code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : int = tau * frequency / samplerate snake_case_ : Any = sin(__UpperCamelCase ) snake_case_ : str = cos(__UpperCamelCase ) snake_case_ : List[Any] = _sin / (2 * q_factor) snake_case_ : List[str] = (1 - _cos) / 2 snake_case_ : str = 1 - _cos snake_case_ : Union[str, Any] = 1 + alpha snake_case_ : Tuple = -2 * _cos snake_case_ : int = 1 - alpha snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Any = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(__UpperCamelCase ) snake_case_ : Tuple = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : str = (1 + _cos) / 2 snake_case_ : Union[str, Any] = -1 - _cos snake_case_ : List[Any] = 1 + alpha snake_case_ : str = -2 * _cos snake_case_ : Optional[int] = 1 - alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : str = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(__UpperCamelCase ) snake_case_ : Any = cos(__UpperCamelCase ) snake_case_ : Optional[Any] = _sin / (2 * q_factor) snake_case_ : str = _sin / 2 snake_case_ : List[Any] = 0 snake_case_ : Any = -ba snake_case_ : Optional[int] = 1 + alpha snake_case_ : Union[str, Any] = -2 * _cos snake_case_ : Any = 1 - alpha snake_case_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : int = tau * frequency / samplerate snake_case_ : str = sin(__UpperCamelCase ) snake_case_ : Optional[int] = cos(__UpperCamelCase ) snake_case_ : Any = _sin / (2 * q_factor) snake_case_ : List[str] = 1 - alpha snake_case_ : Optional[Any] = -2 * _cos snake_case_ : List[Any] = 1 + alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Union[str, Any] = tau * frequency / samplerate snake_case_ : Optional[Any] = sin(__UpperCamelCase ) snake_case_ : Tuple = cos(__UpperCamelCase ) snake_case_ : Any = _sin / (2 * q_factor) snake_case_ : Any = 1_0 ** (gain_db / 4_0) snake_case_ : Optional[Any] = 1 + alpha * big_a snake_case_ : Any = -2 * _cos snake_case_ : Any = 1 - alpha * big_a snake_case_ : Union[str, Any] = 1 + alpha / big_a snake_case_ : List[str] = -2 * _cos snake_case_ : int = 1 - alpha / big_a snake_case_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : List[Any] = tau * frequency / samplerate snake_case_ : List[str] = sin(__UpperCamelCase ) snake_case_ : Optional[int] = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : int = 1_0 ** (gain_db / 4_0) snake_case_ : Tuple = (big_a + 1) - (big_a - 1) * _cos snake_case_ : int = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Any = (big_a - 1) - (big_a + 1) * _cos snake_case_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : List[str] = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : Optional[int] = big_a * (pmc + aaa) snake_case_ : Optional[Any] = 2 * big_a * mpc snake_case_ : Union[str, Any] = big_a * (pmc - aaa) snake_case_ : Dict = ppmc + aaa snake_case_ : str = -2 * pmpc snake_case_ : str = ppmc - aaa snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Dict = tau * frequency / samplerate snake_case_ : int = sin(__UpperCamelCase ) snake_case_ : List[Any] = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : Dict = 1_0 ** (gain_db / 4_0) snake_case_ : Dict = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Any = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Any = (big_a - 1) - (big_a + 1) * _cos snake_case_ : List[str] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : int = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : Optional[Any] = big_a * (ppmc + aaa) snake_case_ : List[str] = -2 * big_a * pmpc snake_case_ : Any = big_a * (ppmc - aaa) snake_case_ : Optional[Any] = pmc + aaa snake_case_ : Optional[Any] = 2 * mpc snake_case_ : str = pmc - aaa snake_case_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm __lowerCAmelCase : Optional[int] = 2048 __lowerCAmelCase : int = 4096 __lowerCAmelCase : Union[str, Any] = 42 __lowerCAmelCase : List[Any] = os.environ.pop('''PROCESS_TRAIN''', '''false''') __lowerCAmelCase : Union[str, Any] = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' def choose_first(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=False ): assert isinstance(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: snake_case_ : Optional[int] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case_ : Optional[int] = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a snake_case_ : str = {"""id""": example["""id"""]} snake_case_ : Tuple = example["""annotations"""] snake_case_ : Dict = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case_ : Union[str, Any] = ["""yes"""] if 1 in yes_no_answer else ["""no"""] snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : Optional[Any] = ["""<cls>"""] else: snake_case_ : Dict = ["""short"""] snake_case_ : Any = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available snake_case_ : Optional[int] = ["""long"""] snake_case_ : List[str] = choose_first(annotation["""long_answer"""] , is_long_answer=__UpperCamelCase ) snake_case_ : Tuple = [] answer.update(__UpperCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case_ : Optional[Any] = True else: snake_case_ : List[str] = False snake_case_ : List[Any] = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , __UpperCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' snake_case_ : Dict = _get_single_answer(__UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case_ : Any = example["""document"""]["""tokens"""] snake_case_ : Optional[int] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(__UpperCamelCase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case_ : Tuple = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case_ : Union[str, Any] = example["""document"""]["""tokens"""] snake_case_ : Dict = answer["""start_token"""] snake_case_ : Union[str, Any] = answer["""end_token"""] snake_case_ : Tuple = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case_ : int = """ """.join(context[start_token:end_token] ) # checking above code if assertion: snake_case_ : List[Any] = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] snake_case_ : Dict = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] snake_case_ : Optional[Any] = """ """.join([old[i] for i in range(len(__UpperCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , __UpperCamelCase , end="""\n""" ) print("""Old:""" , __UpperCamelCase , end="""\n\n""" ) return { "context": " ".join(__UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict=2_0_4_8 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Optional[int]=True ): '''simple docstring''' snake_case_ : Tuple = get_context_and_ans(__UpperCamelCase , assertion=__UpperCamelCase ) snake_case_ : Optional[int] = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case_ : str = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids snake_case_ : Dict = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case_ : Tuple = [] snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = input_ids[:q_len] snake_case_ : List[Any] = range(__UpperCamelCase , len(__UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case_ : Any = i + max_length - q_len snake_case_ : List[str] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__UpperCamelCase ), "end_token": [-1_0_0] * len(__UpperCamelCase ), "category": category, }, } snake_case_ : List[Any] = out["""context"""].split() snake_case_ : Union[str, Any] = splitted_context[answer["""end_token"""]] snake_case_ : str = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=__UpperCamelCase , ).input_ids ) snake_case_ : Tuple = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=__UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case_ : str = len(tokenizer(__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case_ : List[str] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive snake_case_ : Optional[int] = answer["""start_token"""] snake_case_ : List[str] = answer["""end_token"""] if assertion: snake_case_ : str = tokenizer.decode(__UpperCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , __UpperCamelCase , end="""\n\n""" ) if len(__UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case_ : int = input_ids[:q_len] snake_case_ : Tuple = range(__UpperCamelCase , len(__UpperCamelCase ) , max_length - doc_stride ) snake_case_ : Dict = [] snake_case_ : Optional[Any] = [] snake_case_ : Dict = [] snake_case_ : Dict = [] # null, yes, no, long, short for i in doc_start_indices: snake_case_ : List[Any] = i + max_length - q_len snake_case_ : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case_ : Any = start_token - i + q_len snake_case_ : Tuple = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: snake_case_ : Union[str, Any] = -1_0_0 snake_case_ : Union[str, Any] = -1_0_0 answers_category.append("""null""" ) snake_case_ : List[str] = inputs[-1][start_token : end_token + 1] answers_start_token.append(__UpperCamelCase ) answers_end_token.append(__UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(__UpperCamelCase ) ) print("""Old:""" , tokenizer.decode(__UpperCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int=2_0_4_8 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' snake_case_ : int = get_strided_contexts_and_ans( __UpperCamelCase , __UpperCamelCase , doc_stride=__UpperCamelCase , max_length=__UpperCamelCase , assertion=__UpperCamelCase , ) return example def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' with jsonlines.open(__UpperCamelCase , """a""" ) as writer: for example in tqdm(__UpperCamelCase , total=len(__UpperCamelCase ) , desc="""Saving samples ... """ ): snake_case_ : int = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowerCAmelCase : Tuple = load_dataset('''natural_questions''') __lowerCAmelCase : Optional[Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') __lowerCAmelCase : Any = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] __lowerCAmelCase : Tuple = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } __lowerCAmelCase : Optional[int] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowerCAmelCase : int = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) __lowerCAmelCase : str = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gptsan-japanese''' _lowerCamelCase = [ '''past_key_values''', ] _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=3_6_0_0_0 , _lowercase=1_2_8_0 , _lowercase=1_0_2_4 , _lowercase=8_1_9_2 , _lowercase=4_0_9_6 , _lowercase=1_2_8 , _lowercase=1_0 , _lowercase=0 , _lowercase=1_6 , _lowercase=1_6 , _lowercase=1_2_8 , _lowercase=0.0 , _lowercase=1E-5 , _lowercase=False , _lowercase=0.0 , _lowercase="float32" , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=0.002 , _lowercase=False , _lowercase=True , _lowercase=3_5_9_9_8 , _lowercase=3_5_9_9_5 , _lowercase=3_5_9_9_9 , **_lowercase , ) -> int: '''simple docstring''' snake_case_ : Any = vocab_size snake_case_ : int = max_position_embeddings snake_case_ : List[Any] = d_model snake_case_ : Any = d_ff snake_case_ : List[str] = d_ext snake_case_ : str = d_spout snake_case_ : str = num_switch_layers snake_case_ : Optional[Any] = num_ext_layers snake_case_ : Optional[Any] = num_switch_layers + num_ext_layers snake_case_ : List[str] = num_heads snake_case_ : Any = num_experts snake_case_ : List[str] = expert_capacity snake_case_ : Dict = dropout_rate snake_case_ : Optional[Any] = layer_norm_epsilon snake_case_ : List[Any] = router_bias snake_case_ : Tuple = router_jitter_noise snake_case_ : str = router_dtype snake_case_ : Tuple = router_ignore_padding_tokens snake_case_ : str = output_hidden_states snake_case_ : Optional[Any] = output_attentions snake_case_ : str = initializer_factor snake_case_ : Tuple = output_router_logits snake_case_ : List[Any] = use_cache super().__init__( separator_token_id=_lowercase , pad_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , )
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=2 , _lowercase=True , _lowercase=False , _lowercase=1_0 , _lowercase=3 , _lowercase=3_2 * 8 , _lowercase=3_2 * 8 , _lowercase=4 , _lowercase=6_4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = is_training snake_case_ : int = use_auxiliary_loss snake_case_ : List[str] = num_queries snake_case_ : Tuple = num_channels snake_case_ : Any = min_size snake_case_ : List[Any] = max_size snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = hidden_dim snake_case_ : Any = hidden_dim def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) snake_case_ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) snake_case_ : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() snake_case_ : Any = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() snake_case_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case_ : List[Any] = self.num_queries snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Union[str, Any] = [1, 1, 1, 1] snake_case_ : str = self.num_channels snake_case_ : Any = 6_4 snake_case_ : int = 1_2_8 snake_case_ : Optional[Any] = self.hidden_dim snake_case_ : Any = self.hidden_dim snake_case_ : str = self.hidden_dim return config def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = output.encoder_hidden_states snake_case_ : Dict = output.pixel_decoder_hidden_states snake_case_ : List[str] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_layers ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=False ) -> int: '''simple docstring''' with torch.no_grad(): snake_case_ : Dict = MaskaFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) snake_case_ : Optional[Any] = model(_lowercase , output_hidden_states=_lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = MaskaFormerForUniversalSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ : List[str] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) snake_case_ : List[Any] = model(_lowercase ) comm_check_on_output(_lowercase ) snake_case_ : Optional[Any] = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(_lowercase ) snake_case_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : str = [*signature.parameters.keys()] snake_case_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case_ : Tuple = MaskaFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = (self.model_tester.min_size,) * 2 snake_case_ : Union[str, Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowercase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=_lowercase ), """class_labels""": torch.zeros(2 , 1_0 , device=_lowercase ).long(), } snake_case_ : int = self.model_tester.get_config() snake_case_ : int = MaskaFormerForUniversalSegmentation(_lowercase ).to(_lowercase ) snake_case_ : List[str] = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : str = model_class(_lowercase ).to(_lowercase ) snake_case_ : Optional[int] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if not self.model_tester.is_training: return snake_case_ : int = self.all_model_classes[1] snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() snake_case_ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() snake_case_ : Optional[Any] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.all_model_classes[1] snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() snake_case_ : str = True snake_case_ : List[str] = True snake_case_ : str = model_class(_lowercase ).to(_lowercase ) model.train() snake_case_ : Dict = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) snake_case_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case_ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : List[str] = 1e-4 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowercase ) snake_case_ : List[str] = self.default_image_processor snake_case_ : List[str] = prepare_img() snake_case_ : Any = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) snake_case_ : List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_lowercase ) snake_case_ : Optional[int] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) snake_case_ : List[str] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) snake_case_ : List[str] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() snake_case_ : str = self.default_image_processor snake_case_ : Any = prepare_img() snake_case_ : str = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) snake_case_ : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case_ : List[str] = model(**_lowercase ) # masks_queries_logits snake_case_ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case_ : Union[str, Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case_ : int = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits snake_case_ : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case_ : int = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() snake_case_ : Union[str, Any] = self.default_image_processor snake_case_ : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) snake_case_ : List[Any] = inputs["""pixel_values"""].to(_lowercase ) snake_case_ : Optional[int] = [el.to(_lowercase ) for el in inputs["""mask_labels"""]] snake_case_ : Any = [el.to(_lowercase ) for el in inputs["""class_labels"""]] with torch.no_grad(): snake_case_ : Optional[Any] = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = None def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Dict=0.999 , __UpperCamelCase : Optional[Any]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) snake_case_ : List[str] = [] for i in range(__UpperCamelCase ): snake_case_ : Optional[Any] = i / num_diffusion_timesteps snake_case_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase = 1_0_0_0 , _lowercase = "fixed_small_log" , _lowercase = True , _lowercase = 1.0 , _lowercase = "epsilon" , _lowercase = "squaredcos_cap_v2" , ) -> Tuple: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) snake_case_ : List[str] = betas_for_alpha_bar(_lowercase ) snake_case_ : Any = 1.0 - self.betas snake_case_ : Any = torch.cumprod(self.alphas , dim=0 ) snake_case_ : Optional[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case_ : str = 1.0 # setable values snake_case_ : Optional[int] = None snake_case_ : str = torch.from_numpy(np.arange(0 , _lowercase )[::-1].copy() ) snake_case_ : Dict = variance_type def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = num_inference_steps snake_case_ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case_ : Optional[Any] = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case_ : List[Any] = torch.from_numpy(_lowercase ).to(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Any: '''simple docstring''' if prev_timestep is None: snake_case_ : List[str] = t - 1 snake_case_ : Tuple = self.alphas_cumprod[t] snake_case_ : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ : Dict = 1 - alpha_prod_t snake_case_ : Any = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ : int = self.betas[t] else: snake_case_ : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ : Tuple = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case_ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case_ : Tuple = torch.log(torch.clamp(_lowercase , min=1E-20 ) ) snake_case_ : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case_ : Optional[int] = variance.log() snake_case_ : int = beta.log() snake_case_ : Dict = (predicted_variance + 1) / 2 snake_case_ : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase=None , _lowercase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case_ , snake_case_ : Optional[int] = torch.split(_lowercase , sample.shape[1] , dim=1 ) else: snake_case_ : Union[str, Any] = None # 1. compute alphas, betas if prev_timestep is None: snake_case_ : int = t - 1 snake_case_ : int = self.alphas_cumprod[t] snake_case_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ : Optional[int] = 1 - alpha_prod_t snake_case_ : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ : str = self.betas[t] snake_case_ : str = self.alphas[t] else: snake_case_ : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev snake_case_ : List[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ : str = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ : str = torch.clamp( _lowercase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case_ : Union[str, Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ : List[str] = 0 if t > 0: snake_case_ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowercase , device=model_output.device ) snake_case_ : str = self._get_variance( _lowercase , predicted_variance=_lowercase , prev_timestep=_lowercase , ) if self.variance_type == "fixed_small_log": snake_case_ : List[str] = variance elif self.variance_type == "learned_range": snake_case_ : List[Any] = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) snake_case_ : Optional[Any] = variance * variance_noise snake_case_ : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowercase , pred_original_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , ) -> torch.FloatTensor: '''simple docstring''' snake_case_ : Any = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case_ : Tuple = timesteps.to(original_samples.device ) snake_case_ : Any = alphas_cumprod[timesteps] ** 0.5 snake_case_ : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ : Dict = sqrt_alpha_prod.unsqueeze(-1 ) snake_case_ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_0_0 , _lowercase=1_3 , _lowercase=3_0 , _lowercase=2 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=3_2 , _lowercase=4 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_0 , _lowercase=0.02 , _lowercase=3 , _lowercase=None , _lowercase=[0, 1, 2, 3] , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : str = 1_0_0 snake_case_ : str = batch_size snake_case_ : Dict = image_size snake_case_ : Union[str, Any] = patch_size snake_case_ : Any = num_channels snake_case_ : List[str] = is_training snake_case_ : List[str] = use_labels snake_case_ : Any = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Any = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = scope snake_case_ : Dict = out_indices snake_case_ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ : List[Any] = (image_size // patch_size) ** 2 snake_case_ : int = num_patches + 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Dict = None snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Any = BeitModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = BeitForMaskedImageModeling(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.type_sequence_label_size snake_case_ : Dict = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : int = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ : Dict = 1 snake_case_ : Tuple = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = self.num_labels snake_case_ : Any = BeitForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Optional[int] = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case_ : List[Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = config_and_inputs snake_case_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[int] = BeitModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Tuple = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(_lowercase ) snake_case_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Optional[int] = [*signature.parameters.keys()] snake_case_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling]: continue snake_case_ : Optional[int] = model_class(_lowercase ) model.to(_lowercase ) model.train() snake_case_ : Tuple = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) snake_case_ : str = model(**_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ : Dict = False snake_case_ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case_ : int = model_class(_lowercase ) model.gradient_checkpointing_enable() model.to(_lowercase ) model.train() snake_case_ : List[Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) snake_case_ : List[Any] = model(**_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = model_class(config=_lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Union[str, Any] = BeitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_lowercase ) snake_case_ : str = self.default_image_processor snake_case_ : int = prepare_img() snake_case_ : Optional[int] = image_processor(images=_lowercase , return_tensors="""pt""" ).pixel_values.to(_lowercase ) # prepare bool_masked_pos snake_case_ : Optional[Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case_ : Dict = model(pixel_values=_lowercase , bool_masked_pos=_lowercase ) snake_case_ : str = outputs.logits # verify the logits snake_case_ : str = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , _lowercase ) snake_case_ : int = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowercase , atol=1E-2 ) ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_lowercase ) snake_case_ : Tuple = self.default_image_processor snake_case_ : Any = prepare_img() snake_case_ : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_lowercase ) snake_case_ : Dict = outputs.logits # verify the logits snake_case_ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , _lowercase ) snake_case_ : Any = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) snake_case_ : int = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _lowercase ) snake_case_ : int = self.default_image_processor snake_case_ : int = prepare_img() snake_case_ : Union[str, Any] = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case_ : Any = model(**_lowercase ) snake_case_ : str = outputs.logits # verify the logits snake_case_ : List[str] = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , _lowercase ) snake_case_ : Union[str, Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) ) snake_case_ : Dict = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : str = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case_ : int = model.to(_lowercase ) snake_case_ : Any = BeitImageProcessor(do_resize=_lowercase , size=6_4_0 , do_center_crop=_lowercase ) snake_case_ : List[str] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case_ : Tuple = Image.open(ds[0]["""file"""] ) snake_case_ : Any = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case_ : List[str] = model(**_lowercase ) snake_case_ : str = outputs.logits # verify the logits snake_case_ : Optional[Any] = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , _lowercase ) snake_case_ : int = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: snake_case_ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_lowercase , ) else: snake_case_ : List[str] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) snake_case_ : Optional[Any] = model.to(_lowercase ) snake_case_ : List[Any] = BeitImageProcessor(do_resize=_lowercase , size=6_4_0 , do_center_crop=_lowercase ) snake_case_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) snake_case_ : Any = Image.open(ds[0]["""file"""] ) snake_case_ : Optional[int] = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): snake_case_ : Optional[Any] = model(**_lowercase ) snake_case_ : str = outputs.logits.detach().cpu() snake_case_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(5_0_0, 3_0_0)] ) snake_case_ : int = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , _lowercase ) snake_case_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) snake_case_ : Optional[Any] = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , _lowercase )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase = True , _lowercase = False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = scheduler snake_case_ : str = optimizers if isinstance(_lowercase , (list, tuple) ) else [optimizers] snake_case_ : str = split_batches snake_case_ : Tuple = step_with_optimizer snake_case_ : List[Any] = GradientState() def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowercase , **_lowercase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowercase , **_lowercase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case_ : Optional[int] = AcceleratorState().num_processes for _ in range(_lowercase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowercase , **_lowercase ) else: self.scheduler.step(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return self.scheduler.get_last_lr() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return self.scheduler.state_dict() def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' self.scheduler.load_state_dict(_lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self.scheduler.get_lr() def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' return self.scheduler.print_lr(*_lowercase , **_lowercase )
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCAmelCase ( __UpperCamelCase : int = 8 ): '''simple docstring''' snake_case_ : int = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' i -= len(__UpperCamelCase ) snake_case_ : Union[str, Any] = i // 3 snake_case_ : Optional[int] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ : str = ( chars_incl + random(__UpperCamelCase , quotient + remainder ) + random(__UpperCamelCase , __UpperCamelCase ) + random(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ : str = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : str ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int = 8 ): '''simple docstring''' if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ : Tuple = any(char in ascii_uppercase for char in password ) snake_case_ : str = any(char in ascii_lowercase for char in password ) snake_case_ : int = any(char in digits for char in password ) snake_case_ : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ : Tuple = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__UpperCamelCase ) ) print( """Alternative Password generated:""" , alternative_password_generator(__UpperCamelCase , __UpperCamelCase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __lowerCAmelCase : Dict = logging.getLogger(__name__) __lowerCAmelCase : Tuple = 50 # max width of layer names __lowerCAmelCase : List[str] = 70 # max width of quantizer names def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=__UpperCamelCase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=__UpperCamelCase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=__UpperCamelCase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=__UpperCamelCase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=__UpperCamelCase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=__UpperCamelCase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if args.calibrator == "max": snake_case_ : Dict = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) snake_case_ : List[Any] = """histogram""" elif args.calibrator == "mse": snake_case_ : List[str] = """histogram""" else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) snake_case_ : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=__UpperCamelCase ) snake_case_ : Union[str, Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__UpperCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[Any]=False ): '''simple docstring''' logger.info("""Configuring Model for Quantization""" ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__UpperCamelCase , ["""embeddings"""] , which="""weight""" , _disabled=__UpperCamelCase ) if args.quant_disable: set_quantizer_by_name(__UpperCamelCase , [""""""] , _disabled=__UpperCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__UpperCamelCase , args.quant_disable_keyword , _disabled=__UpperCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__UpperCamelCase , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=__UpperCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__UpperCamelCase , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=__UpperCamelCase ) if args.recalibrate_weights: recalibrate_weights(__UpperCamelCase ) if args.fuse_qkv: fuse_qkv(__UpperCamelCase , __UpperCamelCase ) if args.clip_gelu: clip_gelu(__UpperCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' def fusea(__UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Tuple ): for mod in [qq, qk, qv]: if not hasattr(__UpperCamelCase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return snake_case_ : Optional[Any] = qq._amax.detach().item() snake_case_ : Dict = qk._amax.detach().item() snake_case_ : str = qv._amax.detach().item() snake_case_ : List[str] = max(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) qq._amax.fill_(__UpperCamelCase ) qk._amax.fill_(__UpperCamelCase ) qv._amax.fill_(__UpperCamelCase ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): snake_case_ : Tuple = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__UpperCamelCase ) snake_case_ : Dict = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__UpperCamelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: snake_case_ : Union[str, Any] = mod.weight.shape[0] snake_case_ : List[str] = mod._weight_quantizer._amax.detach() snake_case_ : int = torch.ones(__UpperCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__UpperCamelCase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) snake_case_ : Optional[int] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) snake_case_ : Any = set(range(len(mod.weight.size() ) ) ) - axis_set snake_case_ : Optional[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__UpperCamelCase , keepdims=__UpperCamelCase ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) snake_case_ : List[Any] = amax def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str]=2_5 , __UpperCamelCase : Dict=1_8_0 , __UpperCamelCase : Optional[Any]=None ): '''simple docstring''' if ignore is None: snake_case_ : Any = [] elif not isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Union[str, Any] = [ignore] snake_case_ : int = 0 for name, mod in model.named_modules(): if not hasattr(__UpperCamelCase , """weight""" ): continue snake_case_ : Dict = max(__UpperCamelCase , len(__UpperCamelCase ) ) for name, mod in model.named_modules(): snake_case_ : Tuple = getattr(__UpperCamelCase , """_input_quantizer""" , __UpperCamelCase ) snake_case_ : Dict = getattr(__UpperCamelCase , """_weight_quantizer""" , __UpperCamelCase ) if not hasattr(__UpperCamelCase , """weight""" ): continue if type(__UpperCamelCase ) in ignore: continue if [True for s in ignore if type(__UpperCamelCase ) is str and s in name]: continue snake_case_ : Tuple = F'Act:{input_q.extra_repr()}' snake_case_ : Tuple = F'Wgt:{weight_q.extra_repr()}' snake_case_ : Union[str, Any] = F'{name:{name_width}} {act_str} {wgt_str}' if len(__UpperCamelCase ) <= line_width: logger.info(__UpperCamelCase ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(__UpperCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Dict = getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if quantizer_mod is not None: assert hasattr(__UpperCamelCase , __UpperCamelCase ) setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: logger.warning(F'{name} has no {quantizer}' ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]="both" , **__UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(__UpperCamelCase , __UpperCamelCase , """_input_quantizer""" , __UpperCamelCase , __UpperCamelCase ) if which in ["weight", "both"]: set_quantizer(__UpperCamelCase , __UpperCamelCase , """_weight_quantizer""" , __UpperCamelCase , __UpperCamelCase ) logger.info(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , **__UpperCamelCase : int ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__UpperCamelCase , """_input_quantizer""" ) or hasattr(__UpperCamelCase , """_weight_quantizer""" ): for n in names: if re.search(__UpperCamelCase , __UpperCamelCase ): set_quantizers(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) logger.info(__UpperCamelCase )
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''encoder-decoder''' _lowerCamelCase = True def __init__( self , **_lowercase ) -> Any: '''simple docstring''' super().__init__(**_lowercase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case_ : int = kwargs.pop("""encoder""" ) snake_case_ : List[str] = encoder_config.pop("""model_type""" ) snake_case_ : Optional[int] = kwargs.pop("""decoder""" ) snake_case_ : Tuple = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : Tuple = AutoConfig.for_model(_lowercase , **_lowercase ) snake_case_ : str = AutoConfig.for_model(_lowercase , **_lowercase ) snake_case_ : Optional[Any] = True @classmethod def UpperCAmelCase__ ( cls , _lowercase , _lowercase , **_lowercase ) -> PretrainedConfig: '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) snake_case_ : Union[str, Any] = True snake_case_ : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Dict = self.encoder.to_dict() snake_case_ : Any = self.decoder.to_dict() snake_case_ : Optional[Any] = self.__class__.model_type return output
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 2_0, """a """ * 3_0, """b """ * 7], } snake_case_ : Union[str, Any] = Dataset.from_dict(__UpperCamelCase ) return dataset class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = get_dataset() snake_case_ : Optional[Any] = make_duplicate_clusters(_lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = get_dataset() snake_case_ , snake_case_ : Union[str, Any] = deduplicate_dataset(_lowercase ) self.assertEqual(len(_lowercase ) , 2 ) print(_lowercase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowercase )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''xlm-roberta-xl''' def __init__( self , _lowercase=2_5_0_8_8_0 , _lowercase=2_5_6_0 , _lowercase=3_6 , _lowercase=3_2 , _lowercase=1_0_2_4_0 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_4 , _lowercase=1 , _lowercase=0.02 , _lowercase=1E-05 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : Union[str, Any] = vocab_size snake_case_ : str = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : Optional[int] = initializer_range snake_case_ : Tuple = layer_norm_eps snake_case_ : List[str] = position_embedding_type snake_case_ : List[str] = use_cache snake_case_ : Optional[int] = classifier_dropout class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCAmelCase : Tuple = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __lowerCAmelCase : str = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ : Optional[Any] = bs[:] snake_case_ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case_ : List[Any] = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Any = set() snake_case_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Optional[Any] = char return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token snake_case_ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : str = json.load(_lowercase ) snake_case_ : Optional[int] = {v: k for k, v in self.encoder.items()} snake_case_ : List[str] = errors # how to handle errors in decoding snake_case_ : Any = bytes_to_unicode() snake_case_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : Union[str, Any] = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Any = {} snake_case_ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : List[str] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : str = tuple(_lowercase ) snake_case_ : Optional[int] = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : str = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : Tuple = bigram snake_case_ : Any = [] snake_case_ : List[str] = 0 while i < len(_lowercase ): try: snake_case_ : Any = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Optional[int] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[int] = tuple(_lowercase ) snake_case_ : int = new_word if len(_lowercase ) == 1: break else: snake_case_ : List[Any] = get_pairs(_lowercase ) snake_case_ : Optional[int] = """ """.join(_lowercase ) snake_case_ : List[str] = word return word def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = [] for token in re.findall(self.pat , _lowercase ): snake_case_ : Dict = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' return self.decoder.get(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : Any = """""".join(_lowercase ) snake_case_ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : int = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Dict = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : List[Any] = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Dict = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): snake_case_ : int = """ """ + text return (text, kwargs) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> str: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' snake_case_ : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(_lowercase ) snake_case_ : Tuple = """ """.join(_lowercase ) snake_case_ : Optional[int] = self.encode(_lowercase ) if len(_lowercase ) > self.model_max_length: snake_case_ : str = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = DDIMPipeline _lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCamelCase = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } _lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) snake_case_ : Optional[Any] = DDIMScheduler() snake_case_ : Any = {"""unet""": unet, """scheduler""": scheduler} return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> Optional[Any]: '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): snake_case_ : int = torch.manual_seed(_lowercase ) else: snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : Optional[int] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """cpu""" snake_case_ : int = self.get_dummy_components() snake_case_ : Tuple = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Any = self.get_dummy_inputs(_lowercase ) snake_case_ : Dict = pipe(**_lowercase ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) snake_case_ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) snake_case_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1E-3 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = """google/ddpm-cifar10-32""" snake_case_ : Optional[Any] = UNetaDModel.from_pretrained(_lowercase ) snake_case_ : int = DDIMScheduler() snake_case_ : Union[str, Any] = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddim.to(_lowercase ) ddim.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = ddim(generator=_lowercase , eta=0.0 , output_type="""numpy""" ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case_ : Tuple = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Dict = """google/ddpm-ema-bedroom-256""" snake_case_ : Tuple = UNetaDModel.from_pretrained(_lowercase ) snake_case_ : List[Any] = DDIMScheduler.from_pretrained(_lowercase ) snake_case_ : List[str] = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddpm.to(_lowercase ) ddpm.set_progress_bar_config(disable=_lowercase ) snake_case_ : Union[str, Any] = torch.manual_seed(0 ) snake_case_ : Any = ddpm(generator=_lowercase , output_type="""numpy""" ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) snake_case_ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] snake_case_ : Optional[Any] = 1_1 snake_case_ : Any = int("""1""" + """0""" * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 snake_case_ : Optional[Any] = 1_0 return solutions def __lowerCAmelCase ( __UpperCamelCase : int = 2 ): '''simple docstring''' snake_case_ : Dict = 1.0 for fraction in fraction_list(__UpperCamelCase ): snake_case_ : Dict = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" __lowerCAmelCase : List[str] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = word.split() def justify(__UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int ) -> str: snake_case_ : int = max_width - width snake_case_ : int = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ : Union[str, Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ : Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ : str = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 snake_case_ : List[Any] = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) snake_case_ : Tuple = [] snake_case_ : list[str] = [] snake_case_ : List[str] = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width snake_case_ , snake_case_ : Union[str, Any] = [word], len(__UpperCamelCase ) snake_case_ : Dict = max_width - width - len(__UpperCamelCase ) answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Dict = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __lowerCAmelCase : Optional[Any] = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = GPTaTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase=False , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) snake_case_ : Optional[Any] = kwargs.pop("""add_bos_token""" , _lowercase ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space: snake_case_ : List[Any] = getattr(_lowercase , pre_tok_state.pop("""type""" ) ) snake_case_ : Tuple = add_prefix_space snake_case_ : Optional[int] = pre_tok_class(**_lowercase ) snake_case_ : Optional[int] = add_prefix_space def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: '''simple docstring''' snake_case_ : Dict = kwargs.get("""is_split_into_words""" , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: '''simple docstring''' snake_case_ : List[str] = kwargs.get("""is_split_into_words""" , _lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : int = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' snake_case_ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: snake_case_ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Optional[Any] = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase : Any = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } __lowerCAmelCase : List[Any] = '''▁''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = BigBirdTokenizer _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = [] def __init__( self , _lowercase=None , _lowercase=None , _lowercase="<unk>" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="[SEP]" , _lowercase="[MASK]" , _lowercase="[CLS]" , **_lowercase , ) -> int: '''simple docstring''' snake_case_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token snake_case_ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) snake_case_ : Optional[Any] = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : Dict = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.dummy_uncond_unet snake_case_ : Optional[Any] = KarrasVeScheduler() snake_case_ : int = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = pipe(num_inference_steps=2 , generator=_lowercase , output_type="""numpy""" ).images snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : Optional[Any] = pipe(num_inference_steps=2 , generator=_lowercase , output_type="""numpy""" , return_dict=_lowercase )[0] snake_case_ : Dict = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case_ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = """google/ncsnpp-celebahq-256""" snake_case_ : Optional[int] = UNetaDModel.from_pretrained(_lowercase ) snake_case_ : Optional[int] = KarrasVeScheduler() snake_case_ : Optional[int] = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : int = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = pipe(num_inference_steps=2_0 , generator=_lowercase , output_type="""numpy""" ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) snake_case_ : List[str] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = (KDPMaDiscreteScheduler,) _lowerCamelCase = 10 def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Any = self.dummy_model() snake_case_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Optional[int] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : List[str] = model(_lowercase , _lowercase ) snake_case_ : Optional[Any] = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : int = output.prev_sample snake_case_ : List[str] = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Tuple = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' if torch_device == "mps": return snake_case_ : Optional[Any] = self.scheduler_classes[0] snake_case_ : str = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : int = self.dummy_model() snake_case_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : List[str] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[Any] = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : str = model(_lowercase , _lowercase ) snake_case_ : str = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : int = output.prev_sample snake_case_ : int = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if torch_device == "mps": return snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : Optional[Any] = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) snake_case_ : str = self.dummy_model() snake_case_ : List[Any] = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : List[Any] = model(_lowercase , _lowercase ) snake_case_ : str = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : Optional[Any] = output.prev_sample snake_case_ : int = torch.sum(torch.abs(_lowercase ) ) snake_case_ : str = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase : Tuple = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=None , _lowercase=True , _lowercase=True , _lowercase=None , ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = size if size is not None else {"""height""": 2_0, """width""": 2_0} snake_case_ : List[str] = parent snake_case_ : Dict = batch_size snake_case_ : Any = num_channels snake_case_ : Dict = image_size snake_case_ : List[str] = min_resolution snake_case_ : str = max_resolution snake_case_ : List[Any] = size snake_case_ : Optional[int] = do_normalize snake_case_ : Optional[Any] = do_convert_rgb snake_case_ : Optional[int] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case_ : List[str] = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case_ : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.image_processor_tester.prepare_dummy_image() snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) snake_case_ : Dict = 2_0_4_8 snake_case_ : Any = image_processor(_lowercase , return_tensors="""pt""" , max_patches=_lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : Union[str, Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Any = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Optional[int] = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case_ : Dict = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowercase ): snake_case_ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches snake_case_ : Dict = """Hello""" snake_case_ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Tuple = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) snake_case_ : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Tuple = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input snake_case_ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Optional[Any] = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case_ : Tuple = 3 @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Any = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import argparse import copy def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[Any] = {} with open(__UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : Dict = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : Optional[Any] = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Dict ): '''simple docstring''' with open(__UpperCamelCase ) as f: snake_case_ : str = f.read(1 ) snake_case_ : Any = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : List[Any] = 0 while visiting not in first_solution: snake_case_ : List[Any] = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__UpperCamelCase ) and k[0] not in first_solution: snake_case_ : Dict = k[1] snake_case_ : Optional[int] = k[0] first_solution.append(__UpperCamelCase ) snake_case_ : List[Any] = distance_of_first_solution + int(__UpperCamelCase ) snake_case_ : Dict = best_node first_solution.append(__UpperCamelCase ) snake_case_ : Dict = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = [] for n in solution[1:-1]: snake_case_ : Optional[int] = solution.index(__UpperCamelCase ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(__UpperCamelCase ) if n == kn: continue snake_case_ : List[Any] = copy.deepcopy(__UpperCamelCase ) snake_case_ : Union[str, Any] = kn snake_case_ : Dict = n snake_case_ : List[str] = 0 for k in _tmp[:-1]: snake_case_ : Any = _tmp[_tmp.index(__UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(__UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[int] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[Any] = 1 snake_case_ : int = first_solution snake_case_ : Tuple = [] snake_case_ : Tuple = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : Dict = find_neighborhood(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = 0 snake_case_ : int = neighborhood[index_of_best_solution] snake_case_ : int = len(__UpperCamelCase ) - 1 snake_case_ : Any = False while not found: snake_case_ : Dict = 0 while i < len(__UpperCamelCase ): if best_solution[i] != solution[i]: snake_case_ : Tuple = best_solution[i] snake_case_ : Any = solution[i] break snake_case_ : Tuple = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Optional[int] = True snake_case_ : Union[str, Any] = best_solution[:-1] snake_case_ : Any = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : List[str] = cost snake_case_ : str = solution else: snake_case_ : Any = index_of_best_solution + 1 snake_case_ : List[Any] = neighborhood[index_of_best_solution] if len(__UpperCamelCase ) >= size: tabu_list.pop(0 ) snake_case_ : Optional[Any] = count + 1 return best_solution_ever, best_cost def __lowerCAmelCase ( __UpperCamelCase : List[str]=None ): '''simple docstring''' snake_case_ : str = generate_neighbours(args.File ) snake_case_ , snake_case_ : str = generate_first_solution( args.File , __UpperCamelCase ) snake_case_ , snake_case_ : Tuple = tabu_search( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=False ): '''simple docstring''' try: snake_case_ : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Optional[Any] = default else: # KEY is set, convert it to True or False. try: snake_case_ : Optional[Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value __lowerCAmelCase : Optional[Any] = parse_flag_from_env('''RUN_SLOW''', default=False) __lowerCAmelCase : int = parse_flag_from_env('''RUN_REMOTE''', default=False) __lowerCAmelCase : List[Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) __lowerCAmelCase : Optional[Any] = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __lowerCAmelCase : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __lowerCAmelCase : Dict = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __lowerCAmelCase : List[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __lowerCAmelCase : List[str] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __lowerCAmelCase : int = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __lowerCAmelCase : Union[str, Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __lowerCAmelCase : Union[str, Any] = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' try: import faiss # noqa except ImportError: snake_case_ : int = unittest.skip("""test requires faiss""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' try: import regex # noqa except ImportError: snake_case_ : Dict = unittest.skip("""test requires regex""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: snake_case_ : str = unittest.skip("""test requires elasticsearch""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: snake_case_ : Tuple = unittest.skip("""test requires sqlalchemy""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if not config.TORCH_AVAILABLE: snake_case_ : Any = unittest.skip("""test requires PyTorch""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' if not config.TF_AVAILABLE: snake_case_ : Tuple = unittest.skip("""test requires TensorFlow""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' if not config.JAX_AVAILABLE: snake_case_ : Optional[Any] = unittest.skip("""test requires JAX""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not config.PIL_AVAILABLE: snake_case_ : Optional[Any] = unittest.skip("""test requires Pillow""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__UpperCamelCase ) else: return test_case def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__UpperCamelCase ) else: return test_case def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCamelCase ) else: return test_case def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' def _require_spacy_model(__UpperCamelCase : Optional[Any] ): try: import spacy # noqa F401 spacy.load(__UpperCamelCase ) except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCamelCase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__UpperCamelCase ) )(__UpperCamelCase ) else: return test_case return _require_spacy_model def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__UpperCamelCase ) else: return test_case def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__UpperCamelCase ) else: return test_case def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: snake_case_ : Any = unittest.skip("""test is slow""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: snake_case_ : Optional[int] = unittest.skip("""test is local""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: snake_case_ : Union[str, Any] = unittest.skip("""test is packaged""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: snake_case_ : List[str] = unittest.skip("""test requires remote""" )(__UpperCamelCase ) return test_case def __lowerCAmelCase ( *__UpperCamelCase : List[str] ): '''simple docstring''' def decorate(cls : Union[str, Any] ): for name, fn in cls.__dict__.items(): if callable(__UpperCamelCase ) and name.startswith("""test""" ): for decorator in decorators: snake_case_ : Optional[int] = decorator(__UpperCamelCase ) setattr(cls , __UpperCamelCase , __UpperCamelCase ) return cls return decorate class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = 2 @contextmanager def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCamelCase : Optional[int]=1E-1_6 ): '''simple docstring''' snake_case_ : Dict = requests.Session().request def timeout_request(__UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Any , **__UpperCamelCase : List[Any] ): # Change the url to an invalid url so that the connection hangs snake_case_ : Optional[int] = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) snake_case_ : Optional[Any] = timeout try: return online_request(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case_ : Union[str, Any] = url snake_case_ : Dict = e.args[0] snake_case_ : int = (max_retry_error.args[0].replace("""10.255.255.1""" , F'OfflineMock[{url}]' ),) snake_case_ : Union[str, Any] = (max_retry_error,) raise def raise_connection_error(__UpperCamelCase : List[str] , __UpperCamelCase : List[str] , **__UpperCamelCase : int ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=__UpperCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def __lowerCAmelCase ( *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCamelCase , **__UpperCamelCase ) as tmp_dir: try: os.chdir(__UpperCamelCase ) yield finally: os.chdir(__UpperCamelCase ) @contextmanager def __lowerCAmelCase ( ): '''simple docstring''' import gc gc.collect() snake_case_ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowerCAmelCase ( ): '''simple docstring''' import gc gc.collect() snake_case_ : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' return deepcopy(__UpperCamelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(__UpperCamelCase ).integers(0 , 1_0_0 , 1_0 ).tolist() def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCamelCase : List[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : int ): try: return func(*__UpperCamelCase , **__UpperCamelCase ) except HTTPError as err: if str(__UpperCamelCase ).startswith("""500""" ) or str(__UpperCamelCase ).startswith("""502""" ): pytest.xfail(str(__UpperCamelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCamelCase ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : List[str] = returncode snake_case_ : Dict = stdout snake_case_ : Union[str, Any] = stderr async def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ): '''simple docstring''' while True: snake_case_ : int = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : int=None , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(__UpperCamelCase ) ) snake_case_ : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : Union[str, Any] = [] snake_case_ : Dict = [] def tee(__UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[str]="" ): snake_case_ : Any = line.decode("""utf-8""" ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label="""stderr:""" ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : str=1_8_0 , __UpperCamelCase : Any=False , __UpperCamelCase : List[str]=True ): '''simple docstring''' snake_case_ : Union[str, Any] = asyncio.get_event_loop() snake_case_ : List[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) snake_case_ : int = """ """.join(__UpperCamelCase ) if result.returncode > 0: snake_case_ : Tuple = """\n""".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) snake_case_ : List[Any] = re.sub(r"""^gw""" , """""" , __UpperCamelCase , 0 , re.M ) return int(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = 2_9_5_0_0 snake_case_ : Optional[Any] = pytest_xdist_worker_id() return port + uniq_delta
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # TODO Update this __lowerCAmelCase : List[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''esm''' def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_0_2_6 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowercase , mask_token_id=_lowercase , **_lowercase ) snake_case_ : List[str] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Optional[Any] = position_embedding_type snake_case_ : str = use_cache snake_case_ : Any = emb_layer_norm_before snake_case_ : Optional[int] = token_dropout snake_case_ : Union[str, Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) snake_case_ : Tuple = EsmFoldConfig() elif isinstance(_lowercase , _lowercase ): snake_case_ : List[Any] = EsmFoldConfig(**_lowercase ) snake_case_ : Tuple = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) snake_case_ : Union[str, Any] = get_default_vocab_list() else: snake_case_ : List[str] = vocab_list else: snake_case_ : Any = None snake_case_ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , _lowercase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , _lowercase ): snake_case_ : Any = self.esmfold_config.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = None _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = 128 _lowerCamelCase = None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if self.trunk is None: snake_case_ : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , _lowercase ): snake_case_ : Optional[Any] = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = asdict(self ) snake_case_ : List[Any] = self.trunk.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 48 _lowerCamelCase = 1_024 _lowerCamelCase = 128 _lowerCamelCase = 32 _lowerCamelCase = 32 _lowerCamelCase = 32 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = False _lowerCamelCase = 4 _lowerCamelCase = 128 _lowerCamelCase = None def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if self.structure_module is None: snake_case_ : List[str] = StructureModuleConfig() elif isinstance(self.structure_module , _lowercase ): snake_case_ : Union[str, Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) snake_case_ : List[Any] = self.sequence_state_dim // self.sequence_head_width snake_case_ : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = asdict(self ) snake_case_ : int = self.structure_module.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 384 _lowerCamelCase = 128 _lowerCamelCase = 16 _lowerCamelCase = 128 _lowerCamelCase = 12 _lowerCamelCase = 4 _lowerCamelCase = 8 _lowerCamelCase = 0.1 _lowerCamelCase = 8 _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 7 _lowerCamelCase = 10 _lowerCamelCase = 1E-8 _lowerCamelCase = 1E5 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return asdict(self ) def __lowerCAmelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __lowerCAmelCase : Optional[int] = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __lowerCAmelCase : Optional[Any] = { '''ctrl''': 256, } __lowerCAmelCase : str = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Any = set() snake_case_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : int = char snake_case_ : Optional[Any] = set(__UpperCamelCase ) return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = CONTROL_CODES def __init__( self , _lowercase , _lowercase , _lowercase="<unk>" , **_lowercase ) -> Any: '''simple docstring''' super().__init__(unk_token=_lowercase , **_lowercase ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : List[str] = json.load(_lowercase ) snake_case_ : List[Any] = {v: k for k, v in self.encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : List[str] = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : Any = [tuple(merge.split() ) for merge in merges] snake_case_ : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Union[str, Any] = {} @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : Optional[int] = tuple(_lowercase ) snake_case_ : Any = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case_ : str = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : List[Any] = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : str = bigram snake_case_ : Optional[Any] = [] snake_case_ : List[Any] = 0 while i < len(_lowercase ): try: snake_case_ : str = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Any = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : List[Any] = tuple(_lowercase ) snake_case_ : Optional[int] = new_word if len(_lowercase ) == 1: break else: snake_case_ : Optional[Any] = get_pairs(_lowercase ) snake_case_ : Any = """@@ """.join(_lowercase ) snake_case_ : Optional[Any] = word[:-4] snake_case_ : List[Any] = word return word def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = [] snake_case_ : List[Any] = re.findall(R"""\S+\n?""" , _lowercase ) for token in words: split_tokens.extend(list(self.bpe(_lowercase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' return self.decoder.get(_lowercase , self.unk_token ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Dict = """ """.join(_lowercase ).replace("""@@ """ , """""" ).strip() return out_string def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : Any = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Dict = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : Union[str, Any] = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Dict = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if b == 0: return (1, 0) ((snake_case_) , (snake_case_)) : Union[str, Any] = extended_euclid(__UpperCamelCase , a % b ) snake_case_ : Optional[int] = a // b return (y, x - k * y) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' ((snake_case_) , (snake_case_)) : List[str] = extended_euclid(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Union[str, Any] = na * na snake_case_ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' ((snake_case_) , (snake_case_)) : List[str] = extended_euclid(__UpperCamelCase , __UpperCamelCase ) if b < 0: snake_case_ : Dict = (b % n + n) % n return b def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ , snake_case_ : Optional[int] = invert_modulo(__UpperCamelCase , __UpperCamelCase ), invert_modulo(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Union[str, Any] = na * na snake_case_ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : List[Any] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } __lowerCAmelCase : Dict = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = BartTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , _lowercase=True , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase , **_lowercase , ) snake_case_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space: snake_case_ : str = getattr(_lowercase , pre_tok_state.pop("""type""" ) ) snake_case_ : str = add_prefix_space snake_case_ : Any = pre_tok_class(**_lowercase ) snake_case_ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ : Dict = """post_processor""" snake_case_ : List[Any] = getattr(self.backend_tokenizer , _lowercase , _lowercase ) if tokenizer_component_instance: snake_case_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : Dict = tuple(state["""sep"""] ) if "cls" in state: snake_case_ : Union[str, Any] = tuple(state["""cls"""] ) snake_case_ : List[Any] = False if state.get("""add_prefix_space""" , _lowercase ) != add_prefix_space: snake_case_ : Union[str, Any] = add_prefix_space snake_case_ : List[Any] = True if state.get("""trim_offsets""" , _lowercase ) != trim_offsets: snake_case_ : List[Any] = trim_offsets snake_case_ : Dict = True if changes_to_apply: snake_case_ : Tuple = getattr(_lowercase , state.pop("""type""" ) ) snake_case_ : Any = component_class(**_lowercase ) setattr(self.backend_tokenizer , _lowercase , _lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else value snake_case_ : str = value def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: '''simple docstring''' snake_case_ : Tuple = kwargs.get("""is_split_into_words""" , _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> BatchEncoding: '''simple docstring''' snake_case_ : Tuple = kwargs.get("""is_split_into_words""" , _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : str = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> Dict: '''simple docstring''' snake_case_ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Tuple = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = BlenderbotConfig _lowerCamelCase = {} _lowerCamelCase = '''gelu''' def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=False , _lowercase=9_9 , _lowercase=3_2 , _lowercase=2 , _lowercase=4 , _lowercase=3_7 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=2_0 , _lowercase=2 , _lowercase=1 , _lowercase=0 , ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Any = batch_size snake_case_ : Tuple = seq_length snake_case_ : Optional[int] = is_training snake_case_ : str = use_labels snake_case_ : Tuple = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : List[str] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = eos_token_id snake_case_ : Dict = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : List[str] = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = TFBlenderbotModel(config=_lowercase ).get_decoder() snake_case_ : Optional[int] = inputs_dict["""input_ids"""] snake_case_ : Optional[Any] = input_ids[:1, :] snake_case_ : List[Any] = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Dict = inputs_dict["""head_mask"""] snake_case_ : Tuple = 1 # first forward pass snake_case_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) snake_case_ , snake_case_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : Dict = model(_lowercase , attention_mask=_lowercase )[0] snake_case_ : str = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-3 ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: snake_case_ : Tuple = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = TFBlenderbotModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = ['''My friends are cool but they eat too many carbs.'''] _lowerCamelCase = '''facebook/blenderbot-400M-distill''' @cached_property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = self.tokenizer(self.src_text , return_tensors="""tf""" ) snake_case_ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) snake_case_ : int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase : int = TypeVar('''T''') __lowerCAmelCase : Optional[int] = Union[List[T], Tuple[T, ...]] __lowerCAmelCase : List[Any] = Union[T, List[T], Dict[str, T]] __lowerCAmelCase : Dict = Union[str, bytes, os.PathLike]
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : List[str] = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCAmelCase : Optional[int] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __lowerCAmelCase : Dict = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def remove_articles(__UpperCamelCase : str ): snake_case_ : Tuple = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__UpperCamelCase , """ """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : Optional[Any] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Any ): snake_case_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = [any(compute_exact(__UpperCamelCase , __UpperCamelCase ) for ref in refs ) for pred, refs in zip(__UpperCamelCase , __UpperCamelCase )] return (sum(__UpperCamelCase ) / len(__UpperCamelCase )) * 1_0_0 def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case_ : List[str] = Counter(__UpperCamelCase ) snake_case_ : str = Counter(__UpperCamelCase ) snake_case_ : str = Counter() for sgram, scount in sgramcounter.items(): snake_case_ : Optional[int] = scount * numref snake_case_ : int = Counter(__UpperCamelCase ) snake_case_ : Tuple = Counter() for cgram, ccount in cgramcounter.items(): snake_case_ : str = ccount * numref # KEEP snake_case_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep snake_case_ : Dict = keepgramcounter_rep & rgramcounter snake_case_ : Optional[Any] = sgramcounter_rep & rgramcounter snake_case_ : Optional[int] = 0 snake_case_ : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : Optional[int] = 1 snake_case_ : Tuple = 1 if len(__UpperCamelCase ) > 0: snake_case_ : int = keeptmpscorea / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case_ : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case_ : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case_ : Union[str, Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case_ : Union[str, Any] = sgramcounter_rep - cgramcounter_rep snake_case_ : Optional[Any] = delgramcounter_rep - rgramcounter snake_case_ : Tuple = sgramcounter_rep - rgramcounter snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : str = 1 if len(__UpperCamelCase ) > 0: snake_case_ : Tuple = deltmpscorea / len(__UpperCamelCase ) # ADDITION snake_case_ : Any = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case_ : Tuple = set(__UpperCamelCase ) & set(__UpperCamelCase ) snake_case_ : Union[str, Any] = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case_ : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : Tuple = 1 snake_case_ : Optional[Any] = 1 if len(__UpperCamelCase ) > 0: snake_case_ : Dict = addtmpscore / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: snake_case_ : Tuple = addtmpscore / len(__UpperCamelCase ) snake_case_ : int = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case_ : Optional[int] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[str] = len(__UpperCamelCase ) snake_case_ : Union[str, Any] = ssent.split(""" """ ) snake_case_ : Optional[Any] = csent.split(""" """ ) snake_case_ : int = [] snake_case_ : int = [] snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] snake_case_ : str = [] snake_case_ : Union[str, Any] = [] snake_case_ : Dict = [] snake_case_ : List[str] = [] snake_case_ : int = [] snake_case_ : Dict = [] for rsent in rsents: snake_case_ : Any = rsent.split(""" """ ) snake_case_ : List[str] = [] snake_case_ : Tuple = [] snake_case_ : Optional[Any] = [] ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Optional[int] = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Optional[Any] = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : List[str] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Optional[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Union[str, Any] = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : Any = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Optional[int] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__UpperCamelCase ) ((snake_case_) , (snake_case_) , (snake_case_)) : Tuple = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((snake_case_) , (snake_case_) , (snake_case_)) : Any = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((snake_case_) , (snake_case_) , (snake_case_)) : Any = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((snake_case_) , (snake_case_) , (snake_case_)) : str = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case_ : Tuple = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case_ : Any = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case_ : Tuple = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : bool = True , __UpperCamelCase : str = "13a" , __UpperCamelCase : bool = True ): '''simple docstring''' if lowercase: snake_case_ : Optional[int] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case_ : str = sacrebleu.metrics.bleu._get_tokenizer(__UpperCamelCase )()(__UpperCamelCase ) else: snake_case_ : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__UpperCamelCase ) elif tokenizer == "moses": snake_case_ : int = sacremoses.MosesTokenizer().tokenize(__UpperCamelCase , return_str=__UpperCamelCase , escape=__UpperCamelCase ) elif tokenizer == "penn": snake_case_ : Tuple = sacremoses.MosesTokenizer().penn_tokenize(__UpperCamelCase , return_str=__UpperCamelCase ) else: snake_case_ : str = sentence if not return_str: snake_case_ : List[Any] = normalized_sent.split() return normalized_sent def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): '''simple docstring''' if not (len(__UpperCamelCase ) == len(__UpperCamelCase ) == len(__UpperCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) snake_case_ : Dict = 0 for src, pred, refs in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): sari_score += SARIsent(normalize(__UpperCamelCase ) , normalize(__UpperCamelCase ) , [normalize(__UpperCamelCase ) for sent in refs] ) snake_case_ : Dict = sari_score / len(__UpperCamelCase ) return 1_0_0 * sari_score def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]="exp" , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : str=False , __UpperCamelCase : int=False , ): '''simple docstring''' snake_case_ : str = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] snake_case_ : List[Any] = sacrebleu.corpus_bleu( __UpperCamelCase , __UpperCamelCase , smooth_method=__UpperCamelCase , smooth_value=__UpperCamelCase , force=__UpperCamelCase , lowercase=__UpperCamelCase , use_effective_order=__UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : int = {} result.update({"""sari""": compute_sari(sources=_lowercase , predictions=_lowercase , references=_lowercase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_lowercase , references=_lowercase )} ) result.update({"""exact""": compute_em(predictions=_lowercase , references=_lowercase )} ) return result
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''autoformer''' _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _lowercase = None , _lowercase = None , _lowercase = "student_t" , _lowercase = "nll" , _lowercase = 1 , _lowercase = [1, 2, 3, 4, 5, 6, 7] , _lowercase = True , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = 6_4 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = 3_2 , _lowercase = 3_2 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 1_0_0 , _lowercase = 0.02 , _lowercase = True , _lowercase=True , _lowercase = 1_0 , _lowercase = 2_5 , _lowercase = 3 , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = prediction_length snake_case_ : Tuple = context_length if context_length is not None else prediction_length snake_case_ : Optional[int] = distribution_output snake_case_ : List[str] = loss snake_case_ : Dict = input_size snake_case_ : str = num_time_features snake_case_ : Union[str, Any] = lags_sequence snake_case_ : Union[str, Any] = scaling snake_case_ : str = num_dynamic_real_features snake_case_ : List[Any] = num_static_real_features snake_case_ : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Optional[Any] = cardinality else: snake_case_ : Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Optional[int] = embedding_dimension else: snake_case_ : str = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ : str = num_parallel_samples # Transformer architecture configuration snake_case_ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ : Any = d_model snake_case_ : Optional[Any] = encoder_attention_heads snake_case_ : Optional[int] = decoder_attention_heads snake_case_ : List[Any] = encoder_ffn_dim snake_case_ : Optional[int] = decoder_ffn_dim snake_case_ : Any = encoder_layers snake_case_ : Any = decoder_layers snake_case_ : Union[str, Any] = dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : str = encoder_layerdrop snake_case_ : Any = decoder_layerdrop snake_case_ : Tuple = activation_function snake_case_ : Optional[Any] = init_std snake_case_ : Optional[int] = use_cache # Autoformer snake_case_ : List[Any] = label_length snake_case_ : Union[str, Any] = moving_average snake_case_ : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __lowerCAmelCase : Dict = logging.getLogger(__name__) __lowerCAmelCase : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __lowerCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _lowerCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowerCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _lowerCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.train_file is not None: snake_case_ : Dict = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case_ : Any = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Any = [json.loads(__UpperCamelCase ) for line in f.read().splitlines() if (len(__UpperCamelCase ) > 0 and not line.isspace())] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : str = {c: dataset[c] for c in dataset.column_names} snake_case_ : Dict = refs return Dataset.from_dict(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __UpperCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) snake_case_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: snake_case_ : List[str] = {} if data_args.train_file is not None: snake_case_ : Dict = data_args.train_file if data_args.validation_file is not None: snake_case_ : Any = data_args.validation_file snake_case_ : Tuple = data_args.train_file.split(""".""" )[-1] if extension == "txt": snake_case_ : Optional[int] = """text""" snake_case_ : List[str] = load_dataset(__UpperCamelCase , data_files=__UpperCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: snake_case_ : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: snake_case_ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) snake_case_ : Any = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__UpperCamelCase ) elif model_args.model_name_or_path: snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: snake_case_ : Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ : Dict = AutoModelForMaskedLM.from_config(__UpperCamelCase ) model.resize_token_embeddings(len(__UpperCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case_ : Optional[int] = datasets["""train"""].column_names else: snake_case_ : List[str] = datasets["""validation"""].column_names snake_case_ : List[str] = """text""" if """text""" in column_names else column_names[0] snake_case_ : Optional[Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(__UpperCamelCase : List[Any] ): # Remove empty lines snake_case_ : Optional[Any] = [line for line in examples["""text"""] if len(__UpperCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=data_args.max_seq_length ) snake_case_ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case_ : Union[str, Any] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case_ : Optional[Any] = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case_ : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case_ : Union[str, Any] = False # Data collator # This one will take care of randomly masking the tokens. snake_case_ : Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=__UpperCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case_ : Optional[int] = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case_ : List[str] = model_args.model_name_or_path else: snake_case_ : Optional[int] = None snake_case_ : Any = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ : List[str] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation snake_case_ : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : str = trainer.evaluate() snake_case_ : Tuple = math.exp(eval_output["""eval_loss"""] ) snake_case_ : int = perplexity snake_case_ : str = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''input_features''', '''is_longer'''] def __init__( self , _lowercase=6_4 , _lowercase=4_8_0_0_0 , _lowercase=4_8_0 , _lowercase=1_0 , _lowercase=1_0_2_4 , _lowercase=0.0 , _lowercase=False , _lowercase = 0 , _lowercase = 1_4_0_0_0 , _lowercase = None , _lowercase = "fusion" , _lowercase = "repeatpad" , **_lowercase , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) snake_case_ : Optional[Any] = top_db snake_case_ : int = truncation snake_case_ : Tuple = padding snake_case_ : Any = fft_window_size snake_case_ : Optional[int] = (fft_window_size >> 1) + 1 snake_case_ : Dict = hop_length snake_case_ : List[str] = max_length_s snake_case_ : str = max_length_s * sampling_rate snake_case_ : str = sampling_rate snake_case_ : Dict = frequency_min snake_case_ : Optional[Any] = frequency_max snake_case_ : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm=_lowercase , mel_scale="""htk""" , ) snake_case_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCAmelCase__ ( self ) -> Dict[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> np.ndarray: '''simple docstring''' snake_case_ : str = spectrogram( _lowercase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowercase , log_mel="""dB""" , ) return log_mel_spectrogram.T def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : Any = [0] # randomly choose index for each part snake_case_ : List[str] = np.random.choice(ranges[0] ) snake_case_ : List[str] = np.random.choice(ranges[1] ) snake_case_ : Union[str, Any] = np.random.choice(ranges[2] ) snake_case_ : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] snake_case_ : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] snake_case_ : Optional[Any] = torch.tensor(mel[None, None, :] ) snake_case_ : Tuple = torch.nn.functional.interpolate( _lowercase , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=_lowercase ) snake_case_ : Optional[Any] = mel_shrink[0][0].numpy() snake_case_ : Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ : List[str] = len(_lowercase ) - max_length snake_case_ : Union[str, Any] = np.random.randint(0 , overflow + 1 ) snake_case_ : Tuple = waveform[idx : idx + max_length] snake_case_ : Optional[Any] = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ : Optional[Any] = self._np_extract_fbank_features(_lowercase , self.mel_filters ) snake_case_ : Optional[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ : List[str] = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ : int = False else: snake_case_ : List[str] = self._random_mel_fusion(_lowercase , _lowercase , _lowercase ) snake_case_ : List[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: snake_case_ : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ : str = int(max_length / len(_lowercase ) ) snake_case_ : Union[str, Any] = np.stack(np.tile(_lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ : List[str] = int(max_length / len(_lowercase ) ) snake_case_ : Tuple = np.stack(np.tile(_lowercase , _lowercase ) ) snake_case_ : int = np.pad(_lowercase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": snake_case_ : Dict = self._np_extract_fbank_features(_lowercase , self.mel_filters ) snake_case_ : Union[str, Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ : int = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> BatchFeature: '''simple docstring''' snake_case_ : Union[str, Any] = truncation if truncation is not None else self.truncation snake_case_ : Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ : Optional[Any] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) snake_case_ : Optional[int] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : List[str] = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): snake_case_ : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[int] = [np.asarray(_lowercase )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ : Dict = [ self._get_input_mel(_lowercase , max_length if max_length else self.nb_max_samples , _lowercase , _lowercase ) for waveform in raw_speech ] snake_case_ : int = [] snake_case_ : str = [] for mel, longer in padded_inputs: input_mel.append(_lowercase ) is_longer.append(_lowercase ) if truncation == "fusion" and sum(_lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ : Dict = np.random.randint(0 , len(_lowercase ) ) snake_case_ : List[str] = True if isinstance(input_mel[0] , _lowercase ): snake_case_ : int = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ : Dict = [[longer] for longer in is_longer] snake_case_ : str = {"""input_features""": input_mel, """is_longer""": is_longer} snake_case_ : Tuple = BatchFeature(_lowercase ) if return_tensors is not None: snake_case_ : Any = input_features.convert_to_tensors(_lowercase ) return input_features
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCAmelCase ( __UpperCamelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : np.ndarray ): '''simple docstring''' snake_case_ : Dict = XGBClassifier() classifier.fit(__UpperCamelCase , __UpperCamelCase ) return classifier def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = load_iris() snake_case_ , snake_case_ : Optional[Any] = data_handling(__UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = train_test_split( __UpperCamelCase , __UpperCamelCase , test_size=0.25 ) snake_case_ : List[str] = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case_ : List[str] = xgboost(__UpperCamelCase , __UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , display_labels=__UpperCamelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" from scipy.stats import spearmanr import datasets __lowerCAmelCase : Optional[Any] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCAmelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCAmelCase : List[Any] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = spearmanr(_lowercase , _lowercase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : List[str] = [False] * len(__UpperCamelCase ) snake_case_ : Optional[int] = [-1] * len(__UpperCamelCase ) def dfs(__UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): snake_case_ : Dict = True snake_case_ : int = c for u in graph[v]: if not visited[u]: dfs(__UpperCamelCase , 1 - c ) for i in range(len(__UpperCamelCase ) ): if not visited[i]: dfs(__UpperCamelCase , 0 ) for i in range(len(__UpperCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __lowerCAmelCase : Optional[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Tuple = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __lowerCAmelCase : Dict = {'''allegro/herbert-base-cased''': 514} __lowerCAmelCase : Tuple = {} class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = HerbertTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase="</s>" , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.cls_token_id] snake_case_ : Dict = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __lowerCAmelCase : List[str] = 50_0000 __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = os.path.split(__file__) __lowerCAmelCase : Dict = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowerCAmelCase ( __UpperCamelCase : datasets.Dataset , **__UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = dataset.map(**__UpperCamelCase ) @get_duration def __lowerCAmelCase ( __UpperCamelCase : datasets.Dataset , **__UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = dataset.filter(**__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : str = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) snake_case_ : Tuple = generate_example_dataset( os.path.join(__UpperCamelCase , """dataset.arrow""" ) , __UpperCamelCase , num_examples=__UpperCamelCase ) snake_case_ : Dict = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__UpperCamelCase ) def tokenize(__UpperCamelCase : Optional[int] ): return tokenizer(examples["""text"""] ) snake_case_ : Optional[int] = map(__UpperCamelCase ) snake_case_ : int = map(__UpperCamelCase , batched=__UpperCamelCase ) snake_case_ : int = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type="""numpy""" ): snake_case_ : List[str] = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type="""pandas""" ): snake_case_ : str = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): snake_case_ : str = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): snake_case_ : int = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) snake_case_ : Tuple = map(__UpperCamelCase , function=__UpperCamelCase , batched=__UpperCamelCase ) snake_case_ : Union[str, Any] = filter(__UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__UpperCamelCase , """wb""" ) as f: f.write(json.dumps(__UpperCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0 ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or n < 0: raise ValueError("""Invalid input""" ) snake_case_ : Dict = 1_0**n snake_case_ : List[Any] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __UpperCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = (PNDMScheduler,) _lowerCamelCase = (('''num_inference_steps''', 50),) def UpperCAmelCase__ ( self , **_lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def UpperCAmelCase__ ( self , _lowercase=0 , **_lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = dict(self.forward_default_kwargs ) snake_case_ : Any = kwargs.pop("""num_inference_steps""" , _lowercase ) snake_case_ : int = self.dummy_sample snake_case_ : Optional[Any] = 0.1 * sample snake_case_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ : Union[str, Any] = self.get_scheduler_config(**_lowercase ) snake_case_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals snake_case_ : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) snake_case_ : Optional[Any] = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals snake_case_ : List[Any] = dummy_past_residuals[:] snake_case_ : int = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Optional[int] = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case_ : str = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Union[str, Any] = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self , _lowercase=0 , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Dict = dict(self.forward_default_kwargs ) snake_case_ : Dict = kwargs.pop("""num_inference_steps""" , _lowercase ) snake_case_ : List[str] = self.dummy_sample snake_case_ : Union[str, Any] = 0.1 * sample snake_case_ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ : str = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) snake_case_ : Union[str, Any] = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) snake_case_ : Optional[Any] = dummy_past_residuals[:] snake_case_ : List[str] = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Tuple = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case_ : Optional[int] = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample snake_case_ : Optional[int] = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , **_lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : int = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config(**_lowercase ) snake_case_ : Optional[Any] = scheduler_class(**_lowercase ) snake_case_ : Tuple = 1_0 snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case_ : str = model(_lowercase , _lowercase ) snake_case_ : Optional[Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case_ : Any = model(_lowercase , _lowercase ) snake_case_ : Dict = scheduler.step_plms(_lowercase , _lowercase , _lowercase ).prev_sample return sample def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = dict(self.forward_default_kwargs ) snake_case_ : Tuple = kwargs.pop("""num_inference_steps""" , _lowercase ) for scheduler_class in self.scheduler_classes: snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : int = scheduler_class(**_lowercase ) snake_case_ : Dict = self.dummy_sample snake_case_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , """set_timesteps""" ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , """set_timesteps""" ): snake_case_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ : Tuple = dummy_past_residuals[:] snake_case_ : Dict = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample snake_case_ : List[str] = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ : str = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample snake_case_ : str = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : Tuple = self.get_scheduler_config(steps_offset=1 ) snake_case_ : Any = scheduler_class(**_lowercase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = 2_7 for scheduler_class in self.scheduler_classes: snake_case_ : Dict = self.dummy_sample snake_case_ : Optional[Any] = 0.1 * sample snake_case_ : Tuple = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case_ : Union[str, Any] = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' with self.assertRaises(_lowercase ): snake_case_ : str = self.scheduler_classes[0] snake_case_ : List[Any] = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.full_loop() snake_case_ : Optional[int] = torch.sum(torch.abs(_lowercase ) ) snake_case_ : str = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = self.full_loop(prediction_type="""v_prediction""" ) snake_case_ : Tuple = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Any = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) snake_case_ : Any = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 ) snake_case_ : Dict = torch.sum(torch.abs(_lowercase ) ) snake_case_ : int = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCAmelCase : List[str] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : int = [] __lowerCAmelCase : Optional[int] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __lowerCAmelCase : str = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', '''emoji''': True, }, } ] __lowerCAmelCase : Union[str, Any] = 0 for log in Path().glob('''*.log'''): __lowerCAmelCase : Dict = 0 with open(log, '''r''') as f: for line in f: __lowerCAmelCase : Dict = json.loads(line) if line.get('''nodeid''', '''''') != "": __lowerCAmelCase : Optional[int] = line['''nodeid'''] if line.get('''duration''', None) is not None: __lowerCAmelCase : int = F'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCAmelCase : Dict = [] log.unlink() __lowerCAmelCase : Union[str, Any] = '''''' __lowerCAmelCase : Union[str, Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Optional[int] = {} for test in failed_tests: __lowerCAmelCase : Tuple = test[0].split('''::''') __lowerCAmelCase : Any = data[0].split('''/''')[-1] if data[0] not in filesafailed: __lowerCAmelCase : Union[str, Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCAmelCase : str = [test[0] for test in failed_table] __lowerCAmelCase : Optional[int] = list(set(files)) # Count number of instances in failed_tests __lowerCAmelCase : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCAmelCase : List[Any] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __lowerCAmelCase : List[str] = '''Too many failed tests, please see the full report in the Action results.''' __lowerCAmelCase : List[Any] = len(err) + 10 __lowerCAmelCase : int = message[: 3000 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: __lowerCAmelCase : Optional[Any] = '''No failed tests! 🤗''' print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient __lowerCAmelCase : List[str] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": __lowerCAmelCase : List[str] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __lowerCAmelCase : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) __lowerCAmelCase : List[str] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) __lowerCAmelCase : Optional[Any] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) __lowerCAmelCase : Union[str, Any] = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCAmelCase : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCAmelCase : List[str] = row[0] else: __lowerCAmelCase : Optional[Any] = '''''' __lowerCAmelCase : Union[str, Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" import requests __lowerCAmelCase : Optional[int] = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __lowerCAmelCase : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __lowerCAmelCase : Dict = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __lowerCAmelCase : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_lowercase , _lowercase , sample_weight=_lowercase ) ), }
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "text" _lowerCamelCase = "labels" def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _lowercase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) snake_case_ : List[str] = copy.deepcopy(self ) snake_case_ : int = self.label_schema.copy() snake_case_ : int = features[self.label_column] snake_case_ : List[str] = label_schema return task_template @property def UpperCAmelCase__ ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case_ : Tuple = s_dict.pop(__UpperCamelCase ) elif "subsample" in key: snake_case_ : Dict = s_dict.pop(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ , snake_case_ : Optional[int] = emb.weight.shape snake_case_ : List[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : str = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : int = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Optional[int] = mam_aaa["""args"""] snake_case_ : int = mam_aaa["""model"""] snake_case_ : List[str] = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) snake_case_ : Tuple = state_dict["""decoder.embed_tokens.weight"""].shape[0] snake_case_ : List[str] = args.share_decoder_input_output_embed snake_case_ : int = [int(__UpperCamelCase ) for i in args.conv_kernel_sizes.split(""",""" )] snake_case_ : Optional[Any] = SpeechaTextConfig( vocab_size=__UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(__UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__UpperCamelCase , num_beams=5 , max_length=2_0_0 , use_cache=__UpperCamelCase , decoder_start_token_id=2 , early_stopping=__UpperCamelCase , ) snake_case_ : int = SpeechaTextForConditionalGeneration(__UpperCamelCase ) snake_case_ , snake_case_ : Dict = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}' ) if tie_embeds: snake_case_ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Dict = lm_head_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCAmelCase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : int = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : bytes ): '''simple docstring''' return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(__UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): snake_case_ : List[str] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Dict = """sshleifer/tiny-gpt2""" snake_case_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case_ : Dict = TensorFlowBenchmark(_lowercase ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = """sgugger/tiny-distilbert-classification""" snake_case_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_lowercase ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = """sshleifer/tiny-gpt2""" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case_ : int = TensorFlowBenchmark(_lowercase ) snake_case_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = """sshleifer/tiny-gpt2""" snake_case_ : str = AutoConfig.from_pretrained(_lowercase ) snake_case_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case_ : List[Any] = TensorFlowBenchmark(_lowercase , [config] ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = """sshleifer/tiny-gpt2""" snake_case_ : Optional[int] = AutoConfig.from_pretrained(_lowercase ) snake_case_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case_ : List[str] = TensorFlowBenchmark(_lowercase , [config] ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Any = """sshleifer/tiny-gpt2""" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case_ : List[Any] = TensorFlowBenchmark(_lowercase ) snake_case_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[int] = """sshleifer/tiny-gpt2""" snake_case_ : List[Any] = AutoConfig.from_pretrained(_lowercase ) snake_case_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_lowercase , [config] ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = """patrickvonplaten/t5-tiny-random""" snake_case_ : int = AutoConfig.from_pretrained(_lowercase ) snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) snake_case_ : Tuple = TensorFlowBenchmark(_lowercase , configs=[config] ) snake_case_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = """sshleifer/tiny-gpt2""" snake_case_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_lowercase , multi_process=_lowercase , ) snake_case_ : int = TensorFlowBenchmark(_lowercase ) snake_case_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(_lowercase , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(_lowercase , """env.csv""" ) , multi_process=_lowercase , ) snake_case_ : Union[str, Any] = TensorFlowBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Dict = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowercase ): self.assertTrue(hasattr(_lowercase , """sequential""" ) ) self.assertTrue(hasattr(_lowercase , """cumulative""" ) ) self.assertTrue(hasattr(_lowercase , """current""" ) ) self.assertTrue(hasattr(_lowercase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , """log.txt""" ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , eager_mode=_lowercase , multi_process=_lowercase , ) snake_case_ : Union[str, Any] = TensorFlowBenchmark(_lowercase ) snake_case_ : List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowercase , """log.txt""" ) ).exists() )
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[int] = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = ort.SessionOptions() snake_case_ : List[str] = False return options def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[int] = """A red cat sitting on a park bench""" snake_case_ : Optional[Any] = np.random.RandomState(0 ) snake_case_ : Tuple = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : str = output.images snake_case_ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """A red cat sitting on a park bench""" snake_case_ : List[Any] = np.random.RandomState(0 ) snake_case_ : List[Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Tuple = output.images snake_case_ : int = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Tuple = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" __lowerCAmelCase : List[str] = '''Input must be a string of 8 numbers plus letter''' __lowerCAmelCase : Tuple = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[str] = F'Expected string as input, found {type(__UpperCamelCase ).__name__}' raise TypeError(__UpperCamelCase ) snake_case_ : Optional[Any] = spanish_id.replace("""-""" , """""" ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: snake_case_ : Any = int(spanish_id_clean[0:8] ) snake_case_ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) _lowerCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = self.task_name.lower() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''train''' _lowerCamelCase = '''dev''' _lowerCamelCase = '''test''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = None , ) -> Optional[Any]: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowercase , ) snake_case_ : List[Any] = args snake_case_ : List[str] = glue_processors[args.task_name]() snake_case_ : Union[str, Any] = glue_output_modes[args.task_name] if isinstance(_lowercase , _lowercase ): try: snake_case_ : Optional[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file snake_case_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) snake_case_ : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ , snake_case_ : List[Any] = label_list[2], label_list[1] snake_case_ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Optional[Any] = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: snake_case_ : str = time.time() snake_case_ : Tuple = torch.load(_lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: snake_case_ : Any = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case_ : Optional[Any] = self.processor.get_test_examples(args.data_dir ) else: snake_case_ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case_ : str = examples[:limit_length] snake_case_ : Tuple = glue_convert_examples_to_features( _lowercase , _lowercase , max_length=args.max_seq_length , label_list=_lowercase , output_mode=self.output_mode , ) snake_case_ : List[str] = time.time() torch.save(self.features , _lowercase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> int: '''simple docstring''' return len(self.features ) def __getitem__( self , _lowercase ) -> InputFeatures: '''simple docstring''' return self.features[i] def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.label_list
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Optional[int] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowerCAmelCase : Dict = CLIPImageProcessor() __lowerCAmelCase : List[str] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __lowerCAmelCase : Tuple = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''longformer''' def __init__( self , _lowercase = 5_1_2 , _lowercase = 2 , _lowercase = 1 , _lowercase = 0 , _lowercase = 2 , _lowercase = 3_0_5_2_2 , _lowercase = 7_6_8 , _lowercase = 1_2 , _lowercase = 1_2 , _lowercase = 3_0_7_2 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 5_1_2 , _lowercase = 2 , _lowercase = 0.02 , _lowercase = 1E-12 , _lowercase = False , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = attention_window snake_case_ : int = sep_token_id snake_case_ : Dict = bos_token_id snake_case_ : List[Any] = eos_token_id snake_case_ : List[Any] = vocab_size snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : List[str] = hidden_act snake_case_ : str = intermediate_size snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Tuple = onnx_export class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase = "default" , _lowercase = None ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase , _lowercase , _lowercase ) snake_case_ : List[Any] = True @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case_ : List[Any] = super().outputs if self.task == "default": snake_case_ : Optional[int] = {0: """batch"""} return outputs @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case_ : Union[str, Any] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global snake_case_ : Dict = 1 return inputs
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int=True , __UpperCamelCase : Union[str, Any]="pt" ): '''simple docstring''' snake_case_ : Union[str, Any] = {"""add_prefix_space""": True} if isinstance(__UpperCamelCase , __UpperCamelCase ) and not line.startswith(""" """ ) else {} snake_case_ : Any = padding_side return tokenizer( [line] , max_length=__UpperCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Optional[int]=None , ): '''simple docstring''' snake_case_ : List[Any] = input_ids.ne(__UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase="train" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="" , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : List[str] = Path(_lowercase ).joinpath(type_path + """.source""" ) snake_case_ : Dict = Path(_lowercase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : str = max_source_length snake_case_ : List[Any] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' snake_case_ : List[Any] = tokenizer snake_case_ : Dict = prefix if n_obs is not None: snake_case_ : Dict = self.src_lens[:n_obs] snake_case_ : List[Any] = src_lang snake_case_ : Optional[int] = tgt_lang def __len__( self ) -> Any: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _lowercase ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case_ : Optional[Any] = index + 1 # linecache starts at 1 snake_case_ : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip("""\n""" ) snake_case_ : Union[str, Any] = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) snake_case_ : Dict = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer snake_case_ : str = encode_line(_lowercase , _lowercase , self.max_source_length , """right""" ) snake_case_ : Dict = encode_line(_lowercase , _lowercase , self.max_target_length , """right""" ) snake_case_ : Optional[int] = source_inputs["""input_ids"""].squeeze() snake_case_ : Optional[Any] = target_inputs["""input_ids"""].squeeze() snake_case_ : Optional[int] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( _lowercase ) -> List[str]: '''simple docstring''' return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def UpperCAmelCase__ ( self , _lowercase ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case_ : List[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Optional[Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) snake_case_ : Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) snake_case_ : Union[str, Any] = trim_batch(_lowercase , _lowercase ) snake_case_ , snake_case_ : Dict = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) snake_case_ : Union[str, Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCAmelCase : List[Any] = getLogger(__name__) def __lowerCAmelCase ( __UpperCamelCase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Any = get_git_info() save_json(__UpperCamelCase , os.path.join(__UpperCamelCase , """git_log.json""" ) ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any]=4 , **__UpperCamelCase : Optional[Any] ): '''simple docstring''' with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' with open(__UpperCamelCase ) as f: return json.load(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = git.Repo(search_parent_directories=__UpperCamelCase ) snake_case_ : Dict = { """repo_id""": str(__UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( __UpperCamelCase : Callable , __UpperCamelCase : Iterable ): '''simple docstring''' return list(map(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(__UpperCamelCase , """wb""" ) as f: return pickle.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' def remove_articles(__UpperCamelCase : List[str] ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Optional[int] ): snake_case_ : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[int] = normalize_answer(__UpperCamelCase ).split() snake_case_ : Optional[int] = normalize_answer(__UpperCamelCase ).split() snake_case_ : int = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase ) snake_case_ : str = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(__UpperCamelCase ) snake_case_ : Tuple = 1.0 * num_same / len(__UpperCamelCase ) snake_case_ : Tuple = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ): '''simple docstring''' assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : Optional[Any] = 0 for hypo, pred in zip(__UpperCamelCase , __UpperCamelCase ): em += exact_match_score(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: em /= len(__UpperCamelCase ) return {"em": em} def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not hasattr(__UpperCamelCase , __UpperCamelCase ) and not hasattr(__UpperCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) continue snake_case_ : int = p if hasattr(__UpperCamelCase , __UpperCamelCase ) else equivalent_param[p] setattr(__UpperCamelCase , __UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) return hparams, config
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __lowerCAmelCase : Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Dict = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: snake_case_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Union[str, Any] = value elif weight_type == "bias": snake_case_ : Optional[int] = value else: snake_case_ : List[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Dict = fairseq_model.state_dict() snake_case_ : Any = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Tuple = None for name, value in fairseq_dict.items(): snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : List[Any] = fairseq_model.proj snake_case_ : Tuple = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Union[str, Any] = True if "*" in mapped_key: snake_case_ : Union[str, Any] = name.split(__UpperCamelCase )[0].split(""".""" )[-2] snake_case_ : Tuple = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: snake_case_ : Dict = """weight_g""" elif "weight_v" in name: snake_case_ : List[str] = """weight_v""" elif "bias" in name: snake_case_ : List[str] = """bias""" elif "weight" in name: snake_case_ : List[str] = """weight""" else: snake_case_ : Tuple = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = full_name.split("""conv_layers.""" )[-1] snake_case_ : str = name.split(""".""" ) snake_case_ : Any = int(items[0] ) snake_case_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : List[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Dict = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.readlines() snake_case_ : Optional[Any] = [line.split(""" """ )[0] for line in lines] snake_case_ : Optional[int] = len(__UpperCamelCase ) snake_case_ : Union[str, Any] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(__UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple , ): '''simple docstring''' snake_case_ : List[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[Any] = SpeechaTextaConfig.from_pretrained( __UpperCamelCase , vocab_size=__UpperCamelCase , decoder_layers=__UpperCamelCase , do_stable_layer_norm=__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) snake_case_ , snake_case_ , snake_case_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Any = WavaVecaModel(__UpperCamelCase ) snake_case_ : List[str] = recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) snake_case_ : List[str] = SpeechaTextaForCausalLM(__UpperCamelCase ) snake_case_ , snake_case_ : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : int = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Any = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) snake_case_ : Tuple = False # add projection layer snake_case_ : int = nn.Parameter(projection_layer.weight ) snake_case_ : Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case_ : Dict = create_vocab_dict(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = SpeechaTextaTokenizer(os.path.join(__UpperCamelCase , """vocab.json""" ) ) tokenizer.save_pretrained(__UpperCamelCase ) snake_case_ : Dict = hf_wavavec.config.to_dict() snake_case_ : List[str] = tokenizer.pad_token_id snake_case_ : Union[str, Any] = tokenizer.bos_token_id snake_case_ : str = tokenizer.eos_token_id snake_case_ : str = """speech_to_text_2""" snake_case_ : Any = """wav2vec2""" snake_case_ : Dict = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __lowerCAmelCase : Any = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] ): '''simple docstring''' if len(__UpperCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) snake_case_ : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = [[float("""inf""" ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): snake_case_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__UpperCamelCase ): # looping through rows of graph array for i in range(__UpperCamelCase ): # looping through columns of graph array for j in range(__UpperCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : Optional[Any] = dist[i][k] + dist[k][j] _print_dist(__UpperCamelCase , __UpperCamelCase ) return dist, v if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter number of vertices: ''')) __lowerCAmelCase : Optional[Any] = int(input('''Enter number of edges: ''')) __lowerCAmelCase : Any = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __lowerCAmelCase : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __lowerCAmelCase : List[Any] = int(input('''Enter source:''')) __lowerCAmelCase : Tuple = int(input('''Enter destination:''')) __lowerCAmelCase : List[Any] = float(input('''Enter weight:''')) __lowerCAmelCase : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" import json import sys def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] ): '''simple docstring''' with open(__UpperCamelCase , encoding="""utf-8""" ) as f: snake_case_ : Optional[int] = json.load(__UpperCamelCase ) snake_case_ : List[Any] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__UpperCamelCase ): snake_case_ : int = results[benchmark_name] snake_case_ : str = benchmark_name.split("""/""" )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) snake_case_ : Any = """| metric |""" snake_case_ : Union[str, Any] = """|--------|""" snake_case_ : Union[str, Any] = """| new / old (diff) |""" for metric_name in sorted(__UpperCamelCase ): snake_case_ : Dict = benchmark_res[metric_name] snake_case_ : Any = metric_vals["""new"""] snake_case_ : int = metric_vals.get("""old""" , __UpperCamelCase ) snake_case_ : Optional[Any] = metric_vals.get("""diff""" , __UpperCamelCase ) snake_case_ : Any = F' {new_val:f}' if isinstance(__UpperCamelCase , (int, float) ) else """None""" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(__UpperCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(__UpperCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(__UpperCamelCase ) ) if __name__ == "__main__": __lowerCAmelCase : Dict = sys.argv[1] __lowerCAmelCase : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase , _lowercase = None , _lowercase = None ) -> List[str]: '''simple docstring''' super().__init__() snake_case_ : int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ : Union[str, Any] = torch.zeros(_lowercase , _lowercase ) else: snake_case_ : Tuple = None snake_case_ : Optional[Any] = torch.nn.Parameter(_lowercase ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings snake_case_ : Dict = self.tokenizer( _lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case_ : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case_ : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ : Union[str, Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt snake_case_ : Tuple = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ : Any = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: snake_case_ : Union[str, Any] = [""""""] * batch_size snake_case_ : Tuple = text_input_ids.shape[-1] snake_case_ : Dict = self.tokenizer( _lowercase , padding="""max_length""" , max_length=_lowercase , truncation=_lowercase , return_tensors="""pt""" , ) snake_case_ : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ : List[Any] = negative_prompt_embeds.shape[1] snake_case_ : int = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) snake_case_ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _lowercase , _lowercase = 1_0_0 , _lowercase = 5.0 , _lowercase = 1.0 , _lowercase = 1 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(_lowercase , _lowercase ): snake_case_ : Optional[Any] = 1 elif isinstance(_lowercase , _lowercase ): snake_case_ : List[str] = len(_lowercase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_lowercase )}' ) snake_case_ : List[str] = batch_size * num_images_per_prompt snake_case_ : List[str] = guidance_scale > 1.0 snake_case_ : Tuple = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_lowercase )}.' ) # get the initial completely masked latents unless the user supplied it snake_case_ : Optional[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ : Optional[Any] = self.transformer.num_vector_embeds - 1 snake_case_ : List[str] = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) snake_case_ : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) snake_case_ : Optional[Any] = self.scheduler.timesteps.to(self.device ) snake_case_ : int = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance snake_case_ : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ : Dict = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: snake_case_ , snake_case_ : Any = model_output.chunk(2 ) snake_case_ : Any = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) snake_case_ : str = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) snake_case_ : Union[str, Any] = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : List[str] = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) snake_case_ : str = self.vqvae.config.vq_embed_dim snake_case_ : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ : Optional[int] = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) snake_case_ : int = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample snake_case_ : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Any = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> torch.FloatTensor: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = torch.sort(_lowercase , 1 , descending=_lowercase ) snake_case_ : Optional[Any] = torch.exp(_lowercase ) snake_case_ : Optional[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) snake_case_ : Tuple = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ : int = keep_mask[:, :-1, :] snake_case_ : List[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ : int = log_p_x_0.clone() snake_case_ : Any = -torch.inf # -inf = log(0) return rv
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrFeatureExtractor'''] __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : str = ['''model.decoder.embed_positions.weights'''] def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' if "emb" in name: snake_case_ : int = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ : Union[str, Any] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ : Union[str, Any] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ : List[str] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ : Any = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ : Optional[Any] = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ : Union[str, Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ : Optional[int] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ : List[Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ : Optional[Any] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ : List[str] = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __lowerCAmelCase ( __UpperCamelCase : OrderedDict , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[str] = list(state_dict.keys() ) snake_case_ : int = {} for key in keys: snake_case_ : Optional[int] = state_dict.pop(__UpperCamelCase ) snake_case_ : int = rename_keys(__UpperCamelCase ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ : int = val[:hidden_size, :] snake_case_ : int = val[hidden_size : 2 * hidden_size, :] snake_case_ : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ : Union[str, Any] = val else: snake_case_ : Optional[Any] = val return state_dict, enc_dec_proj_state_dict def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if checkpoint == "small": # default config values snake_case_ : str = 1_0_2_4 snake_case_ : List[str] = 2_4 snake_case_ : List[Any] = 1_6 elif checkpoint == "medium": snake_case_ : List[str] = 1_5_3_6 snake_case_ : str = 4_8 snake_case_ : List[Any] = 2_4 elif checkpoint == "large": snake_case_ : Any = 2_0_4_8 snake_case_ : Dict = 4_8 snake_case_ : str = 3_2 else: raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) snake_case_ : Dict = MusicgenDecoderConfig( hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , ) return config @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple=None , __UpperCamelCase : str=None , __UpperCamelCase : Optional[Any]="cpu" ): '''simple docstring''' snake_case_ : Any = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase ) snake_case_ : List[Any] = decoder_config_from_checkpoint(__UpperCamelCase ) snake_case_ : Optional[Any] = fairseq_model.lm.state_dict() snake_case_ , snake_case_ : int = rename_state_dict( __UpperCamelCase , hidden_size=decoder_config.hidden_size ) snake_case_ : Union[str, Any] = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ : List[str] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ : Dict = MusicgenForCausalLM(__UpperCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ , snake_case_ : List[Any] = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' ) if len(__UpperCamelCase ) > 0: raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model snake_case_ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__UpperCamelCase ) # check we can do a forward pass snake_case_ : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ : Any = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ : Any = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ : Dict = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ : Dict = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) # set the appropriate bos/pad token ids snake_case_ : Union[str, Any] = 2_0_4_8 snake_case_ : Optional[int] = 2_0_4_8 # set other default generation config params snake_case_ : Dict = int(3_0 * audio_encoder.config.frame_rate ) snake_case_ : Optional[Any] = True snake_case_ : Any = 3.0 if pytorch_dump_folder is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if repo_id: logger.info(F'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__UpperCamelCase ) processor.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) __lowerCAmelCase : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = tempfile.mkdtemp() # fmt: off snake_case_ : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case_ : Tuple = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case_ : List[str] = {"""unk_token""": """<unk>"""} snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) snake_case_ : Optional[Any] = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ : Tuple = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Any: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case_ : Optional[int] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_rust_tokenizer() snake_case_ : List[Any] = self.get_image_processor() snake_case_ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : List[str] = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) snake_case_ : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : str = self.prepare_image_inputs() snake_case_ : Union[str, Any] = image_processor(_lowercase , return_tensors="""np""" ) snake_case_ : Any = processor(images=_lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : int = """lower newer""" snake_case_ : List[str] = processor(text=_lowercase ) snake_case_ : Optional[int] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = self.get_image_processor() snake_case_ : str = self.get_tokenizer() snake_case_ : Union[str, Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : str = """lower newer""" snake_case_ : Tuple = self.prepare_image_inputs() snake_case_ : Dict = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.batch_decode(_lowercase ) snake_case_ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : Union[str, Any] = """lower newer""" snake_case_ : Optional[Any] = self.prepare_image_inputs() snake_case_ : Optional[Any] = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''mra''' def __init__( self , _lowercase=5_0_2_6_5 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1 , _lowercase=0.02 , _lowercase=1E-5 , _lowercase="absolute" , _lowercase=4 , _lowercase="full" , _lowercase=0 , _lowercase=0 , _lowercase=1 , _lowercase=0 , _lowercase=2 , **_lowercase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : Optional[Any] = vocab_size snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Optional[int] = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = initializer_range snake_case_ : List[str] = type_vocab_size snake_case_ : Dict = layer_norm_eps snake_case_ : int = position_embedding_type snake_case_ : List[str] = block_per_row snake_case_ : Dict = approx_mode snake_case_ : str = initial_prior_first_n_blocks snake_case_ : Any = initial_prior_diagonal_n_blocks
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , ): '''simple docstring''' snake_case_ : int = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } snake_case_ , snake_case_ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case_ : Optional[Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) snake_case_ : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Optional[Any] = file_path.read_text(encoding="""utf-8""" ) else: snake_case_ : Dict = output_path.read_text(encoding="""utf-8""" ) snake_case_ : Any = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : int , ): '''simple docstring''' snake_case_ : int = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } snake_case_ : Tuple = input_paths[compression_format] if input_path is None: snake_case_ : str = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) snake_case_ : str = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None snake_case_ : List[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Optional[int] = file_path.read_text(encoding="""utf-8""" ) else: snake_case_ : str = output_path.read_text(encoding="""utf-8""" ) snake_case_ : Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): '''simple docstring''' import tarfile snake_case_ : Any = tmp_path / """data_dot_dot""" directory.mkdir() snake_case_ : Dict = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' import tarfile snake_case_ : List[str] = tmp_path / """data_sym_link""" directory.mkdir() snake_case_ : Optional[Any] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } snake_case_ : Dict = insecure_tar_files[insecure_tar_file] snake_case_ : str = tmp_path / """extracted""" TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 snake_case_ : Optional[Any] = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ): '''simple docstring''' if start is None: snake_case_ : int = 0 if end is None: snake_case_ : int = len(__UpperCamelCase ) - 1 if start >= end: return snake_case_ : str = (start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: snake_case_ , snake_case_ : str = sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
21
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase = 3_2 , _lowercase = 6_4 , _lowercase = 2_0 , _lowercase = 7_6_8 , _lowercase=7_7 , _lowercase=4 , _lowercase = 0.0 , _lowercase = "silu" , _lowercase = None , _lowercase = None , _lowercase = "linear" , _lowercase = "prd" , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : Tuple = num_attention_heads snake_case_ : str = attention_head_dim snake_case_ : Optional[Any] = num_attention_heads * attention_head_dim snake_case_ : List[str] = additional_embeddings snake_case_ : Any = time_embed_dim or inner_dim snake_case_ : Any = embedding_proj_dim or embedding_dim snake_case_ : List[str] = clip_embed_dim or embedding_dim snake_case_ : int = Timesteps(_lowercase , _lowercase , 0 ) snake_case_ : Dict = TimestepEmbedding(_lowercase , _lowercase , out_dim=_lowercase , act_fn=_lowercase ) snake_case_ : Union[str, Any] = nn.Linear(_lowercase , _lowercase ) if embedding_proj_norm_type is None: snake_case_ : List[str] = None elif embedding_proj_norm_type == "layer": snake_case_ : Dict = nn.LayerNorm(_lowercase ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) snake_case_ : Any = nn.Linear(_lowercase , _lowercase ) if encoder_hid_proj_type is None: snake_case_ : str = None elif encoder_hid_proj_type == "linear": snake_case_ : List[str] = nn.Linear(_lowercase , _lowercase ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) snake_case_ : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _lowercase ) ) if added_emb_type == "prd": snake_case_ : Dict = nn.Parameter(torch.zeros(1 , 1 , _lowercase ) ) elif added_emb_type is None: snake_case_ : int = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) snake_case_ : Tuple = nn.ModuleList( [ BasicTransformerBlock( _lowercase , _lowercase , _lowercase , dropout=_lowercase , activation_fn="""gelu""" , attention_bias=_lowercase , ) for d in range(_lowercase ) ] ) if norm_in_type == "layer": snake_case_ : Optional[Any] = nn.LayerNorm(_lowercase ) elif norm_in_type is None: snake_case_ : List[str] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) snake_case_ : int = nn.LayerNorm(_lowercase ) snake_case_ : str = nn.Linear(_lowercase , _lowercase ) snake_case_ : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) snake_case_ : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _lowercase , persistent=_lowercase ) snake_case_ : Any = nn.Parameter(torch.zeros(1 , _lowercase ) ) snake_case_ : Dict = nn.Parameter(torch.zeros(1 , _lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' snake_case_ : Optional[Any] = {} def fn_recursive_add_processors(_lowercase , _lowercase , _lowercase ): if hasattr(_lowercase , """set_processor""" ): snake_case_ : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , _lowercase , _lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowercase , _lowercase , _lowercase ) return processors def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(_lowercase )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_lowercase , _lowercase , _lowercase ): if hasattr(_lowercase , """set_processor""" ): if not isinstance(_lowercase , _lowercase ): module.set_processor(_lowercase ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , _lowercase , _lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = True , ) -> Any: '''simple docstring''' snake_case_ : Tuple = hidden_states.shape[0] snake_case_ : List[Any] = timestep if not torch.is_tensor(_lowercase ): snake_case_ : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: snake_case_ : str = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case_ : Optional[Any] = timesteps * torch.ones(_lowercase , dtype=timesteps.dtype , device=timesteps.device ) snake_case_ : Tuple = self.time_proj(_lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. snake_case_ : List[Any] = timesteps_projected.to(dtype=self.dtype ) snake_case_ : Optional[Any] = self.time_embedding(_lowercase ) if self.embedding_proj_norm is not None: snake_case_ : Optional[Any] = self.embedding_proj_norm(_lowercase ) snake_case_ : List[Any] = self.embedding_proj(_lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: snake_case_ : List[Any] = self.encoder_hidden_states_proj(_lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) snake_case_ : Dict = self.proj_in(_lowercase ) snake_case_ : str = self.positional_embedding.to(hidden_states.dtype ) snake_case_ : Any = [] snake_case_ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: snake_case_ : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: snake_case_ : Dict = hidden_states[:, None, :] snake_case_ : List[str] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: snake_case_ : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_lowercase , -1 , -1 ) additional_embeds.append(_lowercase ) snake_case_ : List[Any] = torch.cat( _lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens snake_case_ : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: snake_case_ : List[Any] = F.pad( _lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) snake_case_ : int = hidden_states + positional_embeddings if attention_mask is not None: snake_case_ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 snake_case_ : Dict = F.pad(_lowercase , (0, self.additional_embeddings) , value=0.0 ) snake_case_ : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) snake_case_ : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: snake_case_ : List[str] = self.norm_in(_lowercase ) for block in self.transformer_blocks: snake_case_ : Optional[Any] = block(_lowercase , attention_mask=_lowercase ) snake_case_ : int = self.norm_out(_lowercase ) if self.prd_embedding is not None: snake_case_ : Dict = hidden_states[:, -1] else: snake_case_ : Tuple = hidden_states[:, additional_embeddings_len:] snake_case_ : List[Any] = self.proj_to_clip_embeddings(_lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) snake_case_ : Any = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids snake_case_ : str = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids snake_case_ : int = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss snake_case_ : Union[str, Any] = -(labels.shape[-1] * loss.item()) snake_case_ : List[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=9_9 , _lowercase=1_3 , _lowercase=1_6 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=2 , _lowercase=3_2 , _lowercase=4 , _lowercase=4 , _lowercase=3_0 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=None , ) -> List[Any]: '''simple docstring''' snake_case_ : str = parent snake_case_ : Dict = batch_size snake_case_ : Optional[Any] = decoder_seq_length # For common tests snake_case_ : int = self.decoder_seq_length snake_case_ : Optional[Any] = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : Dict = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : Optional[int] = d_model snake_case_ : Union[str, Any] = d_model snake_case_ : Dict = decoder_layers snake_case_ : List[Any] = decoder_layers snake_case_ : List[str] = decoder_ffn_dim snake_case_ : List[str] = decoder_attention_heads snake_case_ : Dict = decoder_attention_heads snake_case_ : Any = eos_token_id snake_case_ : List[Any] = bos_token_id snake_case_ : str = pad_token_id snake_case_ : List[Any] = decoder_start_token_id snake_case_ : int = use_cache snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Tuple = None snake_case_ : List[str] = decoder_seq_length snake_case_ : Dict = 2 snake_case_ : str = 1 def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : List[Any] = None if self.use_attention_mask: snake_case_ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ : Any = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : int = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Dict: '''simple docstring''' snake_case_ : Any = True snake_case_ : Optional[Any] = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() snake_case_ : Union[str, Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ : str = model(_lowercase , use_cache=_lowercase ) snake_case_ : Optional[Any] = model(_lowercase ) snake_case_ : List[Any] = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) snake_case_ : int = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids snake_case_ : Union[str, Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : str = model(_lowercase )["""last_hidden_state"""] snake_case_ : List[str] = model(_lowercase , past_key_values=_lowercase )["""last_hidden_state"""] # select random slice snake_case_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Tuple = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1E-3 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase = True _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) snake_case_ : str = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass
21
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def __lowerCAmelCase ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = x snake_case_ : str = y for step in range(__UpperCamelCase ): # noqa: B007 snake_case_ : List[str] = a * a - b * b + x snake_case_ : Tuple = 2 * a * b + y snake_case_ : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCAmelCase ( __UpperCamelCase : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowerCAmelCase ( __UpperCamelCase : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase , 1 , 1 ) ) def __lowerCAmelCase ( __UpperCamelCase : int = 8_0_0 , __UpperCamelCase : int = 6_0_0 , __UpperCamelCase : float = -0.6 , __UpperCamelCase : float = 0 , __UpperCamelCase : float = 3.2 , __UpperCamelCase : int = 5_0 , __UpperCamelCase : bool = True , ): '''simple docstring''' snake_case_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) snake_case_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates snake_case_ : Dict = figure_width / image_width * image_height snake_case_ : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ : Tuple = get_distance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ : str = get_color_coded_rgb(__UpperCamelCase ) else: snake_case_ : List[Any] = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __lowerCAmelCase : Tuple = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' def decorator(__UpperCamelCase : str ): snake_case_ : Dict = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator def __lowerCAmelCase ( *__UpperCamelCase : List[str] ): '''simple docstring''' def decorator(__UpperCamelCase : Optional[int] ): snake_case_ : Optional[int] = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __new__( cls , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Any = super().__new__(cls , _lowercase , _lowercase , _lowercase ) if not hasattr(_lowercase , """key_handler""" ): setattr(_lowercase , """key_handler""" , {} ) setattr(_lowercase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ : List[str] = getattr(_lowercase , """handle_key""" , [] ) for key in handled_keys: snake_case_ : List[str] = value return new_cls @staticmethod def UpperCAmelCase__ ( cls ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = get_character() if char != KEYMAP["undefined"]: snake_case_ : int = ord(_lowercase ) snake_case_ : Tuple = cls.key_handler.get(_lowercase ) if handler: snake_case_ : Union[str, Any] = char return handler(cls ) else: return None def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> str: '''simple docstring''' super().__init__() snake_case_ : str = nn.Linear(3 , 4 ) snake_case_ : Tuple = nn.BatchNormad(4 ) snake_case_ : str = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' return output + 1 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Union[str, Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) self.assertEqual(test_model._hf_hook , _lowercase ) self.assertTrue(hasattr(_lowercase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowercase , """_old_forward""" ) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : str = ModelForTest() snake_case_ : List[Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) add_hook_to_module(_lowercase , _lowercase , append=_lowercase ) self.assertEqual(isinstance(test_model._hf_hook , _lowercase ) , _lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowercase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowercase , """_old_forward""" ) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = ModelForTest() snake_case_ : List[Any] = torch.randn(2 , 3 ) snake_case_ : List[Any] = test_model(x + 1 ) snake_case_ : Tuple = test_model(x + 2 ) snake_case_ : List[str] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case_ : List[Any] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case_ : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) snake_case_ : List[Any] = test_model(_lowercase ) assert torch.allclose(_lowercase , _lowercase , atol=1E-5 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Union[str, Any] = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = test_model(_lowercase ) snake_case_ : int = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case_ : Dict = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case_ : List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) snake_case_ : str = test_model(_lowercase ) assert torch.allclose(_lowercase , output + 2 , atol=1E-5 ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Dict = torch.randn(2 , 3 ) snake_case_ : Optional[int] = test_model(_lowercase ) snake_case_ : List[str] = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) snake_case_ : Optional[int] = True snake_case_ : List[Any] = test_model(_lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device snake_case_ : Tuple = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase ) ) snake_case_ : List[Any] = torch.randn(2 , 3 ).to(0 ) snake_case_ : Tuple = model(_lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Optional[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : Union[str, Any] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : Optional[int] = torch.randn(2 , 3 ) snake_case_ : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload snake_case_ : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : Dict = torch.randn(2 , 3 ) snake_case_ : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : int = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : List[Any] = torch.randn(2 , 3 ) snake_case_ : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Dict = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : Any = torch.randn(2 , 3 ) snake_case_ : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : Optional[int] = torch.randn(2 , 3 ) snake_case_ : str = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
1
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Any ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[Any] = features.copy() if features else default_expected_features snake_case_ : Union[str, Any] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Dict = tmp_path / """cache""" snake_case_ : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple ): '''simple docstring''' if issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Union[str, Any] = parquet_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Any = [parquet_path] snake_case_ : int = tmp_path / """cache""" snake_case_ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Union[str, Any] = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=("train",) ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: snake_case_ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[int] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = tmp_path / """cache""" snake_case_ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[int] = features.copy() if features else default_expected_features snake_case_ : Optional[int] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): '''simple docstring''' if split: snake_case_ : Optional[int] = {split: parquet_path} else: snake_case_ : Tuple = """train""" snake_case_ : List[Any] = {"""train""": parquet_path, """test""": parquet_path} snake_case_ : Any = tmp_path / """cache""" snake_case_ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) snake_case_ : Optional[int] = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Tuple = str(shared_datadir / """test_image_rgb.jpg""" ) snake_case_ : Union[str, Any] = {"""image""": [image_path]} snake_case_ : Optional[int] = Features({"""image""": Image()} ) snake_case_ : str = Dataset.from_dict(__UpperCamelCase , features=__UpperCamelCase ) snake_case_ : Optional[int] = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : Optional[int] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features snake_case_ : int = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' assert get_writer_batch_size(__UpperCamelCase ) == expected
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[Any] = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["""stage2""", """stage3""", """stage4"""] , ) snake_case_ : Optional[Any] = DetaConfig( backbone_config=__UpperCamelCase , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=__UpperCamelCase , with_box_refine=__UpperCamelCase , two_stage=__UpperCamelCase , ) # set labels snake_case_ : str = """huggingface/label-files""" if "o365" in model_name: snake_case_ : List[str] = 3_6_6 snake_case_ : Dict = """object365-id2label.json""" else: snake_case_ : Optional[Any] = 9_1 snake_case_ : int = """coco-detection-id2label.json""" snake_case_ : Optional[Any] = num_labels snake_case_ : int = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : Optional[int] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Tuple = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[int] = dct.pop(__UpperCamelCase ) snake_case_ : Tuple = val def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ : Optional[int] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) snake_case_ : Optional[int] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Union[str, Any] = in_proj_weight[:dim, :] snake_case_ : List[str] = in_proj_bias[: dim] snake_case_ : str = in_proj_weight[ dim : dim * 2, : ] snake_case_ : Any = in_proj_bias[ dim : dim * 2 ] snake_case_ : Any = in_proj_weight[ -dim :, : ] snake_case_ : str = in_proj_bias[-dim :] # fmt: on def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case_ : List[str] = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : str = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Optional[Any] = in_proj_weight[:hidden_size, :] snake_case_ : Union[str, Any] = in_proj_bias[:hidden_size] snake_case_ : Tuple = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case_ : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] snake_case_ : Union[str, Any] = in_proj_weight[-hidden_size:, :] snake_case_ : List[Any] = in_proj_bias[-hidden_size:] def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Union[str, Any] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = get_deta_config(__UpperCamelCase ) # load original state dict if model_name == "deta-swin-large": snake_case_ : Optional[Any] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": snake_case_ : Any = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F'Model name {model_name} not supported' ) snake_case_ : int = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__UpperCamelCase , param.shape ) # rename keys snake_case_ : Union[str, Any] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase , __UpperCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case_ : Optional[int] = state_dict.pop(__UpperCamelCase ) snake_case_ : Tuple = val if "input_proj" in key: snake_case_ : Dict = state_dict.pop(__UpperCamelCase ) snake_case_ : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case_ : Optional[Any] = state_dict.pop(__UpperCamelCase ) snake_case_ : Union[str, Any] = val # finally, create HuggingFace model and load state dict snake_case_ : List[str] = DetaForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() snake_case_ : int = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(__UpperCamelCase ) # load image processor snake_case_ : Any = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image snake_case_ : Dict = prepare_img() snake_case_ : str = processor(images=__UpperCamelCase , return_tensors="""pt""" ) snake_case_ : Optional[Any] = encoding["""pixel_values"""] snake_case_ : int = model(pixel_values.to(__UpperCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case_ : Any = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) snake_case_ : Optional[int] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": snake_case_ : Dict = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) snake_case_ : Optional[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__UpperCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__UpperCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from numpy import exp, pi, sqrt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __lowerCAmelCase ( __UpperCamelCase : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __lowerCAmelCase : Union[str, Any] = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @staticmethod def UpperCAmelCase__ ( _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=_lowercase , required=_lowercase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=_lowercase , required=_lowercase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=_lowercase , required=_lowercase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=_lowercase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=_lowercase , default=_lowercase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase , ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f'Loading model {model_type}' ) snake_case_ : List[Any] = model_type snake_case_ : Optional[Any] = tf_checkpoint snake_case_ : int = pytorch_dump_output snake_case_ : Dict = config snake_case_ : int = finetuning_task_name def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): snake_case_ : Optional[int] = self._tf_checkpoint snake_case_ : str = """""" else: snake_case_ : List[Any] = self._tf_checkpoint snake_case_ : str = """""" convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
21
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : int=False ): '''simple docstring''' snake_case_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Tuple=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ : Any = """""" else: snake_case_ : List[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : int = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) snake_case_ : int = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : List[str] = in_proj_weight[ : config.hidden_size, : ] snake_case_ : List[str] = in_proj_bias[: config.hidden_size] snake_case_ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : int = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = dct.pop(__UpperCamelCase ) snake_case_ : List[Any] = val def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = ViTMSNConfig() snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Dict = """datasets/huggingface/label-files""" snake_case_ : Optional[int] = """imagenet-1k-id2label.json""" snake_case_ : int = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase ) , """r""" ) ) snake_case_ : Dict = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case_ : Dict = 3_8_4 snake_case_ : str = 1_5_3_6 snake_case_ : Tuple = 6 elif "l16" in checkpoint_url: snake_case_ : int = 1_0_2_4 snake_case_ : Tuple = 4_0_9_6 snake_case_ : Union[str, Any] = 2_4 snake_case_ : Union[str, Any] = 1_6 snake_case_ : Optional[Any] = 0.1 elif "b4" in checkpoint_url: snake_case_ : str = 4 elif "l7" in checkpoint_url: snake_case_ : List[Any] = 7 snake_case_ : List[str] = 1_0_2_4 snake_case_ : List[str] = 4_0_9_6 snake_case_ : Optional[Any] = 2_4 snake_case_ : List[Any] = 1_6 snake_case_ : int = 0.1 snake_case_ : List[Any] = ViTMSNModel(__UpperCamelCase ) snake_case_ : str = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="""cpu""" )["""target_encoder"""] snake_case_ : Optional[int] = ViTImageProcessor(size=config.image_size ) remove_projection_head(__UpperCamelCase ) snake_case_ : Optional[Any] = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , base_model=__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() snake_case_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) snake_case_ : Optional[Any] = ViTImageProcessor( size=config.image_size , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) snake_case_ : List[Any] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) snake_case_ : Union[str, Any] = model(**__UpperCamelCase ) snake_case_ : int = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case_ : Any = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: snake_case_ : List[Any] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: snake_case_ : List[Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: snake_case_ : Tuple = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: snake_case_ : Union[str, Any] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __UpperCamelCase , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
21
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Any = str(id_ ) snake_case_ : Optional[int] = None snake_case_ : Dict = None snake_case_ : Tuple = [] snake_case_ : int = {} # {vertex:distance} def __lt__( self , _lowercase ) -> str: '''simple docstring''' return self.key < other.key def __repr__( self ) -> int: '''simple docstring''' return self.id def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' self.neighbors.append(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Dict = weight def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : Vertex ): '''simple docstring''' snake_case_ : Optional[int] = [] for u in graph: snake_case_ : Optional[Any] = math.inf snake_case_ : Optional[int] = None snake_case_ : Tuple = 0 snake_case_ : Tuple = graph[:] while q: snake_case_ : Union[str, Any] = min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case_ : Optional[int] = u snake_case_ : int = u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : Vertex ): '''simple docstring''' for u in graph: snake_case_ : Optional[Any] = math.inf snake_case_ : str = None snake_case_ : Optional[int] = 0 snake_case_ : int = list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: snake_case_ : Optional[Any] = hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case_ : List[Any] = u snake_case_ : Dict = u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __lowerCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
21
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
1
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] , __UpperCamelCase : list[float] ): '''simple docstring''' snake_case_ : List[str] = sorted(numsa + numsa ) snake_case_ , snake_case_ : Dict = divmod(len(__UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : int = [float(x) for x in input('''Enter the elements of first array: ''').split()] __lowerCAmelCase : Dict = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''levit''' def __init__( self , _lowercase=2_2_4 , _lowercase=3 , _lowercase=3 , _lowercase=2 , _lowercase=1 , _lowercase=1_6 , _lowercase=[1_2_8, 2_5_6, 3_8_4] , _lowercase=[4, 8, 1_2] , _lowercase=[4, 4, 4] , _lowercase=[1_6, 1_6, 1_6] , _lowercase=0 , _lowercase=[2, 2, 2] , _lowercase=[2, 2, 2] , _lowercase=0.02 , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Union[str, Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = kernel_size snake_case_ : str = stride snake_case_ : Any = padding snake_case_ : Dict = hidden_sizes snake_case_ : Optional[Any] = num_attention_heads snake_case_ : List[str] = depths snake_case_ : List[Any] = key_dim snake_case_ : List[Any] = drop_path_rate snake_case_ : List[Any] = patch_size snake_case_ : int = attention_ratio snake_case_ : int = mlp_ratio snake_case_ : int = initializer_range snake_case_ : Tuple = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=True ): '''simple docstring''' model.train() snake_case_ : str = model(__UpperCamelCase ) snake_case_ : Tuple = F.mse_loss(__UpperCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : str=False ): '''simple docstring''' set_seed(4_2 ) snake_case_ : int = RegressionModel() snake_case_ : Dict = deepcopy(__UpperCamelCase ) snake_case_ : List[str] = RegressionDataset(length=8_0 ) snake_case_ : Union[str, Any] = DataLoader(__UpperCamelCase , batch_size=1_6 ) model.to(accelerator.device ) if sched: snake_case_ : Any = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ : str = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ : Tuple = LambdaLR(__UpperCamelCase , lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) snake_case_ : Optional[Any] = LambdaLR(__UpperCamelCase , lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = accelerator.prepare(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ , snake_case_ : str = accelerator.prepare(__UpperCamelCase , __UpperCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ : int = get_training_setup(__UpperCamelCase ) # Use a single batch snake_case_ , snake_case_ : List[Any] = next(iter(__UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ : List[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: # Sync grads step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case_ : Union[str, Any] = ddp_input[torch.randperm(len(__UpperCamelCase ) )] def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ : Optional[int] = get_training_setup(__UpperCamelCase ) # Use a single batch snake_case_ , snake_case_ : str = next(iter(__UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: # Sync grads step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case_ : Union[str, Any] = ddp_input[torch.randperm(len(__UpperCamelCase ) )] def __lowerCAmelCase ( __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[Any]=False ): '''simple docstring''' snake_case_ : List[Any] = Accelerator( split_batches=__UpperCamelCase , dispatch_batches=__UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ : List[str] = get_training_setup(__UpperCamelCase ) for iteration, batch in enumerate(__UpperCamelCase ): snake_case_ , snake_case_ : int = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ : Any = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__UpperCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case_ : str = ddp_input[torch.randperm(len(__UpperCamelCase ) )] GradientState._reset_state() def __lowerCAmelCase ( __UpperCamelCase : List[Any]=False , __UpperCamelCase : str=False ): '''simple docstring''' snake_case_ : Dict = Accelerator( split_batches=__UpperCamelCase , dispatch_batches=__UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = get_training_setup(__UpperCamelCase , __UpperCamelCase ) for iteration, batch in enumerate(__UpperCamelCase ): snake_case_ , snake_case_ : List[str] = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ , snake_case_ : str = accelerator.gather((ddp_input, ddp_target) ) snake_case_ , snake_case_ : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__UpperCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' snake_case_ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__UpperCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = Accelerator() snake_case_ : Tuple = RegressionDataset(length=8_0 ) snake_case_ : Optional[int] = DataLoader(__UpperCamelCase , batch_size=1_6 ) snake_case_ : Any = RegressionDataset(length=9_6 ) snake_case_ : Union[str, Any] = DataLoader(__UpperCamelCase , batch_size=1_6 ) snake_case_ , snake_case_ : Optional[Any] = accelerator.prepare(__UpperCamelCase , __UpperCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCamelCase ) if iteration < len(__UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCamelCase ) if batch_num < len(__UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = Accelerator() snake_case_ : Optional[int] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__UpperCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__UpperCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(__UpperCamelCase , __UpperCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
21
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
1
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = 1 / 2_5_5 , _lowercase = True , _lowercase = 8 , **_lowercase , ) -> None: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Tuple = do_rescale snake_case_ : Any = rescale_factor snake_case_ : Optional[Any] = do_pad snake_case_ : Optional[Any] = pad_size def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ) -> np.ndarray: '''simple docstring''' return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ : Union[str, Any] = get_image_size(_lowercase ) snake_case_ : Any = (old_height // size + 1) * size - old_height snake_case_ : Tuple = (old_width // size + 1) * size - old_width return pad(_lowercase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : int = do_pad if do_pad is not None else self.do_pad snake_case_ : Dict = pad_size if pad_size is not None else self.pad_size snake_case_ : Dict = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. snake_case_ : Any = [to_numpy_array(_lowercase ) for image in images] if do_rescale: snake_case_ : str = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_pad: snake_case_ : List[Any] = [self.pad(_lowercase , size=_lowercase ) for image in images] snake_case_ : int = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] snake_case_ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : int = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') __lowerCAmelCase : int = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() ) __lowerCAmelCase : Tuple = '''|'''.join(sys.argv[1:]) __lowerCAmelCase : List[str] = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
21
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = feature_size snake_case_ : Optional[int] = sampling_rate snake_case_ : Dict = padding_value snake_case_ : Any = kwargs.pop("""padding_side""" , """right""" ) snake_case_ : Dict = kwargs.pop("""return_attention_mask""" , _lowercase ) super().__init__(**_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(_lowercase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case_ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] snake_case_ : Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_lowercase ) == 0: if return_attention_mask: snake_case_ : Dict = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case_ : Union[str, Any] = required_input[0] if isinstance(_lowercase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_lowercase ): snake_case_ : Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(_lowercase ): snake_case_ : Optional[Any] = """tf""" elif is_torch_tensor(_lowercase ): snake_case_ : Union[str, Any] = """pt""" elif isinstance(_lowercase , (int, float, list, tuple, np.ndarray) ): snake_case_ : int = """np""" else: raise ValueError( f'type of {first_element} unknown: {type(_lowercase )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case_ : Dict = to_numpy(_lowercase ) else: snake_case_ : Optional[int] = [to_numpy(_lowercase ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case_ : List[str] = self._get_padding_strategies(padding=_lowercase , max_length=_lowercase ) snake_case_ : List[Any] = processed_features[self.model_input_names[0]] snake_case_ : str = len(_lowercase ) if not all(len(_lowercase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) snake_case_ : Any = [] for i in range(_lowercase ): snake_case_ : List[str] = {k: v[i] for k, v in processed_features.items()} # truncation snake_case_ : Any = self._truncate( _lowercase , max_length=_lowercase , pad_to_multiple_of=_lowercase , truncation=_lowercase , ) truncated_inputs.append(_lowercase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case_ : Optional[int] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case_ : List[str] = PaddingStrategy.MAX_LENGTH snake_case_ : List[Any] = {} for i in range(_lowercase ): # padding snake_case_ : str = self._pad( truncated_inputs[i] , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): snake_case_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(_lowercase ) return BatchFeature(_lowercase , tensor_type=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = PaddingStrategy.DO_NOT_PAD , _lowercase = None , _lowercase = None , ) -> dict: '''simple docstring''' snake_case_ : List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case_ : Dict = len(_lowercase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowercase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case_ : Any = np.ones(len(_lowercase ) , dtype=np.intaa ) if needs_to_be_padded: snake_case_ : Any = max_length - len(_lowercase ) if self.padding_side == "right": if return_attention_mask: snake_case_ : Any = np.pad( processed_features["""attention_mask"""] , (0, difference) ) snake_case_ : List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case_ : Dict = np.pad( _lowercase , _lowercase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case_ : Optional[Any] = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) snake_case_ : Optional[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case_ : Optional[Any] = np.pad( _lowercase , _lowercase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ) -> str: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : List[str] = len(_lowercase ) > max_length if needs_to_be_truncated: snake_case_ : Tuple = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case_ : Any = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self , _lowercase=False , _lowercase=None ) -> Tuple: '''simple docstring''' if padding is not False: if padding is True: snake_case_ : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_lowercase , _lowercase ): snake_case_ : Union[str, Any] = PaddingStrategy(_lowercase ) elif isinstance(_lowercase , _lowercase ): snake_case_ : Dict = padding else: snake_case_ : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __lowerCAmelCase : List[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase : Dict = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : Optional[Any] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F'{key} -> {new_key}' ) snake_case_ : Tuple = s_dict.pop(__UpperCamelCase ) return s_dict def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ , snake_case_ : str = emb.weight.shape snake_case_ : List[str] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Optional[Any] = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ : Optional[int] = os.path.basename(__UpperCamelCase ) snake_case_ : List[str] = url.split("""/""" )[-2] snake_case_ : Tuple = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not os.path.isfile(__UpperCamelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(__UpperCamelCase ): snake_case_ : Optional[Any] = open(__UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(__UpperCamelCase ) as source, open(__UpperCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=8_0 , unit="""iB""" , unit_scale=__UpperCamelCase , unit_divisor=1_0_2_4 ) as loop: while True: snake_case_ : Optional[int] = source.read(8_1_9_2 ) if not buffer: break output.write(__UpperCamelCase ) loop.update(len(__UpperCamelCase ) ) snake_case_ : List[Any] = open(__UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : str ): '''simple docstring''' if ".pt" not in checkpoint_path: snake_case_ : int = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Optional[int] = original_checkpoint["""dims"""] snake_case_ : int = original_checkpoint["""model_state_dict"""] snake_case_ : List[str] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) snake_case_ : Union[str, Any] = True snake_case_ : int = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case_ : Dict = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=__UpperCamelCase , decoder_ffn_dim=__UpperCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case_ : Optional[Any] = WhisperForConditionalGeneration(__UpperCamelCase ) snake_case_ , snake_case_ : Dict = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}' ) if tie_embeds: snake_case_ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCAmelCase : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
1