snake_case_ : List[str] = extra_ids snake_case_ : Tuple = 2**8 # utf is 8 bits # define special tokens dict snake_case_ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case_ : int = len(self.special_tokens_encoder ) snake_case_ : Tuple = len(_lowercase ) for i, token in enumerate(_lowercase ): snake_case_ : List[str] = self.vocab_size + i - n snake_case_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowercase )) + [1] return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' if len(_lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = self._add_eos_if_not_present(_lowercase ) if token_ids_a is None: return token_ids_a else: snake_case_ : List[Any] = self._add_eos_if_not_present(_lowercase ) return token_ids_a + token_ids_a def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : int = [chr(_lowercase ) for i in text.encode("""utf-8""" )] return tokens def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' if token in self.special_tokens_encoder: snake_case_ : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case_ : List[Any] = self.added_tokens_encoder[token] elif len(_lowercase ) != 1: snake_case_ : List[Any] = self.unk_token_id else: snake_case_ : List[Any] = ord(_lowercase ) + self._num_special_tokens return token_id def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' if index in self.special_tokens_decoder: snake_case_ : Dict = self.special_tokens_decoder[index] else: snake_case_ : Any = chr(index - self._num_special_tokens ) return token def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = b"""""" for token in tokens: if token in self.special_tokens_decoder: snake_case_ : List[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: snake_case_ : Optional[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: snake_case_ : Optional[Any] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: snake_case_ : Optional[int] = token.encode("""utf-8""" ) else: snake_case_ : Optional[Any] = bytes([ord(_lowercase )] ) bstring += tok_string snake_case_ : List[Any] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' return ()
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase : Any = random.Random() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=None ): '''simple docstring''' if rng is None: snake_case_ : Union[str, Any] = global_rng snake_case_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=4_0_0 , _lowercase=2_0_0_0 , _lowercase=1_0 , _lowercase=1_6_0 , _lowercase=8 , _lowercase=0.0 , _lowercase=4_0_0_0 , _lowercase=False , _lowercase=True , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Optional[int] = min_seq_length snake_case_ : Optional[Any] = max_seq_length snake_case_ : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : str = padding_value snake_case_ : Tuple = sampling_rate snake_case_ : List[str] = return_attention_mask snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = feature_size snake_case_ : List[Any] = chunk_length snake_case_ : int = hop_length def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self , _lowercase=False , _lowercase=False ) -> List[str]: '''simple docstring''' def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: snake_case_ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : List[Any] = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Any = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Any = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) snake_case_ : Dict = self.feature_extraction_class.from_pretrained(_lowercase ) snake_case_ : List[Any] = feat_extract_first.to_dict() snake_case_ : Tuple = feat_extract_second.to_dict() snake_case_ : Tuple = feat_extract_first.mel_filters snake_case_ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[str] = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) snake_case_ : Tuple = self.feature_extraction_class.from_json_file(_lowercase ) snake_case_ : Dict = feat_extract_first.to_dict() snake_case_ : str = feat_extract_second.to_dict() snake_case_ : Any = feat_extract_first.mel_filters snake_case_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ : Union[str, Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test feature size snake_case_ : List[str] = feature_extractor(_lowercase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features snake_case_ : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test batched snake_case_ : int = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : Optional[int] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ : Tuple = np.asarray(_lowercase ) snake_case_ : Dict = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test truncation required snake_case_ : List[Any] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case_ : str = [np.asarray(_lowercase ) for speech_input in speech_inputs] snake_case_ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : List[Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs_truncated] snake_case_ : Optional[Any] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' import torch snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Tuple = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech snake_case_ : Optional[int] = ds.sort("""id""" ).select(range(_lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case_ : Tuple = self._load_datasamples(1 ) snake_case_ : Dict = WhisperFeatureExtractor() snake_case_ : List[str] = feature_extractor(_lowercase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , _lowercase , atol=1E-4 ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Dict = self._load_datasamples(1 )[0] snake_case_ : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case_ : int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowercase )[0] self.assertTrue(np.all(np.mean(_lowercase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase ) - 1 ) < 1E-3 ) )
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase = "" , _lowercase = False ) -> None: '''simple docstring''' snake_case_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case_ : int = is_leaf snake_case_ : Union[str, Any] = prefix def UpperCAmelCase__ ( self , _lowercase ) -> tuple[str, str, str]: '''simple docstring''' snake_case_ : Optional[int] = 0 for q, w in zip(self.prefix , _lowercase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' for word in words: self.insert(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' if self.prefix == word: snake_case_ : Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case_ : Optional[int] = RadixNode(prefix=_lowercase , is_leaf=_lowercase ) else: snake_case_ : List[Any] = self.nodes[word[0]] snake_case_ , snake_case_ , snake_case_ : Any = incoming_node.match( _lowercase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_lowercase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case_ : Any = remaining_prefix snake_case_ : int = self.nodes[matching_string[0]] snake_case_ : int = RadixNode(_lowercase , _lowercase ) snake_case_ : List[Any] = aux_node if remaining_word == "": snake_case_ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> bool: '''simple docstring''' snake_case_ : List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: snake_case_ , snake_case_ , snake_case_ : Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> bool: '''simple docstring''' snake_case_ : List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: snake_case_ , snake_case_ , snake_case_ : Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_lowercase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case_ : List[str] = list(self.nodes.values() )[0] snake_case_ : Dict = merging_node.is_leaf self.prefix += merging_node.prefix snake_case_ : List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case_ : int = False # If there is 1 edge, we merge it with its child else: snake_case_ : Tuple = list(incoming_node.nodes.values() )[0] snake_case_ : Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case_ : Union[str, Any] = merging_node.nodes return True def UpperCAmelCase__ ( self , _lowercase = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = """banana bananas bandana band apple all beast""".split() snake_case_ : List[str] = RadixNode() root.insert_many(__UpperCamelCase ) assert all(root.find(__UpperCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCAmelCase ( ): '''simple docstring''' assert test_trie() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = RadixNode() snake_case_ : Any = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__UpperCamelCase ) print("""Words:""" , __UpperCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCAmelCase : Optional[Any] = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) __lowerCAmelCase : str = dataset.iloc[:, 1:2].values __lowerCAmelCase : Optional[int] = dataset.iloc[:, 2].values __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = train_test_split(X, y, test_size=0.2, random_state=0) __lowerCAmelCase : Dict = PolynomialFeatures(degree=4) __lowerCAmelCase : int = poly_reg.fit_transform(X) __lowerCAmelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __lowerCAmelCase ( ): '''simple docstring''' plt.scatter(__UpperCamelCase , __UpperCamelCase , color="""red""" ) plt.plot(__UpperCamelCase , pol_reg.predict(poly_reg.fit_transform(__UpperCamelCase ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ , snake_case_ : str = analyze_text(__UpperCamelCase ) snake_case_ : Any = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. snake_case_ : str = sum(single_char_strings.values() ) # one length string snake_case_ : Tuple = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case_ : str = single_char_strings[ch] snake_case_ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCamelCase ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string snake_case_ : str = sum(two_char_strings.values() ) snake_case_ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case_ : str = cha + cha if sequence in two_char_strings: snake_case_ : Any = two_char_strings[sequence] snake_case_ : Optional[int] = int(__UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCamelCase ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = Counter() # type: ignore snake_case_ : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowerCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" snake_case_ : Optional[Any] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("""RGB""" ) return image def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Tuple = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = dct.pop(__UpperCamelCase ) snake_case_ : Optional[int] = val def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ : Union[str, Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) snake_case_ : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict snake_case_ : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase , requires_grad=__UpperCamelCase ), v_bias) ) snake_case_ : Optional[Any] = qkv_bias def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = 3_6_4 if """coco""" in model_name else 2_2_4 snake_case_ : str = InstructBlipVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: snake_case_ : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ : int = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: snake_case_ : int = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: snake_case_ : Union[str, Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 snake_case_ : str = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() snake_case_ : List[str] = InstructBlipConfig(vision_config=__UpperCamelCase , text_config=__UpperCamelCase , qformer_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[Any]=False ): '''simple docstring''' snake_case_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: snake_case_ : Tuple = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) snake_case_ : Any = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) snake_case_ , snake_case_ : Union[str, Any] = get_blipa_config(__UpperCamelCase ) snake_case_ : Optional[Any] = InstructBlipForConditionalGeneration(__UpperCamelCase ).eval() snake_case_ : Tuple = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } snake_case_ , snake_case_ : int = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case_ : List[Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" snake_case_ : Dict = """cuda:2""" if torch.cuda.is_available() else """cpu""" snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = load_model_and_preprocess( name=__UpperCamelCase , model_type=__UpperCamelCase , is_eval=__UpperCamelCase , device=__UpperCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case_ : Any = original_model.state_dict() snake_case_ : List[str] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ : int = state_dict.pop(__UpperCamelCase ) if key.startswith("""Qformer.bert""" ): snake_case_ : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: snake_case_ : Tuple = key.replace("""self""" , """attention""" ) if "llm_proj" in key: snake_case_ : Dict = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: snake_case_ : Dict = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): snake_case_ : Union[str, Any] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): snake_case_ : List[str] = key.replace("""t5""" , """language""" ) snake_case_ : Optional[Any] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase , __UpperCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) snake_case_ : Dict = load_demo_image() snake_case_ : Optional[Any] = """What is unusual about this image?""" # create processor snake_case_ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) snake_case_ : List[str] = InstructBlipProcessor( image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase , qformer_tokenizer=__UpperCamelCase , ) snake_case_ : int = processor(images=__UpperCamelCase , text=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # make sure processor creates exact same pixel values snake_case_ : Tuple = vis_processors["""eval"""](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case_ : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "vicuna" in model_name: snake_case_ : Any = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits snake_case_ : Dict = hf_model(**__UpperCamelCase ).logits else: snake_case_ : Union[str, Any] = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits snake_case_ : List[Any] = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) snake_case_ : int = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) snake_case_ : int = hf_model(**__UpperCamelCase , labels=__UpperCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape snake_case_ : str = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __UpperCamelCase , atol=__UpperCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) snake_case_ : int = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) snake_case_ : str = hf_model.generate( **__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? snake_case_ : Any = 2 print("""Original generation:""" , __UpperCamelCase ) snake_case_ : List[Any] = processor.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) snake_case_ : str = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() __lowerCAmelCase : Optional[Any] = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __lowerCAmelCase : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def __lowerCAmelCase ( __UpperCamelCase : Any="ro" , __UpperCamelCase : Union[str, Any]="en" , __UpperCamelCase : Union[str, Any]="wmt16" , __UpperCamelCase : int=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) snake_case_ : Tuple = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) snake_case_ : str = datasets.load_dataset(__UpperCamelCase , __UpperCamelCase ) if save_dir is None: snake_case_ : List[Any] = F'{dataset}-{pair}' snake_case_ : List[str] = Path(__UpperCamelCase ) save_dir.mkdir(exist_ok=__UpperCamelCase ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets snake_case_ : Union[str, Any] = """val""" if split == """validation""" else split snake_case_ : List[str] = save_dir.joinpath(F'{fn}.source' ) snake_case_ : Optional[Any] = save_dir.joinpath(F'{fn}.target' ) snake_case_ : List[str] = src_path.open("""w+""" ) snake_case_ : Dict = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case_ : int = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : str = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''roformer''' def __init__( self , _lowercase=5_0_0_0_0 , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_5_3_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=0 , _lowercase=False , _lowercase=True , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = vocab_size snake_case_ : str = hidden_size if embedding_size is None else embedding_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : str = hidden_act snake_case_ : Any = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : str = rotary_value snake_case_ : List[Any] = use_cache class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} snake_case_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase : List[Any] = '''src/transformers''' __lowerCAmelCase : Dict = '''docs/source/en''' __lowerCAmelCase : Optional[Any] = '''.''' def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : int = f.readlines() # Find the start prompt. snake_case_ : int = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 snake_case_ : Union[str, Any] = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase : int = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __lowerCAmelCase : Any = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : int = direct_transformers_import(TRANSFORMERS_PATH) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __UpperCamelCase ) return [m.group(0 ) for m in matches] def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Dict = 2 if text == """✅""" or text == """❌""" else len(__UpperCamelCase ) snake_case_ : Tuple = (width - text_length) // 2 snake_case_ : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } snake_case_ : List[str] = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. snake_case_ : Dict = collections.defaultdict(__UpperCamelCase ) snake_case_ : List[Any] = collections.defaultdict(__UpperCamelCase ) snake_case_ : str = collections.defaultdict(__UpperCamelCase ) snake_case_ : str = collections.defaultdict(__UpperCamelCase ) snake_case_ : Dict = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): snake_case_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): snake_case_ : Dict = slow_tokenizers snake_case_ : Any = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): snake_case_ : Optional[Any] = fast_tokenizers snake_case_ : str = attr_name[:-1_3] elif _re_tf_models.match(__UpperCamelCase ) is not None: snake_case_ : List[Any] = tf_models snake_case_ : Tuple = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: snake_case_ : Dict = flax_models snake_case_ : Tuple = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: snake_case_ : List[Any] = pt_models snake_case_ : Any = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): snake_case_ : Any = True break # Try again after removing the last word in the name snake_case_ : Tuple = """""".join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! snake_case_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) snake_case_ : str = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). snake_case_ : str = [len(__UpperCamelCase ) + 2 for c in columns] snake_case_ : Dict = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se snake_case_ : List[Any] = """|""" + """|""".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for c, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" snake_case_ : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: snake_case_ : Union[str, Any] = model_name_to_prefix[name] snake_case_ : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for l, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + "|\n" return table def __lowerCAmelCase ( __UpperCamelCase : Any=False ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = _find_text_in_file( filename=os.path.join(__UpperCamelCase , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) snake_case_ : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowerCAmelCase : Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowercase = "" , _lowercase = None , _lowercase = None , **_lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(self , **_lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ : Dict = fsspec.open( _lowercase , mode="""rb""" , protocol=_lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ : List[str] = os.path.basename(self.file.path.split("""::""" )[0] ) snake_case_ : str = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) snake_case_ : Any = None @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> List[Any]: '''simple docstring''' return super()._strip_protocol(_lowercase ).lstrip("""/""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.dir_cache is None: snake_case_ : Any = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} snake_case_ : Dict = {f["""name"""]: f} def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.file.open().read() def UpperCAmelCase__ ( self , _lowercase , _lowercase = "rb" , _lowercase=None , _lowercase=True , _lowercase=None , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : str = self._strip_protocol(_lowercase ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self , _lowercase , _lowercase = "rb" , _lowercase = None , _lowercase = None , _lowercase = DEFAULT_BLOCK_SIZE , **_lowercase , ) -> str: '''simple docstring''' super().__init__( fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ : Union[str, Any] = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = file_ def __enter__( self ) -> Optional[int]: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' self._file.__exit__(*_lowercase , **_lowercase ) def __iter__( self ) -> Dict: '''simple docstring''' return iter(self._file ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return next(self._file ) def __getattr__( self , _lowercase ) -> Any: '''simple docstring''' return getattr(self._file , _lowercase ) def fixed_enter(*_lowercase , **_lowercase ): return WrappedFile(_enter(*_lowercase , **_lowercase ) ) snake_case_ : List[str] = fixed_enter
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __lowerCAmelCase ( *__UpperCamelCase : Optional[Any] ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[Any] = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __lowerCAmelCase ( __UpperCamelCase : Exception ): '''simple docstring''' snake_case_ : List[str] = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __lowerCAmelCase ( __UpperCamelCase : callable = None , __UpperCamelCase : int = 1_2_8 ): '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) snake_case_ : List[str] = starting_batch_size def decorator(*__UpperCamelCase : Dict , **__UpperCamelCase : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ : Tuple = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): snake_case_ : str = """, """.join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) snake_case_ : Union[str, Any] = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""" , __UpperCamelCase ) if matches: snake_case_ : str = float(matches[1] ) snake_case_ : List[str] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case_ : str = 1_0_0_1 snake_case_ : Optional[int] = """imagenet-1k-id2label.json""" snake_case_ : Optional[int] = """huggingface/label-files""" snake_case_ : Optional[int] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[Any] = {int(__UpperCamelCase ) + 1: v for k, v in idalabel.items()} snake_case_ : Dict = """background""" snake_case_ : Any = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int=False ): '''simple docstring''' snake_case_ : List[Any] = get_mobilenet_va_config(__UpperCamelCase ) # Load 🤗 model snake_case_ : int = MobileNetVaForImageClassification(__UpperCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case_ : List[str] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 3_2} , ) snake_case_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ : Dict = model(**__UpperCamelCase ) snake_case_ : List[Any] = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": snake_case_ : Any = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": snake_case_ : Any = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: snake_case_ : Tuple = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) snake_case_ : int = """google/""" + model_name image_processor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = None ) -> Tuple: '''simple docstring''' super().__init__() snake_case_ : Union[str, Any] = pad_token_id snake_case_ : List[str] = max_length snake_case_ : Dict = vocab snake_case_ : Optional[int] = merges snake_case_ : Dict = BytePairTokenizer(_lowercase , _lowercase , sequence_length=_lowercase ) @classmethod def UpperCAmelCase__ ( cls , _lowercase , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' snake_case_ : str = [""" """.join(_lowercase ) for m in tokenizer.bpe_ranks.keys()] snake_case_ : List[str] = tokenizer.get_vocab() return cls(_lowercase , _lowercase , *_lowercase , **_lowercase ) @classmethod def UpperCAmelCase__ ( cls , _lowercase , *_lowercase , **_lowercase ) -> str: '''simple docstring''' snake_case_ : Any = GPTaTokenizer.from_pretrained(_lowercase , *_lowercase , **_lowercase ) return cls.from_tokenizer(_lowercase , *_lowercase , **_lowercase ) @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> Dict: '''simple docstring''' return cls(**_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> int: '''simple docstring''' snake_case_ : str = self.tf_tokenizer(_lowercase ) snake_case_ : Dict = tf.ones_like(_lowercase ) if self.pad_token_id is not None: # pad the tokens up to max length snake_case_ : Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: snake_case_ , snake_case_ : List[str] = pad_model_inputs( _lowercase , max_seq_length=_lowercase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , __UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" from functools import reduce __lowerCAmelCase : Optional[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCAmelCase ( __UpperCamelCase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCamelCase , __UpperCamelCase : str(int(__UpperCamelCase ) * int(__UpperCamelCase ) ) , n[i : i + 1_3] ) ) for i in range(len(__UpperCamelCase ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" snake_case_ : Optional[int] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("""RGB""" ) return image def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = dct.pop(__UpperCamelCase ) snake_case_ : Optional[int] = val def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) snake_case_ : Optional[int] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict snake_case_ : Any = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase , requires_grad=__UpperCamelCase ), v_bias) ) snake_case_ : Optional[Any] = qkv_bias def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = 3_6_4 if """coco""" in model_name else 2_2_4 snake_case_ : List[Any] = BlipaVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case_ : str = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=__UpperCamelCase ).to_dict() elif "opt-6.7b" in model_name: snake_case_ : str = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=__UpperCamelCase ).to_dict() elif "t5-xl" in model_name: snake_case_ : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ : Any = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() snake_case_ : Tuple = BlipaConfig(vision_config=__UpperCamelCase , text_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : str=False ): '''simple docstring''' snake_case_ : Dict = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) snake_case_ : Dict = tokenizer("""\n""" , add_special_tokens=__UpperCamelCase ).input_ids[0] snake_case_ , snake_case_ : List[str] = get_blipa_config(__UpperCamelCase , eos_token_id=__UpperCamelCase ) snake_case_ : Tuple = BlipaForConditionalGeneration(__UpperCamelCase ).eval() snake_case_ : Any = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } snake_case_ , snake_case_ : List[str] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case_ : Optional[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" snake_case_ , snake_case_ , snake_case_ : List[Any] = load_model_and_preprocess( name=__UpperCamelCase , model_type=__UpperCamelCase , is_eval=__UpperCamelCase , device=__UpperCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case_ : Any = original_model.state_dict() snake_case_ : List[str] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ : Any = state_dict.pop(__UpperCamelCase ) if key.startswith("""Qformer.bert""" ): snake_case_ : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: snake_case_ : List[Any] = key.replace("""self""" , """attention""" ) if "opt_proj" in key: snake_case_ : str = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: snake_case_ : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): snake_case_ : Dict = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): snake_case_ : Any = key.replace("""t5""" , """language""" ) snake_case_ : Optional[int] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase , __UpperCamelCase ) snake_case_ , snake_case_ : Any = hf_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert len(__UpperCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case_ : List[str] = load_demo_image() snake_case_ : Any = vis_processors["""eval"""](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case_ : Dict = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) # create processor snake_case_ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) snake_case_ : List[str] = BlipaProcessor(image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase ) snake_case_ : List[Any] = processor(images=__UpperCamelCase , return_tensors="""pt""" ).pixel_values.to(__UpperCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCamelCase , __UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "opt" in model_name: snake_case_ : List[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits snake_case_ : Any = hf_model(__UpperCamelCase , __UpperCamelCase ).logits else: snake_case_ : Tuple = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits snake_case_ : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) snake_case_ : int = hf_model(__UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case_ : Optional[Any] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=__UpperCamelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case_ : Any = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=__UpperCamelCase ) else: # cast to same type snake_case_ : List[Any] = logits.dtype assert torch.allclose(original_logits.to(__UpperCamelCase ) , __UpperCamelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) snake_case_ : Optional[int] = """""" snake_case_ : int = tokenizer(__UpperCamelCase , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) snake_case_ : Any = original_model.generate({"""image""": original_pixel_values} ) snake_case_ : Optional[int] = hf_model.generate( __UpperCamelCase , __UpperCamelCase , do_sample=__UpperCamelCase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , __UpperCamelCase ) snake_case_ : Optional[int] = input_ids.shape[1] snake_case_ : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCamelCase ) snake_case_ : Union[str, Any] = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() __lowerCAmelCase : Optional[Any] = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __lowerCAmelCase : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = False , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : List[Any] = nn.Embedding(_lowercase , _lowercase ) snake_case_ : str = nn.Embedding(_lowercase , _lowercase ) snake_case_ : Dict = False snake_case_ : Optional[int] = nn.Dropout(p=_lowercase ) snake_case_ : Any = TaConfig( vocab_size=_lowercase , d_model=_lowercase , num_heads=_lowercase , d_kv=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , feed_forward_proj=_lowercase , is_decoder=_lowercase , is_encoder_decoder=_lowercase , ) snake_case_ : Optional[Any] = nn.ModuleList() for lyr_num in range(_lowercase ): snake_case_ : Dict = TaBlock(_lowercase ) self.encoders.append(_lowercase ) snake_case_ : Tuple = TaLayerNorm(_lowercase ) snake_case_ : List[str] = nn.Dropout(p=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = self.token_embedder(_lowercase ) snake_case_ : Optional[Any] = encoder_input_tokens.shape[1] snake_case_ : str = torch.arange(_lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowercase ) snake_case_ : Optional[Any] = self.dropout_pre(_lowercase ) # inverted the attention mask snake_case_ : Optional[int] = encoder_input_tokens.size() snake_case_ : Optional[int] = self.get_extended_attention_mask(_lowercase , _lowercase ) for lyr in self.encoders: snake_case_ : Union[str, Any] = lyr(_lowercase , _lowercase )[0] snake_case_ : str = self.layer_norm(_lowercase ) return self.dropout_post(_lowercase ), encoder_inputs_mask
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=True , _lowercase=None , _lowercase=True , ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : str = num_channels snake_case_ : Dict = image_size snake_case_ : Dict = min_resolution snake_case_ : str = max_resolution snake_case_ : Dict = do_resize snake_case_ : List[str] = size snake_case_ : Union[str, Any] = apply_ocr def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """apply_ocr""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched snake_case_ : Union[str, Any] = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : Union[str, Any] = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input snake_case_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : Dict = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : Dict = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case_ : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : List[str] = image_processing(_lowercase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : int = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False snake_case_ : int = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) snake_case_ : int = image_processing(_lowercase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" __lowerCAmelCase : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = [False] * len(__UpperCamelCase ) snake_case_ : str = [s] snake_case_ : Tuple = True while queue: snake_case_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) snake_case_ : Dict = True snake_case_ : Tuple = u return visited[t] def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (len(__UpperCamelCase )) snake_case_ : Any = 0 snake_case_ : Optional[Any] = [] snake_case_ : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ : Dict = float("""Inf""" ) snake_case_ : List[Any] = sink while s != source: # Find the minimum value in select path snake_case_ : Optional[int] = min(__UpperCamelCase , graph[parent[s]][s] ) snake_case_ : Dict = parent[s] max_flow += path_flow snake_case_ : Tuple = sink while v != source: snake_case_ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ : Optional[int] = parent[v] for i in range(len(__UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' snake_case_ : list[Any] = [] snake_case_ : int = 0 snake_case_ : int = 0 def UpperCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.head == self.tail def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' self.data.append(_lowercase ) snake_case_ : Union[str, Any] = self.tail + 1 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.data[self.head] snake_case_ : Any = self.head + 1 return ret def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.tail - self.head def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Optional[int] = data snake_case_ : MyNode | None = None snake_case_ : MyNode | None = None snake_case_ : int = 1 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.data def UpperCAmelCase__ ( self ) -> MyNode | None: '''simple docstring''' return self.left def UpperCAmelCase__ ( self ) -> MyNode | None: '''simple docstring''' return self.right def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self.height def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : List[str] = data def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : int = node def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : int = node def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Union[str, Any] = height def __lowerCAmelCase ( __UpperCamelCase : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a > b: return a return b def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' print("""left rotation node:""" , node.get_data() ) snake_case_ : List[str] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCamelCase ) snake_case_ : List[str] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) snake_case_ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' print("""right rotation node:""" , node.get_data() ) snake_case_ : Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCamelCase ) snake_case_ : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) snake_case_ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' snake_case_ : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCamelCase ) ) return right_rotation(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' snake_case_ : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCamelCase ) ) return left_rotation(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : MyNode | None , __UpperCamelCase : Any ): '''simple docstring''' if node is None: return MyNode(__UpperCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected snake_case_ : int = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child snake_case_ : Optional[Any] = right_rotation(__UpperCamelCase ) else: snake_case_ : List[str] = lr_rotation(__UpperCamelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: snake_case_ : Optional[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): snake_case_ : Optional[Any] = rl_rotation(__UpperCamelCase ) else: snake_case_ : int = left_rotation(__UpperCamelCase ) snake_case_ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) return node def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' while True: snake_case_ : Union[str, Any] = root.get_right() if right_child is None: break snake_case_ : List[Any] = right_child return root.get_data() def __lowerCAmelCase ( __UpperCamelCase : MyNode ): '''simple docstring''' while True: snake_case_ : List[str] = root.get_left() if left_child is None: break snake_case_ : str = left_child return root.get_data() def __lowerCAmelCase ( __UpperCamelCase : MyNode , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[str] = root.get_left() snake_case_ : List[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: snake_case_ : Tuple = get_left_most(__UpperCamelCase ) root.set_data(__UpperCamelCase ) root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) elif left_child is not None: snake_case_ : str = left_child elif right_child is not None: snake_case_ : Optional[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(__UpperCamelCase , __UpperCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) if get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): snake_case_ : List[Any] = left_rotation(__UpperCamelCase ) else: snake_case_ : Optional[int] = rl_rotation(__UpperCamelCase ) elif get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): snake_case_ : Union[str, Any] = right_rotation(__UpperCamelCase ) else: snake_case_ : Union[str, Any] = lr_rotation(__UpperCamelCase ) snake_case_ : List[str] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCamelCase ) return root class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' snake_case_ : MyNode | None = None def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return get_height(self.root ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' print("""insert:""" + str(_lowercase ) ) snake_case_ : List[str] = insert_node(self.root , _lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' print("""delete:""" + str(_lowercase ) ) if self.root is None: print("""Tree is empty!""" ) return snake_case_ : str = del_node(self.root , _lowercase ) def __str__( self , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' snake_case_ : Dict = """""" snake_case_ : List[Any] = MyQueue() q.push(self.root ) snake_case_ : Optional[Any] = self.get_height() if layer == 0: return output snake_case_ : Union[str, Any] = 0 while not q.is_empty(): snake_case_ : str = q.pop() snake_case_ : Dict = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_lowercase ) q.push(_lowercase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space snake_case_ : Tuple = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , _lowercase ) - 1: snake_case_ : List[Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __lowerCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCAmelCase : Dict = AVLtree() __lowerCAmelCase : List[str] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''blenderbot-small''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=5_0_2_6_5 , _lowercase=5_1_2 , _lowercase=8 , _lowercase=2_0_4_8 , _lowercase=1_6 , _lowercase=8 , _lowercase=2_0_4_8 , _lowercase=1_6 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="gelu" , _lowercase=5_1_2 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1 , _lowercase=False , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=2 , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = d_model snake_case_ : List[str] = encoder_ffn_dim snake_case_ : Any = encoder_layers snake_case_ : Optional[Any] = encoder_attention_heads snake_case_ : int = decoder_ffn_dim snake_case_ : List[str] = decoder_layers snake_case_ : str = decoder_attention_heads snake_case_ : str = dropout snake_case_ : List[str] = attention_dropout snake_case_ : Any = activation_dropout snake_case_ : Optional[int] = activation_function snake_case_ : int = init_std snake_case_ : List[str] = encoder_layerdrop snake_case_ : Dict = decoder_layerdrop snake_case_ : List[Any] = use_cache snake_case_ : Optional[Any] = encoder_layers snake_case_ : Any = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ : Optional[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case_ : int = {0: """batch"""} snake_case_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} snake_case_ : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case_ , snake_case_ : int = self.num_layers for i in range(_lowercase ): snake_case_ : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case_ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case_ : Any = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ : Any = super().outputs else: snake_case_ : Optional[int] = super(_lowercase , self ).outputs if self.use_past: snake_case_ , snake_case_ : str = self.num_layers for i in range(_lowercase ): snake_case_ : str = {0: """batch""", 2: """past_sequence + sequence"""} snake_case_ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs snake_case_ : List[str] = seq_length if not self.use_past else 1 snake_case_ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) snake_case_ : Optional[Any] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case_ : Any = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ , snake_case_ : Optional[int] = common_inputs["""input_ids"""].shape snake_case_ : Optional[int] = common_inputs["""decoder_input_ids"""].shape[1] snake_case_ , snake_case_ : Optional[Any] = self.num_attention_heads snake_case_ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ : Tuple = decoder_seq_length + 3 snake_case_ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowercase , _lowercase )] , dim=1 ) snake_case_ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_ , snake_case_ : List[str] = self.num_layers snake_case_ : List[str] = min(_lowercase , _lowercase ) snake_case_ : Optional[Any] = max(_lowercase , _lowercase ) - min_num_layers snake_case_ : Optional[Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. snake_case_ : Optional[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ , snake_case_ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ : List[Any] = seqlen + 2 snake_case_ , snake_case_ : Any = self.num_layers snake_case_ , snake_case_ : Any = self.num_attention_heads snake_case_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ : str = common_inputs["""attention_mask"""].dtype snake_case_ : Tuple = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) snake_case_ : int = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Any = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ : Any = tokenizer.num_special_tokens_to_add(_lowercase ) snake_case_ : Dict = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence snake_case_ : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ : List[Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) elif self.task == "causal-lm": snake_case_ : int = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: snake_case_ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ : Union[str, Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: snake_case_ : int = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ): '''simple docstring''' snake_case_ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: snake_case_ : Optional[Any] = 1 - (matter_density + radiation_density + dark_energy) snake_case_ : Optional[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ : Union[str, Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __lowerCAmelCase : Any = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" __lowerCAmelCase : Any = range(2, 20 + 1) __lowerCAmelCase : Optional[int] = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) snake_case_ : str = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) snake_case_ , snake_case_ : str = 0, 0 snake_case_ : int = n - i snake_case_ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: snake_case_ : Any = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over snake_case_ : Optional[int] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ : Union[str, Any] = _k break if max_jump >= 0: snake_case_ , snake_case_ , snake_case_ : str = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ : List[str] = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): snake_case_ , snake_case_ : List[str] = divmod(__UpperCamelCase , 1_0 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ : Tuple = [] else: snake_case_ : List[Any] = {c: []} snake_case_ : Tuple = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_ , snake_case_ : Tuple = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_ , snake_case_ : List[str] = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped snake_case_ : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ : Union[str, Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ : str = i snake_case_ , snake_case_ , snake_case_ : List[str] = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ : Union[str, Any] = ds_c + ds_b diff += addend snake_case_ : Tuple = 0 for j in range(__UpperCamelCase ): snake_case_ : Any = a_i[j] + addend snake_case_ , snake_case_ : Optional[int] = divmod(__UpperCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): snake_case_ : Tuple = digits[j] + addend if s >= 1_0: snake_case_ , snake_case_ : Optional[Any] = divmod(__UpperCamelCase , 1_0 ) snake_case_ : Dict = addend // 1_0 + quotient else: snake_case_ : Tuple = s snake_case_ : Union[str, Any] = addend // 1_0 if addend == 0: break while addend > 0: snake_case_ , snake_case_ : Dict = divmod(__UpperCamelCase , 1_0 ) digits.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int = 1_0**1_5 ): '''simple docstring''' snake_case_ : List[str] = [1] snake_case_ : Any = 1 snake_case_ : str = 0 while True: snake_case_ , snake_case_ : int = next_term(__UpperCamelCase , 2_0 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break snake_case_ : Tuple = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: '''simple docstring''' warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Any = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''mvp''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=5_0_2_6_7 , _lowercase=1_0_2_4 , _lowercase=1_2 , _lowercase=4_0_9_6 , _lowercase=1_6 , _lowercase=1_2 , _lowercase=4_0_9_6 , _lowercase=1_6 , _lowercase=0.0 , _lowercase=0.0 , _lowercase="gelu" , _lowercase=1_0_2_4 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=False , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=True , _lowercase=2 , _lowercase=2 , _lowercase=False , _lowercase=1_0_0 , _lowercase=8_0_0 , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = vocab_size snake_case_ : int = max_position_embeddings snake_case_ : Tuple = d_model snake_case_ : Union[str, Any] = encoder_ffn_dim snake_case_ : Optional[Any] = encoder_layers snake_case_ : Dict = encoder_attention_heads snake_case_ : Optional[Any] = decoder_ffn_dim snake_case_ : Optional[Any] = decoder_layers snake_case_ : Union[str, Any] = decoder_attention_heads snake_case_ : List[str] = dropout snake_case_ : Any = attention_dropout snake_case_ : List[str] = activation_dropout snake_case_ : List[str] = activation_function snake_case_ : Union[str, Any] = init_std snake_case_ : Tuple = encoder_layerdrop snake_case_ : str = decoder_layerdrop snake_case_ : int = classifier_dropout snake_case_ : Tuple = use_cache snake_case_ : str = encoder_layers snake_case_ : str = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ : int = use_prompt snake_case_ : Any = prompt_length snake_case_ : int = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowercase ): snake_case_ : Any = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) __lowerCAmelCase : Optional[int] = tf.data.AUTOTUNE def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=__UpperCamelCase , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=__UpperCamelCase , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=__UpperCamelCase , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=__UpperCamelCase , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=__UpperCamelCase , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=__UpperCamelCase , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=__UpperCamelCase , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=__UpperCamelCase , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=__UpperCamelCase , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=__UpperCamelCase , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=__UpperCamelCase , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=__UpperCamelCase , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=__UpperCamelCase , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=__UpperCamelCase , help="""Model ID to upload to on the Hugging Face Hub.""" ) snake_case_ : List[Any] = parser.parse_args() return args def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' try: if args.tpu_name: snake_case_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__UpperCamelCase ) tf.tpu.experimental.initialize_tpu_system(__UpperCamelCase ) return tpu def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[int] = 0 for file in file_list: snake_case_ : List[str] = file.split("""/""" )[-1] snake_case_ : Tuple = re.search(r"""-\d+-(\d+)\.tfrecord""" , __UpperCamelCase ).group(1 ) snake_case_ : int = int(__UpperCamelCase ) num_samples += sample_count return num_samples def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=None ): '''simple docstring''' snake_case_ : Tuple = count_samples(__UpperCamelCase ) snake_case_ : List[Any] = tf.data.Dataset.from_tensor_slices(__UpperCamelCase ) if shuffle: snake_case_ : Union[str, Any] = dataset.shuffle(len(__UpperCamelCase ) ) snake_case_ : Dict = tf.data.TFRecordDataset(__UpperCamelCase , num_parallel_reads=__UpperCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ : List[str] = dataset.apply(tf.data.experimental.assert_cardinality(__UpperCamelCase ) ) snake_case_ : int = dataset.map(__UpperCamelCase , num_parallel_calls=__UpperCamelCase ) if shuffle: assert shuffle_buffer_size is not None snake_case_ : str = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ : Optional[int] = dataset.batch(__UpperCamelCase , drop_remainder=__UpperCamelCase ) snake_case_ : Union[str, Any] = dataset.map(__UpperCamelCase , num_parallel_calls=__UpperCamelCase ) snake_case_ : Dict = dataset.prefetch(__UpperCamelCase ) return dataset def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' if not args.no_tpu: snake_case_ : List[Any] = initialize_tpu(__UpperCamelCase ) snake_case_ : Dict = tf.distribute.TPUStrategy(__UpperCamelCase ) else: snake_case_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ : Optional[int] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ : int = tokenizer.vocab_size snake_case_ : List[str] = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) snake_case_ : Tuple = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) snake_case_ : Optional[int] = count_samples(__UpperCamelCase ) snake_case_ : Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ : Dict = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ : List[str] = TFAutoModelForMaskedLM.from_config(__UpperCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ , snake_case_ : Union[str, Any] = create_optimizer( num_train_steps=__UpperCamelCase , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__UpperCamelCase , metrics=["""accuracy"""] ) def decode_fn(__UpperCamelCase : Union[str, Any] ): snake_case_ : Tuple = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__UpperCamelCase , __UpperCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ : int = DataCollatorForLanguageModeling( tokenizer=__UpperCamelCase , mlm_probability=args.mlm_probability , mlm=__UpperCamelCase , return_tensors="""tf""" ) def mask_with_collator(__UpperCamelCase : Tuple ): # TF really needs an isin() function snake_case_ : Optional[Any] = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case_ , snake_case_ : int = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(__UpperCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__UpperCamelCase , ) return batch snake_case_ : Optional[int] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ : Any = prepare_dataset( __UpperCamelCase , decode_fn=__UpperCamelCase , mask_fn=__UpperCamelCase , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ : List[Any] = prepare_dataset( __UpperCamelCase , decode_fn=__UpperCamelCase , mask_fn=__UpperCamelCase , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , ) snake_case_ : List[str] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__UpperCamelCase ) ) model.fit( __UpperCamelCase , validation_data=__UpperCamelCase , epochs=args.num_epochs , callbacks=__UpperCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : int = parse_args() main(args)
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __lowerCAmelCase : List[str] = parser.parse_args() if args.model_type == "bert": __lowerCAmelCase : Tuple = BertForMaskedLM.from_pretrained(args.model_name) __lowerCAmelCase : Optional[Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') __lowerCAmelCase : List[str] = model.state_dict() __lowerCAmelCase : Any = {} for w in ["word_embeddings", "position_embeddings"]: __lowerCAmelCase : List[Any] = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __lowerCAmelCase : Any = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] __lowerCAmelCase : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __lowerCAmelCase : int = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __lowerCAmelCase : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __lowerCAmelCase : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __lowerCAmelCase : str = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __lowerCAmelCase : Tuple = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __lowerCAmelCase : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __lowerCAmelCase : Tuple = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __lowerCAmelCase : Any = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __lowerCAmelCase : List[str] = state_dict['''cls.predictions.decoder.weight'''] __lowerCAmelCase : Tuple = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: __lowerCAmelCase : List[Any] = state_dict[F'''cls.predictions.transform.dense.{w}'''] __lowerCAmelCase : List[str] = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list ): '''simple docstring''' snake_case_ : Dict = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) snake_case_ : Dict = np.array(__UpperCamelCase ) snake_case_ : Any = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list ): '''simple docstring''' snake_case_ : Union[str, Any] = (1, 2, 1) snake_case_ : Optional[Any] = (1, 1, 0, 7) snake_case_ : Tuple = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) snake_case_ : List[str] = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="""nm""" ) snake_case_ : Union[str, Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : list , __UpperCamelCase : list ): '''simple docstring''' snake_case_ : str = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Tuple = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCAmelCase ( __UpperCamelCase : list ): '''simple docstring''' train_user.sort() snake_case_ : Optional[int] = np.percentile(__UpperCamelCase , 2_5 ) snake_case_ : List[str] = np.percentile(__UpperCamelCase , 7_5 ) snake_case_ : List[str] = qa - qa snake_case_ : Optional[int] = qa - (iqr * 0.1) return low_lim def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : Any = 0 snake_case_ : str = 0 for i in list_vote: if i > actual_result: snake_case_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __lowerCAmelCase : Optional[int] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __lowerCAmelCase : Any = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __lowerCAmelCase : Tuple = Normalizer().fit_transform(data_input_df.values) # split data __lowerCAmelCase : str = normalize_df[:, 2].tolist() __lowerCAmelCase : Union[str, Any] = normalize_df[:, 0].tolist() __lowerCAmelCase : Tuple = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __lowerCAmelCase : Tuple = normalize_df[:, [1, 2]].tolist() __lowerCAmelCase : Union[str, Any] = x[: len(x) - 1] __lowerCAmelCase : Union[str, Any] = x[len(x) - 1 :] # for linear regression & sarimax __lowerCAmelCase : Any = total_date[: len(total_date) - 1] __lowerCAmelCase : Optional[Any] = total_user[: len(total_user) - 1] __lowerCAmelCase : int = total_match[: len(total_match) - 1] __lowerCAmelCase : List[Any] = total_date[len(total_date) - 1 :] __lowerCAmelCase : str = total_user[len(total_user) - 1 :] __lowerCAmelCase : List[str] = total_match[len(total_match) - 1 :] # voting system with forecasting __lowerCAmelCase : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __lowerCAmelCase : Dict = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XGLMTokenizer _lowerCamelCase = XGLMTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Any = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = """<pad>""" snake_case_ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(_lowercase ) , 1_0_0_8 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = XGLMTokenizer(_lowercase , keep_accents=_lowercase ) snake_case_ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case_ : Tuple = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowercase , f.name ) snake_case_ : List[str] = XGLMTokenizer(f.name , keep_accents=_lowercase ) snake_case_ : int = pickle.dumps(_lowercase ) pickle.loads(_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Optional[int] = self.get_rust_tokenizer() snake_case_ : Union[str, Any] = """I was born in 92000, and this is falsé.""" snake_case_ : Tuple = tokenizer.tokenize(_lowercase ) snake_case_ : Tuple = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : Dict = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : Dict = self.get_rust_tokenizer() snake_case_ : Dict = tokenizer.encode(_lowercase ) snake_case_ : Optional[int] = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = """Hello World!""" snake_case_ : List[Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off snake_case_ : Optional[Any] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Any = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""facebook/xglm-564M""" , padding=_lowercase , )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nllb-moe''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=1_2_8_1_1_2 , _lowercase=1_0_2_4 , _lowercase=1_2 , _lowercase=4_0_9_6 , _lowercase=1_6 , _lowercase=1_2 , _lowercase=4_0_9_6 , _lowercase=1_6 , _lowercase=0.05 , _lowercase=0.05 , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=1_0_2_4 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=2 , _lowercase=True , _lowercase=False , _lowercase="float32" , _lowercase=False , _lowercase=1_2_8 , _lowercase=6_4 , _lowercase=4 , _lowercase=4 , _lowercase=0.001 , _lowercase=0.001 , _lowercase="all" , _lowercase=False , _lowercase=False , _lowercase=1.0 , _lowercase=0.2 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=False , **_lowercase , ) -> Optional[int]: '''simple docstring''' snake_case_ : str = vocab_size snake_case_ : Any = max_position_embeddings snake_case_ : str = d_model snake_case_ : List[Any] = encoder_ffn_dim snake_case_ : Optional[int] = encoder_layers snake_case_ : Union[str, Any] = encoder_attention_heads snake_case_ : List[Any] = decoder_ffn_dim snake_case_ : Optional[Any] = decoder_layers snake_case_ : Optional[Any] = decoder_attention_heads snake_case_ : List[str] = dropout snake_case_ : int = attention_dropout snake_case_ : int = activation_dropout snake_case_ : List[str] = activation_function snake_case_ : Any = init_std snake_case_ : str = encoder_layerdrop snake_case_ : Optional[int] = decoder_layerdrop snake_case_ : Optional[int] = use_cache snake_case_ : Tuple = encoder_layers snake_case_ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ : int = router_z_loss_coef snake_case_ : Optional[int] = router_aux_loss_coef snake_case_ : Union[str, Any] = decoder_sparse_step snake_case_ : Any = encoder_sparse_step snake_case_ : Optional[Any] = num_experts snake_case_ : Union[str, Any] = expert_capacity snake_case_ : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) snake_case_ : Optional[int] = router_dtype snake_case_ : Optional[Any] = router_ignore_padding_tokens snake_case_ : Union[str, Any] = batch_prioritized_routing snake_case_ : List[str] = second_expert_policy snake_case_ : Optional[Any] = normalize_router_prob_before_dropping snake_case_ : List[Any] = moe_eval_capacity_token_fraction snake_case_ : List[Any] = moe_token_dropout snake_case_ : Tuple = output_router_logits super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import math def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__UpperCamelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __lowerCAmelCase : Any = '''Enter the base and the power separated by a comma: ''' __lowerCAmelCase , __lowerCAmelCase : int = map(int, input(prompt).split(''',''')) __lowerCAmelCase , __lowerCAmelCase : Any = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __lowerCAmelCase : Tuple = res(xa, ya) __lowerCAmelCase : List[Any] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1