code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase = "cpu" , _lowercase = "openai/clip-vit-large-patch14" ) -> None: '''simple docstring''' snake_case_ : List[str] = device snake_case_ : Tuple = CLIPTokenizerFast.from_pretrained(__a ) snake_case_ : Dict = [0.4814_5466, 0.457_8275, 0.4082_1073] snake_case_ : Dict = [0.2686_2954, 0.2613_0258, 0.2757_7711] snake_case_ : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) snake_case_ : List[Any] = torchvision.transforms.Resize(2_2_4 ) snake_case_ : Dict = torchvision.transforms.CenterCrop(2_2_4 ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.resize(__a ) snake_case_ : str = self.center_crop(__a ) snake_case_ : int = self.normalize(__a ) return images def __call__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Tuple: '''simple docstring''' snake_case_ : str = self.tokenizer(text=__a , **__a ) snake_case_ : Optional[int] = self.preprocess_img(__a ) snake_case_ : str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase=1_0 , _lowercase=0.01 , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase="image" , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , ) -> None: '''simple docstring''' super().__init__() snake_case_ : Any = None snake_case_ : Optional[int] = device if device else get_device() if vqgan: snake_case_ : List[Any] = vqgan else: snake_case_ : Union[str, Any] = load_vqgan(self.device , conf_path=__a , ckpt_path=__a ) self.vqgan.eval() if clip: snake_case_ : str = clip else: snake_case_ : Tuple = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) snake_case_ : Any = ProcessorGradientFlow(device=self.device ) snake_case_ : List[Any] = iterations snake_case_ : str = lr snake_case_ : Optional[int] = log snake_case_ : List[Any] = make_grid snake_case_ : Optional[int] = return_val snake_case_ : Optional[int] = quantize snake_case_ : List[Any] = self.vqgan.decoder.z_shape def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=5 , _lowercase=True ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = [] if output_path is None: snake_case_ : Optional[int] = """./animation.gif""" if input_path is None: snake_case_ : List[str] = self.save_path snake_case_ : str = sorted(glob(input_path + """/*""" ) ) if not len(__a ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__a ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) snake_case_ : List[Any] = total_duration / len(__a ) snake_case_ : int = [frame_duration] * len(__a ) if extend_frames: snake_case_ : Tuple = 1.5 snake_case_ : str = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__a ) ) imageio.mimsave(__a , __a , duration=__a ) print(f'gif saved to {output_path}' ) def UpperCAmelCase__ ( self , _lowercase=None , _lowercase=None ) -> Optional[int]: '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError snake_case_ : Tuple = preprocess(Image.open(__a ) , target_image_size=2_5_6 ).to(self.device ) snake_case_ : Dict = preprocess_vqgan(__a ) snake_case_ : List[str] = self.vqgan.encode(__a ) return z def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : List[str] = self.latent.detach().requires_grad_() snake_case_ : int = base_latent + transform_vector if self.quantize: snake_case_ : Union[str, Any] = self.vqgan.quantize(__a ) else: snake_case_ : Optional[Any] = trans_latent return self.vqgan.decode(__a ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.clip_preprocessor(text=__a , images=__a , return_tensors="""pt""" , padding=__a ) snake_case_ : Optional[int] = self.clip(**__a ) snake_case_ : Optional[int] = clip_outputs.logits_per_image if weights is not None: snake_case_ : List[str] = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[Any] = self._get_clip_similarity(pos_prompts["""prompts"""] , __a , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: snake_case_ : Optional[Any] = self._get_clip_similarity(neg_prompts["""prompts"""] , __a , weights=neg_prompts["""weights"""] ) else: snake_case_ : int = torch.tensor([1] , device=self.device ) snake_case_ : Dict = -torch.log(__a ) + torch.log(__a ) return loss def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Tuple = torch.randn_like(self.latent , requires_grad=__a , device=self.device ) snake_case_ : int = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case_ : Optional[Any] = self._add_vector(__a ) snake_case_ : Optional[Any] = loop_post_process(__a ) snake_case_ : Dict = self._get_CLIP_loss(__a , __a , __a ) print("""CLIP loss""" , __a ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__a ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' wandb.init(reinit=__a , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: snake_case_ : Dict = Image.open(__a ) snake_case_ : Optional[Any] = image.resize((2_5_6, 2_5_6) ) wandb.log("""Original Image""" , wandb.Image(__a ) ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' if not prompts: return [] snake_case_ : Dict = [] snake_case_ : str = [] if isinstance(__a , __a ): snake_case_ : int = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__a , (tuple, list) ): snake_case_ : str = prompt[0] snake_case_ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: snake_case_ : str = prompt.split(""":""" ) snake_case_ : int = float(__a ) else: snake_case_ : Union[str, Any] = prompt snake_case_ : Optional[int] = 1.0 processed_prompts.append(__a ) weights.append(__a ) return { "prompts": processed_prompts, "weights": torch.tensor(__a , device=self.device ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=True , _lowercase=None , ) -> Union[str, Any]: '''simple docstring''' if image_path: snake_case_ : str = self._get_latent(__a ) else: snake_case_ : List[str] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__a , __a , __a ) assert pos_prompts, "You must provide at least one positive prompt." snake_case_ : int = self.process_prompts(__a ) snake_case_ : int = self.process_prompts(__a ) if save_final and save_path is None: snake_case_ : str = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__a ): os.makedirs(__a ) else: snake_case_ : Dict = save_path + """_""" + get_timestamp() os.makedirs(__a ) snake_case_ : Tuple = save_path snake_case_ : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__a ) ) snake_case_ : Optional[int] = loop_post_process(__a ) for iter, transformed_img in enumerate(self._optimize_CLIP(__a , __a , __a ) ): if show_intermediate: show_pil(__a ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(__a )} ) if show_final: show_pil(__a ) if save_final: transformed_img.save(os.path.join(self.save_path , f'iter_{iter:03d}_final.png' ) )
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __lowerCAmelCase ( __UpperCamelCase : Dataset , __UpperCamelCase : Dict[str, str] ): '''simple docstring''' snake_case_ : Optional[Any] = args.log_outputs snake_case_ : Dict = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric snake_case_ : Optional[int] = load_metric("""wer""" ) snake_case_ : Dict = load_metric("""cer""" ) # compute metrics snake_case_ : Optional[int] = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) snake_case_ : Any = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results snake_case_ : Any = F'WER: {wer_result}\nCER: {cer_result}' print(_UpperCamelCase ) with open(F'{dataset_id}_eval_results.txt' , """w""" ) as f: f.write(_UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case_ : Tuple = F'log_{dataset_id}_predictions.txt' snake_case_ : Dict = F'log_{dataset_id}_targets.txt' with open(_UpperCamelCase , """w""" ) as p, open(_UpperCamelCase , """w""" ) as t: # mapping function to write output def write_to_file(__UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): p.write(F'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(_UpperCamelCase , with_indices=_UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Tuple = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case_ : List[str] = re.sub(_UpperCamelCase , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case_ : Union[str, Any] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: snake_case_ : List[str] = """ """.join(text.split(_UpperCamelCase ) ) return text def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case_ : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case_ : str = feature_extractor.sampling_rate # resample audio snake_case_ : Tuple = dataset.cast_column("""audio""" , Audio(sampling_rate=_UpperCamelCase ) ) # load eval pipeline if args.device is None: snake_case_ : str = 0 if torch.cuda.is_available() else -1 snake_case_ : Optional[int] = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCamelCase : List[str] ): snake_case_ : str = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case_ : int = prediction["""text"""] snake_case_ : Union[str, Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples snake_case_ : Optional[Any] = dataset.map(_UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() main(args)
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) snake_case_ : int = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 snake_case_ : int = 1 if upper_limit > 0: snake_case_ : Optional[int] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __lowerCAmelCase : Union[str, Any] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' if num < 0: return False snake_case_ : List[str] = num snake_case_ : List[str] = 0 while num > 0: snake_case_ : List[str] = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" _lowerCamelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCAmelCase__ ( cls , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Any = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') snake_case_ : Dict = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) snake_case_ : Tuple = model.state_dict() def to_tf_var_name(__UpperCamelCase : List[Any] ): for patt, repl in iter(lowerCAmelCase_ ): snake_case_ : List[Any] = name.replace(lowerCAmelCase_ , lowerCAmelCase_ ) return F'bert/{name}' def create_tf_var(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): snake_case_ : Optional[int] = tf.dtypes.as_dtype(tensor.dtype ) snake_case_ : Any = tf.get_variable(dtype=lowerCAmelCase_ , shape=tensor.shape , name=lowerCAmelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case_ : Dict = to_tf_var_name(lowerCAmelCase_ ) snake_case_ : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case_ : Any = torch_tensor.T snake_case_ : Dict = create_tf_var(tensor=lowerCAmelCase_ , name=lowerCAmelCase_ , session=lowerCAmelCase_ ) tf.keras.backend.set_value(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = session.run(lowerCAmelCase_ ) print(F'Successfully created {tf_name}: {np.allclose(lowerCAmelCase_ , lowerCAmelCase_ )}' ) snake_case_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int]=None ): '''simple docstring''' snake_case_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Directory in which to save tensorflow model""" ) snake_case_ : Any = parser.parse_args(lowerCAmelCase_ ) snake_case_ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=None , _lowercase=True , ) -> int: '''simple docstring''' snake_case_ : List[Any] = size if size is not None else {"""shortest_edge""": 2_0} snake_case_ : List[Any] = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : Any = batch_size snake_case_ : Tuple = num_channels snake_case_ : Optional[int] = image_size snake_case_ : int = min_resolution snake_case_ : Union[str, Any] = max_resolution snake_case_ : int = do_resize snake_case_ : List[str] = size snake_case_ : List[Any] = do_center_crop snake_case_ : str = crop_size snake_case_ : Dict = do_flip_channel_order def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = MobileViTImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase__ , """size""" ) ) self.assertTrue(hasattr(lowercase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """do_flip_channel_order""" ) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) snake_case_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Union[str, Any] = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Dict = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Any = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[Any]=0 ): '''simple docstring''' return sorted(a_ , key=lambda __UpperCamelCase : x[column] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): snake_case_ : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : List[str] = current_dis return min_dis def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): snake_case_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : Tuple = current_dis return min_dis def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion snake_case_ : Any = points_counts // 2 snake_case_ : List[str] = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) snake_case_ : Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ : Tuple = min(a_ , a_ ) snake_case_ : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) snake_case_ : List[Any] = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = column_based_sort(a_ , column=0 ) snake_case_ : List[Any] = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": __lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : str = tmp_path / """cache""" snake_case_ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : int = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = tmp_path / """cache""" snake_case_ : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[Any] = features.copy() if features else default_expected_features snake_case_ : Any = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = tmp_path / """cache""" snake_case_ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : List[Any] = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' if issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[Any] = parquet_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = [parquet_path] snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[Any] = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Dict=("train",) ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: snake_case_ : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : List[str] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = tmp_path / """cache""" snake_case_ : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Dict = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ): '''simple docstring''' if split: snake_case_ : str = {split: parquet_path} else: snake_case_ : List[Any] = """train""" snake_case_ : Any = {"""train""": parquet_path, """test""": parquet_path} snake_case_ : int = tmp_path / """cache""" snake_case_ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : int = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : List[Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) snake_case_ : Union[str, Any] = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : List[str] = str(shared_datadir / """test_image_rgb.jpg""" ) snake_case_ : Any = {"""image""": [image_path]} snake_case_ : str = Features({"""image""": Image()} ) snake_case_ : int = Dataset.from_dict(__UpperCamelCase , features=__UpperCamelCase ) snake_case_ : List[str] = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : str = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features snake_case_ : Any = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' assert get_writer_batch_size(__UpperCamelCase ) == expected
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCAmelCase : Any = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCAmelCase : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCAmelCase : Tuple = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = random.randint(0 , len(lowercase_ ) - 1 ) snake_case_ : Dict = parent_a[:random_slice] + parent_a[random_slice:] snake_case_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = list(lowercase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case_ : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , ): '''simple docstring''' snake_case_ : Optional[Any] = [] # Generate more children proportionally to the fitness score. snake_case_ : List[str] = int(parent_a[1] * 1_0_0 ) + 1 snake_case_ : Union[str, Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(lowercase_ ): snake_case_ : Dict = population_score[random.randint(0 , lowercase_ )][0] snake_case_ : Dict = crossover(parent_a[0] , lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ , lowercase_ ) ) pop.append(mutate(lowercase_ , lowercase_ ) ) return pop def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: snake_case_ : List[str] = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case_ : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case_ : int = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowercase_ ) # Generate random starting population. snake_case_ : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("""""".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case_ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case_ : int = [evaluate(lowercase_ , lowercase_ ) for item in population] # Check if there is a matching evolution. snake_case_ : Optional[Any] = sorted(lowercase_ , key=lambda __UpperCamelCase : x[1] , reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case_ : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. snake_case_ : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] , lowercase_ , lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": __lowerCAmelCase : List[str] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowerCAmelCase : Dict = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = args.log_outputs snake_case_ : str = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric snake_case_ : Dict = load_metric("""wer""" ) snake_case_ : List[Any] = load_metric("""cer""" ) # compute metrics snake_case_ : Dict = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) snake_case_ : Optional[int] = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results snake_case_ : List[str] = F'WER: {wer_result}\nCER: {cer_result}' print(__UpperCamelCase ) with open(F'{dataset_id}_eval_results.txt' , """w""" ) as f: f.write(__UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case_ : Dict = F'log_{dataset_id}_predictions.txt' snake_case_ : str = F'log_{dataset_id}_targets.txt' with open(__UpperCamelCase , """w""" ) as p, open(__UpperCamelCase , """w""" ) as t: # mapping function to write output def write_to_file(__UpperCamelCase : List[Any] , __UpperCamelCase : str ): p.write(F'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(__UpperCamelCase , with_indices=__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case_ : str = re.sub(__UpperCamelCase , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case_ : Optional[Any] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: snake_case_ : int = """ """.join(text.split(__UpperCamelCase ) ) return text def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case_ : List[str] = feature_extractor.sampling_rate # resample audio snake_case_ : Optional[int] = dataset.cast_column("""audio""" , Audio(sampling_rate=__UpperCamelCase ) ) # load eval pipeline if args.device is None: snake_case_ : List[Any] = 0 if torch.cuda.is_available() else -1 snake_case_ : int = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCamelCase : List[Any] ): snake_case_ : int = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case_ : int = prediction["""text"""] snake_case_ : Dict = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples snake_case_ : List[str] = dataset.map(__UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __lowerCAmelCase : Tuple = parser.parse_args() main(args)
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : List[Any] = 5_0 ): '''simple docstring''' snake_case_ : str = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __lowerCAmelCase : int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def __lowerCAmelCase ( __UpperCamelCase : str = "mumbai" ): '''simple docstring''' snake_case_ : Tuple = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): snake_case_ : int = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() snake_case_ : Union[str, Any] = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __lowerCAmelCase : Dict = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __lowerCAmelCase : Optional[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' snake_case_ : int = WATERMARK_BITS snake_case_ : str = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' if images.shape[-1] < 2_5_6: return images snake_case_ : Any = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case_ : Union[str, Any] = [self.encoder.encode(_lowerCamelCase , """dwtDct""" ) for image in images] snake_case_ : Tuple = torch.from_numpy(np.array(_lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) snake_case_ : List[str] = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = 2 while True: if is_prime(__snake_case ): yield num num += 1 def __lowerCAmelCase ( __UpperCamelCase : int = 2_0_0_0_0_0_0 ): '''simple docstring''' return sum(takewhile(lambda __UpperCamelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : list[int] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = int(UpperCamelCase__ ) # Initialize Result snake_case_ : str = [] # Traverse through all denomination for denomination in reversed(UpperCamelCase__ ): # Find denominations while int(UpperCamelCase__ ) >= int(UpperCamelCase__ ): total_value -= int(UpperCamelCase__ ) answer.append(UpperCamelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : int = [] __lowerCAmelCase : List[str] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __lowerCAmelCase : Optional[int] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __lowerCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Dict = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __lowerCAmelCase : List[Any] = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') __lowerCAmelCase : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase : Any = 3 def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' print("""Generating primitive root of p""" ) while True: snake_case_ : Dict = random.randrange(3 , _UpperCAmelCase ) if pow(_UpperCAmelCase , 2 , _UpperCAmelCase ) == 1: continue if pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) == 1: continue return g def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' print("""Generating prime p...""" ) snake_case_ : Optional[Any] = rabin_miller.generate_large_prime(_UpperCAmelCase ) # select large prime number. snake_case_ : int = primitive_root(_UpperCAmelCase ) # one primitive root on modulo p. snake_case_ : List[Any] = random.randrange(3 , _UpperCAmelCase ) # private_key -> have to be greater than 2 for safety. snake_case_ : Optional[Any] = cryptomath.find_mod_inverse(pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) snake_case_ : List[str] = (key_size, e_a, e_a, p) snake_case_ : Dict = (key_size, d) return public_key, private_key def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Tuple ): '''simple docstring''' if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case_ , snake_case_ : Dict = generate_key(_UpperCAmelCase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , """w""" ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , """w""" ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def __lowerCAmelCase ( ): '''simple docstring''' print("""Making key files...""" ) make_key_files("""elgamal""" , 2_0_4_8 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = RemBertConfig.from_json_file(__UpperCamelCase ) print("""Building PyTorch model from configuration: {}""".format(str(__UpperCamelCase ) ) ) snake_case_ : str = RemBertModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(__UpperCamelCase ) ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=6_4 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Any = seq_length snake_case_ : str = is_training snake_case_ : Any = use_input_mask snake_case_ : Tuple = use_token_type_ids snake_case_ : Any = use_labels snake_case_ : Dict = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[int] = embedding_size snake_case_ : int = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : Optional[int] = initializer_range snake_case_ : Optional[int] = num_labels snake_case_ : List[str] = num_choices snake_case_ : Optional[Any] = scope def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[Any] = None if self.use_input_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : int = None if self.use_token_type_ids: snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[Any] = None snake_case_ : Any = None snake_case_ : Any = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = MegatronBertModel(config=__A ) model.to(__A ) model.eval() snake_case_ : List[Any] = model(__A , attention_mask=__A , token_type_ids=__A ) snake_case_ : Tuple = model(__A , token_type_ids=__A ) snake_case_ : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = MegatronBertForMaskedLM(config=__A ) model.to(__A ) model.eval() snake_case_ : int = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Tuple = MegatronBertForCausalLM(config=__A ) model.to(__A ) model.eval() snake_case_ : List[str] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = MegatronBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() snake_case_ : str = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = MegatronBertForPreTraining(config=__A ) model.to(__A ) model.eval() snake_case_ : Tuple = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = MegatronBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case_ : Union[str, Any] = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = self.num_labels snake_case_ : Optional[Any] = MegatronBertForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case_ : str = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.num_labels snake_case_ : str = MegatronBertForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case_ : Optional[int] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.num_choices snake_case_ : List[str] = MegatronBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Dict = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Optional[int] = config_and_inputs snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True # test_resize_embeddings = False _lowerCamelCase = False def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Dict: '''simple docstring''' snake_case_ : Any = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): snake_case_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) snake_case_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : str = MegatronBertModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__A ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' return torch.tensor( _lowercase , dtype=torch.long , device=_lowercase , ) __lowerCAmelCase : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip("""Model is not available.""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: snake_case_ : Optional[int] = os.path.join(os.environ["""MYDIR"""] , __A ) snake_case_ : List[str] = MegatronBertModel.from_pretrained(__A ) model.to(__A ) model.half() snake_case_ : List[str] = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): snake_case_ : List[str] = model(__A )[0] snake_case_ : List[str] = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __A ) snake_case_ : Optional[Any] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): snake_case_ : List[Any] = output[0, ii, jj] snake_case_ : Tuple = expected[3 * ii + jj] snake_case_ : Union[str, Any] = """ii={} jj={} a={} b={}""".format(__A , __A , __A , __A ) self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
from collections import deque def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Optional[Any] = len(_lowerCamelCase ) snake_case_ : int = deque() snake_case_ : List[str] = [False for _ in range(_lowerCamelCase )] snake_case_ : int = [-1 for _ in range(_lowerCamelCase )] snake_case_ : Optional[Any] = index_of[:] def strong_connect(__UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): snake_case_ : Tuple = index # the number when this node is seen snake_case_ : List[str] = index # lowest rank node reachable from here index += 1 stack.append(_lowerCamelCase ) snake_case_ : Union[str, Any] = True for w in g[v]: if index_of[w] == -1: snake_case_ : Optional[int] = strong_connect(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) snake_case_ : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case_ : Optional[int] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case_ : Union[str, Any] = [] snake_case_ : Any = stack.pop() snake_case_ : Optional[int] = False component.append(_lowerCamelCase ) while w != v: snake_case_ : str = stack.pop() snake_case_ : Dict = False component.append(_lowerCamelCase ) components.append(_lowerCamelCase ) return index snake_case_ : Union[str, Any] = [] for v in range(_lowerCamelCase ): if index_of[v] == -1: strong_connect(_lowerCamelCase , 0 , _lowerCamelCase ) return components def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = [[] for _ in range(_lowerCamelCase )] for u, v in edges: g[u].append(_lowerCamelCase ) return g if __name__ == "__main__": # Test __lowerCAmelCase : List[str] = 7 __lowerCAmelCase : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] __lowerCAmelCase : int = [1, 3, 2, 0, 1, 4, 5, 6, 5] __lowerCAmelCase : Dict = [(u, v) for u, v in zip(source, target)] __lowerCAmelCase : int = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCAmelCase : Optional[Any] = TypeVar('''T''') class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : int = data snake_case_ : Optional[int] = self snake_case_ : int = 0 class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> int: '''simple docstring''' snake_case_ : dict[T, DisjointSetTreeNode[T]] = {} def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' snake_case_ : List[str] = DisjointSetTreeNode(A__ ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = self.map[data] if elem_ref != elem_ref.parent: snake_case_ : str = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' if nodea.rank > nodea.rank: snake_case_ : Tuple = nodea else: snake_case_ : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' self.link(self.find_set(A__ ) , self.find_set(A__ ) ) class _lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' snake_case_ : dict[T, dict[T, int]] = {} def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' if node not in self.connections: snake_case_ : Dict = {} def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' self.add_node(A__ ) self.add_node(A__ ) snake_case_ : int = weight snake_case_ : int = weight def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = [] snake_case_ : str = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _lowercase : x[2] ) # creating the disjoint set snake_case_ : List[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A__ ) # MST generation snake_case_ : Union[str, Any] = 0 snake_case_ : int = 0 snake_case_ : Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case_ : Union[str, Any] = edges[index] index += 1 snake_case_ : Tuple = disjoint_set.find_set(A__ ) snake_case_ : Union[str, Any] = disjoint_set.find_set(A__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A__ , A__ , A__ ) disjoint_set.union(A__ , A__ ) return graph
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from math import isqrt def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCAmelCase__ ) + 1 ) ) def __lowerCAmelCase ( __UpperCamelCase : int = 1_0**6 ): '''simple docstring''' snake_case_ : List[Any] = 0 snake_case_ : List[Any] = 1 snake_case_ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __lowerCAmelCase : Tuple = datasets.utils.logging.get_logger(__name__) class _lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" _lowerCamelCase = None _lowerCamelCase = None class _lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" _lowerCamelCase = datasets.Audio() _lowerCamelCase = "audio" _lowerCamelCase = AudioFolderConfig _lowerCamelCase = 42 # definition at the bottom of the script _lowerCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) __lowerCAmelCase : Optional[Any] = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] __lowerCAmelCase : Tuple = AUDIO_EXTENSIONS
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' for char in word: snake_case_ : str = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Any = set() for token in tokens: snake_case_ : List[Any] = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) snake_case_ : Optional[Any] = list(__UpperCamelCase ) return word_list def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case_ : int = max([len(__UpperCamelCase ) for w in chinese_word_set] ) snake_case_ : str = bert_tokens snake_case_ , snake_case_ : Union[str, Any] = 0, len(__UpperCamelCase ) while start < end: snake_case_ : str = True if is_chinese(bert_word[start] ): snake_case_ : Union[str, Any] = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): snake_case_ : List[str] = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ : Dict = """##""" + bert_word[j] snake_case_ : Optional[int] = start + i snake_case_ : List[Any] = False break if single_word: start += 1 return bert_word def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Any = [] for i in range(0 , len(__UpperCamelCase ) , 1_0_0 ): snake_case_ : Dict = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["""cws"""] ).cws snake_case_ : Optional[Any] = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : List[Any] = [] for i in range(0 , len(__UpperCamelCase ) , 1_0_0 ): snake_case_ : Optional[Any] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : Union[str, Any] = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[str] = [] for id in input_ids: snake_case_ : List[Any] = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) snake_case_ : Tuple = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) snake_case_ : int = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": snake_case_ : int = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[int] = f.readlines() snake_case_ : List[str] = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ : List[Any] = LTP(args.ltp ) # faster in GPU device snake_case_ : Dict = BertTokenizer.from_pretrained(args.bert ) snake_case_ : Dict = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: snake_case_ : Dict = [json.dumps(__UpperCamelCase ) + """\n""" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCAmelCase : Dict = parser.parse_args() main(args)
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Optional[Any] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = KandinskyVaaImgaImgPipeline _lowerCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCamelCase = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_0_0 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**_lowercase ) return model @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.dummy_unet snake_case_ : str = self.dummy_movq snake_case_ : str = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } snake_case_ : Tuple = DDIMScheduler(**_lowercase ) snake_case_ : Dict = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) snake_case_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image snake_case_ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowercase ) ).to(_lowercase ) snake_case_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Any = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) if str(_lowercase ).startswith("""mps""" ): snake_case_ : int = torch.manual_seed(_lowercase ) else: snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = 'cpu' snake_case_ : Any = self.get_dummy_components() snake_case_ : str = self.pipeline_class(**_lowercase ) snake_case_ : List[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[Any] = pipe(**self.get_dummy_inputs(_lowercase ) ) snake_case_ : Optional[int] = output.images snake_case_ : int = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Optional[int] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ : Optional[int] = 'A red cartoon frog, 4k' snake_case_ : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) snake_case_ : str = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) snake_case_ : Optional[int] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : str = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ : Optional[int] = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) snake_case_ : Tuple = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : dict ): '''simple docstring''' snake_case_ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case_ : set[int] = set() return any( node not in visited and depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ) for node in graph ) def __lowerCAmelCase ( __UpperCamelCase : dict , __UpperCamelCase : int , __UpperCamelCase : set , __UpperCamelCase : set ): '''simple docstring''' visited.add(__lowercase ) rec_stk.add(__lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__lowercase , __lowercase , __lowercase , __lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
import math def __lowerCAmelCase ( __UpperCamelCase : List[str] = 1_0_0 ): '''simple docstring''' snake_case_ : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) snake_case_ : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( __a ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 5_0 , _lowercase = "pil" , _lowercase = True , **_lowercase , ) -> int: '''simple docstring''' snake_case_ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case__ , ) snake_case_ : Tuple = image.to(self.device ) # set step values self.scheduler.set_timesteps(snake_case__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ : List[str] = self.unet(snake_case__ , snake_case__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ : int = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample snake_case_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : List[Any] = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=snake_case__ ), "This is a local test"
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = ["a", "b", "c"] # Defaults to last layer if both are None snake_case_ : Tuple = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ["""c"""] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features snake_case_ : Optional[int] = get_aligned_output_features_output_indices(["""a""", """c"""] , a_ , a_ ) self.assertEqual(a_ , ["""a""", """c"""] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices snake_case_ : Tuple = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ["""a""", """c"""] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices snake_case_ : Dict = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ["""a""", """c"""] ) self.assertEqual(a_ , [-3, -1] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises(a_ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = BackboneMixin() snake_case_ : List[Any] = ["a", "b", "c"] snake_case_ : Optional[int] = ["a", "c"] snake_case_ : Dict = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case_ : Union[str, Any] = ["a", "b"] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case_ : str = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''xlm-roberta-xl''' def __init__( self , _lowercase=2_5_0_8_8_0 , _lowercase=2_5_6_0 , _lowercase=3_6 , _lowercase=3_2 , _lowercase=1_0_2_4_0 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_4 , _lowercase=1 , _lowercase=0.02 , _lowercase=1E-05 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : Tuple = vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : str = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Optional[int] = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Union[str, Any] = position_embedding_type snake_case_ : Union[str, Any] = use_cache snake_case_ : List[str] = classifier_dropout class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" from collections.abc import Callable import numpy as np def __lowerCAmelCase ( __UpperCamelCase : Callable , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) snake_case_ : Union[str, Any] = np.zeros((n + 1,) ) snake_case_ : str = ya snake_case_ : Any = xa for k in range(_A ): snake_case_ : Dict = y[k] + step_size * ode_func(_A , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( _A ): """simple docstring""" _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''AutoImageProcessor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self , _lowercase=None , _lowercase=None , **_lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase__ , ) snake_case_ : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ : Optional[Any] = self.image_processor snake_case_ : Any = False def __call__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) snake_case_ : Dict = kwargs.pop("""images""" , UpperCamelCase__ ) snake_case_ : Any = kwargs.pop("""text""" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: snake_case_ : List[Any] = args[0] snake_case_ : Tuple = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: snake_case_ : Any = self.image_processor(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: snake_case_ : List[str] = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif images is None: return encodings else: snake_case_ : List[str] = encodings["""input_ids"""] return inputs def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) snake_case_ : Optional[Any] = True snake_case_ : Optional[Any] = self.tokenizer yield snake_case_ : List[Any] = self.image_processor snake_case_ : Any = False def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , _lowercase=None ) -> Optional[Any]: '''simple docstring''' if added_vocab is None: snake_case_ : Tuple = self.tokenizer.get_added_vocab() snake_case_ : Optional[Any] = {} while tokens: snake_case_ : Optional[Any] = re.search(R"""<s_(.*?)>""" , UpperCamelCase__ , re.IGNORECASE ) if start_token is None: break snake_case_ : Any = start_token.group(1 ) snake_case_ : Optional[Any] = re.search(Rf'</s_{key}>' , UpperCamelCase__ , re.IGNORECASE ) snake_case_ : Optional[int] = start_token.group() if end_token is None: snake_case_ : Any = tokens.replace(UpperCamelCase__ , """""" ) else: snake_case_ : Tuple = end_token.group() snake_case_ : Dict = re.escape(UpperCamelCase__ ) snake_case_ : int = re.escape(UpperCamelCase__ ) snake_case_ : Any = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , UpperCamelCase__ , re.IGNORECASE ) if content is not None: snake_case_ : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case_ : List[str] = self.tokenajson(UpperCamelCase__ , is_inner_value=UpperCamelCase__ , added_vocab=UpperCamelCase__ ) if value: if len(UpperCamelCase__ ) == 1: snake_case_ : Optional[Any] = value[0] snake_case_ : List[Any] = value else: # leaf nodes snake_case_ : Dict = [] for leaf in content.split(R"""<sep/>""" ): snake_case_ : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case_ : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(UpperCamelCase__ ) if len(output[key] ) == 1: snake_case_ : List[Any] = output[key][0] snake_case_ : Tuple = tokens[tokens.find(UpperCamelCase__ ) + len(UpperCamelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCamelCase__ , added_vocab=UpperCamelCase__ ) if len(UpperCamelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase__ , ) return self.image_processor
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') snake_case_ : List[Any] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) snake_case_ : Union[str, Any] = model.state_dict() def to_tf_var_name(__UpperCamelCase : List[str] ): for patt, repl in iter(__UpperCamelCase ): snake_case_ : Optional[Any] = name.replace(__UpperCamelCase , __UpperCamelCase ) return F'bert/{name}' def create_tf_var(__UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): snake_case_ : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) snake_case_ : List[Any] = tf.get_variable(dtype=__UpperCamelCase , shape=tensor.shape , name=__UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case_ : Optional[Any] = to_tf_var_name(__UpperCamelCase ) snake_case_ : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case_ : Any = torch_tensor.T snake_case_ : int = create_tf_var(tensor=__UpperCamelCase , name=__UpperCamelCase , session=__UpperCamelCase ) tf.keras.backend.set_value(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = session.run(__UpperCamelCase ) print(F'Successfully created {tf_name}: {np.allclose(__UpperCamelCase , __UpperCamelCase )}' ) snake_case_ : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(__UpperCamelCase , os.path.join(__UpperCamelCase , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' snake_case_ : int = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Directory in which to save tensorflow model""" ) snake_case_ : Tuple = parser.parse_args(__UpperCamelCase ) snake_case_ : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : Any = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' def wrapper(*__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Dict ): snake_case_ : int = timeit.default_timer() snake_case_ : List[Any] = func(*lowerCamelCase_ , **lowerCamelCase_ ) snake_case_ : List[Any] = timeit.default_timer() - starttime return delta snake_case_ : Dict = func.__name__ return wrapper def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple=1_0_0 , __UpperCamelCase : Optional[Any]=None ): '''simple docstring''' snake_case_ : Any = [] snake_case_ : Optional[Any] = seq_shapes or {} for i in range(lowerCamelCase_ ): snake_case_ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase_ , _ArrayXD ): snake_case_ : int = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase_ , datasets.Value ): if v.dtype == "string": snake_case_ : Dict = """The small grey turtle was surprisingly fast when challenged.""" else: snake_case_ : str = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase_ , datasets.Sequence ): while isinstance(lowerCamelCase_ , datasets.Sequence ): snake_case_ : Optional[Any] = v.feature snake_case_ : Dict = seq_shapes[k] snake_case_ : List[str] = np.random.rand(*lowerCamelCase_ ).astype(v.dtype ) snake_case_ : Any = data dummy_data.append((i, example) ) return dummy_data def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int=1_0_0 , __UpperCamelCase : Any=None ): '''simple docstring''' snake_case_ : List[str] = generate_examples(lowerCamelCase_ , num_examples=lowerCamelCase_ , seq_shapes=lowerCamelCase_ ) with ArrowWriter(features=lowerCamelCase_ , path=lowerCamelCase_ ) as writer: for key, record in dummy_data: snake_case_ : Tuple = features.encode_example(lowerCamelCase_ ) writer.write(lowerCamelCase_ ) snake_case_ : Union[str, Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) snake_case_ : Optional[int] = datasets.Dataset.from_file(filename=lowerCamelCase_ , info=datasets.DatasetInfo(features=lowerCamelCase_ ) ) return dataset
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" __lowerCAmelCase : str = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase : int = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=4 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.1 , _lowercase=True , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> List[str]: '''simple docstring''' snake_case_ : str = parent snake_case_ : Any = batch_size snake_case_ : Any = seq_length snake_case_ : str = is_training snake_case_ : Any = use_input_mask snake_case_ : int = use_token_type_ids snake_case_ : int = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_multiple_size snake_case_ : Dict = hidden_act snake_case_ : Optional[int] = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Tuple = weight_tying snake_case_ : Tuple = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : str = num_labels snake_case_ : int = num_choices snake_case_ : Optional[int] = scope def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = self.prepare_config_and_inputs() snake_case_ : Optional[int] = True return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Optional[int] = GPTNeoXJapaneseModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ ) snake_case_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = True snake_case_ : Tuple = GPTNeoXJapaneseModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = GPTNeoXJapaneseForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Any = True snake_case_ : Optional[int] = GPTNeoXJapaneseForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass snake_case_ : Dict = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) snake_case_ : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : int = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : int = model(lowercase_ , attention_mask=lowercase_ , output_hidden_states=lowercase_ ) snake_case_ : List[str] = output_from_no_past["""hidden_states"""][0] snake_case_ : Optional[int] = model( lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )["""hidden_states"""][0] # select random slice snake_case_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = config_and_inputs snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _lowerCamelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _lowerCamelCase = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ : List[Any] = None self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_ , lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase_ ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = """abeja/gpt-neox-japanese-2.7b""" snake_case_ : Tuple = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case_ : Any = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case_ : int = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase_ ) snake_case_ : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase_ ) snake_case_ : Any = [] for prompt in prompts: snake_case_ : int = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids snake_case_ : Union[str, Any] = model.generate(lowercase_ , max_length=5_0 ) snake_case_ : str = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCAmelCase : List[str] = '''bert-base-cased''' __lowerCAmelCase : Optional[Any] = '''fp16''' __lowerCAmelCase : Optional[Any] = '''bf16''' __lowerCAmelCase : Any = [FPaa, BFaa] @require_fsdp @require_cuda class _lowerCAmelCase ( __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().setUp() snake_case_ : Union[str, Any] = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowerCAmelCase_ ): snake_case_ : Tuple = self.dist_env.copy() snake_case_ : Any = f'{i + 1}' snake_case_ : str = strategy with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowerCAmelCase_ ): snake_case_ : List[str] = self.dist_env.copy() snake_case_ : Optional[int] = prefetch_policy with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Tuple = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowerCAmelCase_ ): snake_case_ : Optional[Any] = self.dist_env.copy() snake_case_ : Union[str, Any] = state_dict_type with mockenv_context(**lowerCAmelCase_ ): snake_case_ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = AutoModel.from_pretrained(lowerCAmelCase_ ) for policy in FSDP_AUTO_WRAP_POLICY: snake_case_ : int = self.dist_env.copy() snake_case_ : Optional[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": snake_case_ : Dict = """BertLayer""" elif policy == "SIZE_BASED_WRAP": snake_case_ : Tuple = """2000""" with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCAmelCase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) snake_case_ : str = self.dist_env.copy() snake_case_ : Dict = """TRANSFORMER_BASED_WRAP""" snake_case_ : str = """T5Layer""" with mockenv_context(**lowerCAmelCase_ ): snake_case_ : List[str] = FullyShardedDataParallelPlugin() with self.assertRaises(lowerCAmelCase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowerCAmelCase_ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) snake_case_ : Dict = self.dist_env.copy() snake_case_ : Dict = """SIZE_BASED_WRAP""" snake_case_ : Dict = """0""" with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowerCAmelCase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: snake_case_ : Optional[int] = self.dist_env.copy() snake_case_ : Any = mp_dtype with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Optional[int] = Accelerator() if mp_dtype == "fp16": snake_case_ : int = torch.floataa elif mp_dtype == "bf16": snake_case_ : List[Any] = torch.bfloataa snake_case_ : Dict = MixedPrecision(param_dtype=lowerCAmelCase_ , reduce_dtype=lowerCAmelCase_ , buffer_dtype=lowerCAmelCase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowerCAmelCase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowerCAmelCase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowerCAmelCase_ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: snake_case_ : Tuple = self.dist_env.copy() snake_case_ : List[str] = str(lowerCAmelCase_ ).lower() with mockenv_context(**lowerCAmelCase_ ): snake_case_ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowerCAmelCase_ ) ) @require_fsdp @require_multi_gpu @slow class _lowerCAmelCase ( __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() snake_case_ : Any = 0.82 snake_case_ : List[Any] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] snake_case_ : List[Any] = { """multi_gpu_fp16""": 3_2_0_0, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2_0_0_0, """fsdp_full_shard_transformer_based_wrap_fp16""": 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } snake_case_ : int = 1_6_0 snake_case_ : int = 1_6_0 snake_case_ : List[str] = inspect.getfile(accelerate.test_utils ) snake_case_ : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = os.path.join(self.test_scripts_folder , """test_performance.py""" ) snake_case_ : List[str] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: snake_case_ : Optional[int] = cmd.copy() for i, strategy in enumerate(lowerCAmelCase_ ): if strategy.lower() in config: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Dict = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) snake_case_ : Optional[int] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(lowerCAmelCase_ ): snake_case_ : List[Any] = cmd.copy() cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue snake_case_ : int = len(lowerCAmelCase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: snake_case_ : Any = cmd_config[:state_dict_config_index] cmd_config.append(f'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) snake_case_ : List[str] = cmd_config[:-1] snake_case_ : Any = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) snake_case_ : List[Any] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): snake_case_ : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(lowerCAmelCase_ ): if strategy.lower() in spec: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--peak_memory_upper_bound={peak_mem_upper_bound}', f'--n_train={self.n_train}', f'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() )
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __lowerCAmelCase : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Dict ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : int = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: snake_case_ : Optional[int] = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: snake_case_ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : str = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : Tuple = value elif weight_type == "bias": snake_case_ : List[Any] = value else: snake_case_ : Union[str, Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = [] snake_case_ : Optional[Any] = fairseq_model.state_dict() snake_case_ : Optional[Any] = hf_model.feature_extractor snake_case_ : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): snake_case_ : Tuple = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Optional[Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : Optional[int] = name.split(__UpperCamelCase )[0].split(""".""" )[-2] snake_case_ : Dict = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: snake_case_ : Tuple = '''weight_g''' elif "weight_v" in name: snake_case_ : Tuple = '''weight_v''' elif "bias" in name: snake_case_ : Union[str, Any] = '''bias''' elif "weight" in name: snake_case_ : Union[str, Any] = '''weight''' else: snake_case_ : List[Any] = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = full_name.split("""conv_layers.""" )[-1] snake_case_ : Tuple = name.split(""".""" ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : int = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : List[str] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Any = full_name.split("""adaptor.""" )[-1] snake_case_ : Union[str, Any] = name.split(""".""" ) if items[1].isdigit(): snake_case_ : Tuple = int(items[1] ) else: snake_case_ : int = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' snake_case_ : Dict = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' snake_case_ : int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' snake_case_ : List[str] = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' snake_case_ : Optional[Any] = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' snake_case_ : List[Any] = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' snake_case_ : int = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[Any] = emb.weight.shape snake_case_ : List[str] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Tuple = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , ): '''simple docstring''' snake_case_ : int = WavaVecaConfig.from_pretrained( __UpperCamelCase , add_adapter=__UpperCamelCase , adapter_stride=__UpperCamelCase , adapter_kernel_size=__UpperCamelCase , use_auth_token=__UpperCamelCase , output_hidden_size=__UpperCamelCase , ) snake_case_ : Union[str, Any] = MBartConfig.from_pretrained(__UpperCamelCase ) # load model snake_case_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) snake_case_ : List[Any] = model[0].eval() # load feature extractor snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase , use_auth_token=__UpperCamelCase ) # set weights for wav2vec2 encoder snake_case_ : Dict = WavaVecaModel(__UpperCamelCase ) recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) # load decoder weights snake_case_ : Optional[int] = MBartForCausalLM(__UpperCamelCase ) snake_case_ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Optional[Any] = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) snake_case_ : Union[str, Any] = False snake_case_ : Union[str, Any] = MBartaaTokenizer(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) snake_case_ : List[Any] = hf_wavavec.config.to_dict() snake_case_ : List[Any] = tokenizer.pad_token_id snake_case_ : Dict = tokenizer.bos_token_id snake_case_ : List[str] = tokenizer.eos_token_id snake_case_ : str = '''mbart50''' snake_case_ : Optional[int] = '''wav2vec2''' snake_case_ : str = tokenizer.eos_token_id snake_case_ : Optional[int] = 2_5_0_0_0_4 snake_case_ : Union[str, Any] = tokenizer.eos_token_id snake_case_ : List[Any] = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=25_0004, type=int, help='''`decoder_start_token_id` of model config''') __lowerCAmelCase : List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Dict = [True] * limit snake_case_ : Any = False snake_case_ : Dict = False snake_case_ : Optional[int] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case_ : List[Any] = i * 2 while index < limit: snake_case_ : Dict = False snake_case_ : int = index + i snake_case_ : Optional[Any] = [2] for i in range(3 , __UpperCamelCase , 2 ): if is_prime[i]: primes.append(__UpperCamelCase ) return primes def __lowerCAmelCase ( __UpperCamelCase : Tuple = 1_0_0_0_0_0_0 ): '''simple docstring''' snake_case_ : str = prime_sieve(__UpperCamelCase ) snake_case_ : Optional[int] = 0 snake_case_ : Optional[Any] = 0 for i in range(len(__UpperCamelCase ) ): for j in range(i + length , len(__UpperCamelCase ) ): snake_case_ : Tuple = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case_ : str = j - i snake_case_ : Dict = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" import argparse import json from tqdm import tqdm def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=__a , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=__a , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=__a , help="""where to store parsed gold_data_path file""" , ) snake_case_ : Dict = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: snake_case_ : List[Any] = json.load(__a ) for dpr_record in tqdm(__a ): snake_case_ : List[Any] = dpr_record["""question"""] snake_case_ : int = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(__a ) + """\n""" ) if __name__ == "__main__": main()
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : Optional[int] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase=0.0 , _lowercase = None , _lowercase = "geglu" , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = True , _lowercase = "layer_norm" , _lowercase = False , ) -> List[str]: '''simple docstring''' super().__init__() snake_case_ : int = only_cross_attention snake_case_ : Tuple = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' snake_case_ : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Union[str, Any] = AdaLayerNorm(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.use_ada_layer_norm_zero: snake_case_ : List[Any] = AdaLayerNormZero(UpperCAmelCase__ , UpperCAmelCase__ ) else: snake_case_ : Tuple = nn.LayerNorm(UpperCAmelCase__ , elementwise_affine=UpperCAmelCase__ ) snake_case_ : List[Any] = Attention( query_dim=UpperCAmelCase__ , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , dropout=UpperCAmelCase__ , bias=UpperCAmelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCAmelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : List[Any] = ( AdaLayerNorm(UpperCAmelCase__ , UpperCAmelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCAmelCase__ , elementwise_affine=UpperCAmelCase__ ) ) snake_case_ : Union[str, Any] = Attention( query_dim=UpperCAmelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCAmelCase__ , dim_head=UpperCAmelCase__ , dropout=UpperCAmelCase__ , bias=UpperCAmelCase__ , upcast_attention=UpperCAmelCase__ , ) # is self-attn if encoder_hidden_states is none else: snake_case_ : Union[str, Any] = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : Dict = nn.LayerNorm(UpperCAmelCase__ , elementwise_affine=UpperCAmelCase__ ) snake_case_ : str = FeedForward(UpperCAmelCase__ , dropout=UpperCAmelCase__ , activation_fn=UpperCAmelCase__ , final_dropout=UpperCAmelCase__ ) # let chunk size default to None snake_case_ : List[str] = None snake_case_ : List[str] = 0 def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> int: '''simple docstring''' if self.use_ada_layer_norm: snake_case_ : Dict = self.norma(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.use_ada_layer_norm_zero: snake_case_ : str = self.norma( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hidden_dtype=hidden_states.dtype ) else: snake_case_ : Tuple = self.norma(UpperCAmelCase__ ) snake_case_ : List[str] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Optional[Any] = self.attna( UpperCAmelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) if self.use_ada_layer_norm_zero: snake_case_ : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Any = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : str = ( self.norma(UpperCAmelCase__ , UpperCAmelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCAmelCase__ ) ) snake_case_ : int = self.attna( UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : List[str] = self.norma(UpperCAmelCase__ ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) snake_case_ : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : List[str] = torch.cat( [self.ff(UpperCAmelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCAmelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case_ : str = self.ff(UpperCAmelCase__ ) if self.use_ada_layer_norm_zero: snake_case_ : int = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase = None , _lowercase = 4 , _lowercase = 0.0 , _lowercase = "geglu" , _lowercase = False , ) -> Union[str, Any]: '''simple docstring''' super().__init__() snake_case_ : List[Any] = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : List[Any] = GELU(UpperCAmelCase__ , UpperCAmelCase__ ) if activation_fn == "gelu-approximate": snake_case_ : int = GELU(UpperCAmelCase__ , UpperCAmelCase__ , approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Optional[int] = GEGLU(UpperCAmelCase__ , UpperCAmelCase__ ) elif activation_fn == "geglu-approximate": snake_case_ : Tuple = ApproximateGELU(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case_ : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(UpperCAmelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCAmelCase__ ) ) # project out self.net.append(nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' for module in self.net: snake_case_ : List[Any] = module(UpperCAmelCase__ ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase = "none" ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ : str = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case_ : Union[str, Any] = approximate def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(UpperCAmelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = self.proj(UpperCAmelCase__ ) snake_case_ : Optional[Any] = self.gelu(UpperCAmelCase__ ) return hidden_states class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> int: '''simple docstring''' super().__init__() snake_case_ : List[Any] = nn.Linear(UpperCAmelCase__ , dim_out * 2 ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' if gate.device.type != "mps": return F.gelu(UpperCAmelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.proj(UpperCAmelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCAmelCase__ ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case_ : Tuple = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.proj(UpperCAmelCase__ ) return x * torch.sigmoid(1.702 * x ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : Tuple = nn.Embedding(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case_ : Dict = nn.SiLU() snake_case_ : int = nn.Linear(UpperCAmelCase__ , embedding_dim * 2 ) snake_case_ : List[Any] = nn.LayerNorm(UpperCAmelCase__ , elementwise_affine=UpperCAmelCase__ ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = self.linear(self.silu(self.emb(UpperCAmelCase__ ) ) ) snake_case_ : Any = torch.chunk(UpperCAmelCase__ , 2 ) snake_case_ : Tuple = self.norm(UpperCAmelCase__ ) * (1 + scale) + shift return x class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> str: '''simple docstring''' super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case_ : Any = nn.SiLU() snake_case_ : Optional[Any] = nn.Linear(UpperCAmelCase__ , 6 * embedding_dim , bias=UpperCAmelCase__ ) snake_case_ : Optional[int] = nn.LayerNorm(UpperCAmelCase__ , elementwise_affine=UpperCAmelCase__ , eps=1E-6 ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(UpperCAmelCase__ , UpperCAmelCase__ , hidden_dtype=UpperCAmelCase__ ) ) ) snake_case_ : int = emb.chunk(6 , dim=1 ) snake_case_ : Dict = self.norm(UpperCAmelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = 1E-5 ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case_ : Tuple = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : Tuple = None else: snake_case_ : Optional[int] = get_activation(UpperCAmelCase__ ) snake_case_ : Optional[Any] = nn.Linear(UpperCAmelCase__ , out_dim * 2 ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' if self.act: snake_case_ : List[Any] = self.act(UpperCAmelCase__ ) snake_case_ : Dict = self.linear(UpperCAmelCase__ ) snake_case_ : int = emb[:, :, None, None] snake_case_ : List[Any] = emb.chunk(2 , dim=1 ) snake_case_ : str = F.group_norm(UpperCAmelCase__ , self.num_groups , eps=self.eps ) snake_case_ : int = x * (1 + scale) + shift return x
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import random class _lowerCAmelCase : """simple docstring""" @staticmethod def UpperCAmelCase__ ( _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = [ord(_lowerCamelCase ) for i in text] snake_case_ : int = [] snake_case_ : int = [] for i in plain: snake_case_ : Any = random.randint(1 , 3_0_0 ) snake_case_ : str = (i + k) * k cipher.append(_lowerCamelCase ) key.append(_lowerCamelCase ) return cipher, key @staticmethod def UpperCAmelCase__ ( _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = [] for i in range(len(_lowerCamelCase ) ): snake_case_ : Union[str, Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowerCamelCase ) ) return "".join(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase : Tuple = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 2_5_5 , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ) -> None: '''simple docstring''' super().__init__(**__lowerCamelCase ) snake_case_ : List[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} snake_case_ : Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) snake_case_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} snake_case_ : Any = get_size_dict(__lowerCamelCase , param_name="""crop_size""" ) snake_case_ : Dict = do_resize snake_case_ : str = size snake_case_ : Tuple = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Optional[int] = do_rescale snake_case_ : List[str] = rescale_factor snake_case_ : List[Any] = do_normalize snake_case_ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: '''simple docstring''' snake_case_ : Dict = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) snake_case_ : str = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: '''simple docstring''' snake_case_ : Union[str, Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ) -> np.ndarray: '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : Optional[int] = size if size is not None else self.size snake_case_ : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) snake_case_ : Dict = resample if resample is not None else self.resample snake_case_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Any = crop_size if crop_size is not None else self.crop_size snake_case_ : List[str] = get_size_dict(__lowerCamelCase , param_name="""crop_size""" ) snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : int = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : List[Any] = image_std if image_std is not None else self.image_std snake_case_ : Any = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : Union[str, Any] = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: snake_case_ : Any = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: snake_case_ : Tuple = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] snake_case_ : int = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] snake_case_ : int = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__lowerCamelCase ): snake_case_ : str = target_sizes.numpy() snake_case_ : Optional[Any] = [] for idx in range(len(__lowerCamelCase ) ): snake_case_ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__lowerCamelCase ) snake_case_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCamelCase ) else: snake_case_ : Optional[Any] = logits.argmax(dim=1 ) snake_case_ : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import os from collections.abc import Iterator def __lowerCAmelCase ( __UpperCamelCase : List[str] = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCamelCase__ ): snake_case_ : Optional[Any] = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase__ , UpperCamelCase__ ).lstrip("""./""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return F'{i * " "}*' if i else "\n##" def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase__ ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(UpperCamelCase__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def __lowerCAmelCase ( __UpperCamelCase : List[Any] = "." ): '''simple docstring''' snake_case_ : List[Any] = """""" for filepath in sorted(good_file_paths(UpperCamelCase__ ) ): snake_case_ , snake_case_ : List[str] = os.path.split(UpperCamelCase__ ) if filepath != old_path: snake_case_ : Optional[int] = print_path(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case_ : Optional[Any] = F'{filepath}/{filename}'.replace(""" """ , """%20""" ) snake_case_ : Union[str, Any] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'{md_prefix(UpperCamelCase__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Tuple = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __lowerCAmelCase : int = { '''gpt-neox-20b''': 2048, } class _lowerCAmelCase ( snake_case__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase="<|endoftext|>" , _lowercase=False , **_lowercase , ) -> Dict: '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) snake_case_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase_ ) != add_prefix_space: snake_case_ : List[Any] = getattr(lowercase_ , pre_tok_state.pop("""type""" ) ) snake_case_ : Optional[int] = add_prefix_space snake_case_ : Union[str, Any] = pre_tok_class(**lowercase_ ) snake_case_ : Optional[Any] = add_prefix_space def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: snake_case_ : List[Any] = input_ids[-self.model_max_length :] return input_ids
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase = 6 ) -> None: '''simple docstring''' snake_case_ : Union[str, Any] = None snake_case_ : Optional[Any] = None self.create_linked_list(A_ ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : int = Node() snake_case_ : List[str] = current_node snake_case_ : List[str] = current_node snake_case_ : Union[str, Any] = current_node for _ in range(1 , A_ ): snake_case_ : Dict = Node() snake_case_ : Any = current_node snake_case_ : Dict = previous_node snake_case_ : str = current_node snake_case_ : str = self.front snake_case_ : str = previous_node def UpperCAmelCase__ ( self ) -> bool: '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def UpperCAmelCase__ ( self ) -> Any | None: '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case_ : int = self.rear.next if self.rear: snake_case_ : Optional[int] = data def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case_ : str = self.front.data snake_case_ : Union[str, Any] = None return data snake_case_ : Any = self.front snake_case_ : Optional[int] = old_front.next snake_case_ : List[str] = old_front.data snake_case_ : Tuple = None return data def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""" ) def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> None: '''simple docstring''' snake_case_ : str = None snake_case_ : Tuple = None snake_case_ : str = None if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowerCAmelCase ( __lowercase ): """simple docstring""" _lowerCamelCase = '''decision_transformer''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowercase=1_7 , _lowercase=4 , _lowercase=1_2_8 , _lowercase=4_0_9_6 , _lowercase=True , _lowercase=1 , _lowercase=1_0_2_4 , _lowercase=3 , _lowercase=1 , _lowercase=None , _lowercase="relu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0_2_5_6 , _lowercase=5_0_2_5_6 , _lowercase=False , _lowercase=False , **_lowercase , ) -> List[Any]: '''simple docstring''' snake_case_ : int = state_dim snake_case_ : str = act_dim snake_case_ : str = hidden_size snake_case_ : List[str] = max_ep_len snake_case_ : List[str] = action_tanh snake_case_ : Optional[Any] = vocab_size snake_case_ : Any = n_positions snake_case_ : List[str] = n_layer snake_case_ : Tuple = n_head snake_case_ : int = n_inner snake_case_ : Any = activation_function snake_case_ : Union[str, Any] = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : Optional[int] = attn_pdrop snake_case_ : Tuple = layer_norm_epsilon snake_case_ : int = initializer_range snake_case_ : int = scale_attn_weights snake_case_ : str = use_cache snake_case_ : int = scale_attn_by_inverse_layer_idx snake_case_ : Any = reorder_and_upcast_attn snake_case_ : Optional[Any] = bos_token_id snake_case_ : Union[str, Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''realm''' def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=8 , _lowercase=3_0_7_2 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=2_5_6 , _lowercase=1_0 , _lowercase=1E-3 , _lowercase=5 , _lowercase=3_2_0 , _lowercase=1_3_3_5_3_7_1_8 , _lowercase=5_0_0_0 , _lowercase=1 , _lowercase=0 , _lowercase=2 , **_lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) # Common config snake_case_ : List[str] = vocab_size snake_case_ : Tuple = max_position_embeddings snake_case_ : int = hidden_size snake_case_ : int = retriever_proj_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : List[Any] = num_candidates snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Tuple = initializer_range snake_case_ : Any = type_vocab_size snake_case_ : str = layer_norm_eps # Reader config snake_case_ : Tuple = span_hidden_size snake_case_ : Optional[int] = max_span_width snake_case_ : Dict = reader_layer_norm_eps snake_case_ : Any = reader_beam_size snake_case_ : List[str] = reader_seq_len # Retrieval config snake_case_ : Optional[Any] = num_block_records snake_case_ : str = searcher_beam_size
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[Any] = shutil.get_terminal_size() __lowerCAmelCase : Any = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class _lowerCAmelCase ( enum.Enum ): """simple docstring""" _lowerCamelCase = 0 _lowerCamelCase = 1 def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Any="" ): '''simple docstring''' sys.stdout.write(str(__UpperCamelCase ) + end ) sys.stdout.flush() def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : str="" ): '''simple docstring''' forceWrite(F'\u001b[{color}m{content}\u001b[0m' , __UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __lowerCAmelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __lowerCAmelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0_0_0_0 ): '''simple docstring''' snake_case_ : int = 1 snake_case_ : Optional[int] = 1 snake_case_ : Optional[Any] = {1: 1} for inputa in range(2 , lowerCAmelCase__ ): snake_case_ : Dict = 0 snake_case_ : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: snake_case_ : Any = (3 * number) + 1 counter += 1 if inputa not in counters: snake_case_ : Optional[int] = counter if counter > pre_counter: snake_case_ : List[str] = inputa snake_case_ : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Dict = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case_ : Tuple = 1_2_8 elif "12-12" in model_name: snake_case_ : Optional[Any] = 1_2 snake_case_ : int = 1_2 elif "14-14" in model_name: snake_case_ : List[Any] = 1_4 snake_case_ : Any = 1_4 elif "16-16" in model_name: snake_case_ : Optional[Any] = 1_6 snake_case_ : Optional[Any] = 1_6 else: raise ValueError("""Model not supported""" ) snake_case_ : Any = """huggingface/label-files""" if "speech-commands" in model_name: snake_case_ : List[Any] = 3_5 snake_case_ : Any = """speech-commands-v2-id2label.json""" else: snake_case_ : Optional[int] = 5_2_7 snake_case_ : str = """audioset-id2label.json""" snake_case_ : Dict = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Union[str, Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : List[str] = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' if "module.v" in name: snake_case_ : Union[str, Any] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: snake_case_ : Tuple = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: snake_case_ : Tuple = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: snake_case_ : Tuple = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case_ : Any = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: snake_case_ : str = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: snake_case_ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case_ : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case_ : Union[str, Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case_ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case_ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case_ : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case_ : List[str] = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: snake_case_ : List[str] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: snake_case_ : Tuple = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ : Optional[int] = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: snake_case_ : str = key.split(""".""" ) snake_case_ : Optional[int] = int(key_split[3] ) snake_case_ : List[Any] = config.hidden_size if "weight" in key: snake_case_ : Dict = val[:dim, :] snake_case_ : str = val[dim : dim * 2, :] snake_case_ : Dict = val[-dim:, :] else: snake_case_ : Optional[int] = val[:dim] snake_case_ : Union[str, Any] = val[dim : dim * 2] snake_case_ : Tuple = val[-dim:] else: snake_case_ : Union[str, Any] = val return orig_state_dict def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : int = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' snake_case_ : Any = get_audio_spectrogram_transformer_config(__UpperCamelCase ) snake_case_ : Optional[int] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict snake_case_ : Any = model_name_to_url[model_name] snake_case_ : str = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="""cpu""" ) # remove some keys remove_keys(__UpperCamelCase ) # rename some keys snake_case_ : Tuple = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) # load 🤗 model snake_case_ : List[str] = ASTForAudioClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case_ : List[str] = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 snake_case_ : Optional[Any] = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 snake_case_ : List[Any] = 1_0_2_4 if """speech-commands""" not in model_name else 1_2_8 snake_case_ : Dict = ASTFeatureExtractor(mean=__UpperCamelCase , std=__UpperCamelCase , max_length=__UpperCamelCase ) if "speech-commands" in model_name: snake_case_ : List[Any] = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) snake_case_ : Dict = dataset[0]["""audio"""]["""array"""] else: snake_case_ : List[str] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) snake_case_ , snake_case_ : Union[str, Any] = torchaudio.load(__UpperCamelCase ) snake_case_ : Union[str, Any] = waveform.squeeze().numpy() snake_case_ : Optional[int] = feature_extractor(__UpperCamelCase , sampling_rate=1_6_0_0_0 , return_tensors="""pt""" ) # forward pass snake_case_ : List[str] = model(**__UpperCamelCase ) snake_case_ : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case_ : Dict = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case_ : List[Any] = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case_ : List[str] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case_ : Dict = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case_ : Tuple = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case_ : List[str] = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case_ : Tuple = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case_ : Union[str, Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ): raise ValueError("""Logits don\'t match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__UpperCamelCase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __lowerCAmelCase : Dict = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = EfficientNetConfig() snake_case_ : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] snake_case_ : Optional[Any] = CONFIG_MAP[model_name]["""width_coef"""] snake_case_ : Tuple = CONFIG_MAP[model_name]["""depth_coef"""] snake_case_ : Any = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : Optional[int] = CONFIG_MAP[model_name]["""dropout_rate"""] snake_case_ : int = CONFIG_MAP[model_name]["""dw_padding"""] snake_case_ : Optional[Any] = """huggingface/label-files""" snake_case_ : Tuple = """imagenet-1k-id2label.json""" snake_case_ : str = 1_0_0_0 snake_case_ : Any = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : List[str] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : Tuple = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[str] = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : Optional[Any] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=__UpperCamelCase , ) return preprocessor def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[str] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] snake_case_ : Union[str, Any] = sorted(set(__UpperCamelCase ) ) snake_case_ : Optional[Any] = len(__UpperCamelCase ) snake_case_ : int = {b: str(__UpperCamelCase ) for b, i in zip(__UpperCamelCase , range(__UpperCamelCase ) )} snake_case_ : Optional[int] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: snake_case_ : str = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) snake_case_ : List[Any] = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ : str = """efficientnet.""" + item[1] snake_case_ : str = """classifier.weight""" snake_case_ : List[Any] = """classifier.bias""" return key_mapping def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Dict ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ : Dict = torch.from_numpy(__UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ : Optional[int] = torch.from_numpy(__UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ : int = torch.from_numpy(np.transpose(__UpperCamelCase ) ) else: snake_case_ : str = torch.from_numpy(__UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[Any] = model_classes[model_name]( include_top=__UpperCamelCase , weights="""imagenet""" , input_tensor=__UpperCamelCase , input_shape=__UpperCamelCase , pooling=__UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) snake_case_ : str = original_model.trainable_variables snake_case_ : Union[str, Any] = original_model.non_trainable_variables snake_case_ : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ : Dict = param.numpy() snake_case_ : Dict = list(tf_params.keys() ) # Load HuggingFace model snake_case_ : List[Any] = get_efficientnet_config(__UpperCamelCase ) snake_case_ : int = EfficientNetForImageClassification(__UpperCamelCase ).eval() snake_case_ : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) snake_case_ : Optional[int] = rename_keys(__UpperCamelCase ) replace_params(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Initialize preprocessor and preprocess input image snake_case_ : Optional[int] = convert_image_processor(__UpperCamelCase ) snake_case_ : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ : int = hf_model(**__UpperCamelCase ) snake_case_ : int = outputs.logits.detach().numpy() # Original model inference snake_case_ : Union[str, Any] = False snake_case_ : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ : str = image.img_to_array(__UpperCamelCase ) snake_case_ : Union[str, Any] = np.expand_dims(__UpperCamelCase , axis=0 ) snake_case_ : List[Any] = original_model.predict(__UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCamelCase ): os.mkdir(__UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCamelCase ) preprocessor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) snake_case_ : Any = F'efficientnet-{model_name}' preprocessor.push_to_hub(__UpperCamelCase ) hf_model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __lowerCAmelCase : Optional[int] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _lowerCAmelCase ( __UpperCAmelCase ): """simple docstring""" _lowerCamelCase = '''mgp-str''' def __init__( self , _lowercase=[3_2, 1_2_8] , _lowercase=4 , _lowercase=3 , _lowercase=2_7 , _lowercase=3_8 , _lowercase=5_0_2_5_7 , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=4.0 , _lowercase=True , _lowercase=False , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=False , _lowercase=0.02 , **_lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) snake_case_ : Union[str, Any] = image_size snake_case_ : str = patch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : int = max_token_length snake_case_ : List[str] = num_character_labels snake_case_ : List[Any] = num_bpe_labels snake_case_ : Optional[Any] = num_wordpiece_labels snake_case_ : int = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = mlp_ratio snake_case_ : List[str] = distilled snake_case_ : Dict = layer_norm_eps snake_case_ : Optional[Any] = drop_rate snake_case_ : str = qkv_bias snake_case_ : Union[str, Any] = attn_drop_rate snake_case_ : List[Any] = drop_path_rate snake_case_ : Any = output_aa_attentions snake_case_ : Dict = initializer_range
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowerCamelCase = '''swin2sr''' _lowerCamelCase = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=6_4 , _lowercase=1 , _lowercase=3 , _lowercase=1_8_0 , _lowercase=[6, 6, 6, 6, 6, 6] , _lowercase=[6, 6, 6, 6, 6, 6] , _lowercase=8 , _lowercase=2.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=2 , _lowercase=1.0 , _lowercase="1conv" , _lowercase="pixelshuffle" , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) snake_case_ : List[Any] = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : List[str] = embed_dim snake_case_ : List[str] = depths snake_case_ : Optional[int] = len(_UpperCAmelCase ) snake_case_ : Optional[Any] = num_heads snake_case_ : List[Any] = window_size snake_case_ : List[Any] = mlp_ratio snake_case_ : List[str] = qkv_bias snake_case_ : Dict = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[int] = drop_path_rate snake_case_ : str = hidden_act snake_case_ : Any = use_absolute_embeddings snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Dict = initializer_range snake_case_ : Any = upscale snake_case_ : Union[str, Any] = img_range snake_case_ : int = resi_connection snake_case_ : Dict = upsampler
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" from collections.abc import Sequence def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCAmelCase__ ) ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = 0.0 for coeff in reversed(UpperCAmelCase__ ): snake_case_ : int = result * x + coeff return result if __name__ == "__main__": __lowerCAmelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) __lowerCAmelCase : Dict = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = DanceDiffusionPipeline _lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCamelCase = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } _lowerCamelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) snake_case_ : Dict = IPNDMScheduler() snake_case_ : Tuple = { """unet""": unet, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> Tuple: '''simple docstring''' if str(__UpperCamelCase ).startswith("""mps""" ): snake_case_ : Dict = torch.manual_seed(__UpperCamelCase ) else: snake_case_ : Tuple = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case_ : Optional[int] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Optional[Any] = DanceDiffusionPipeline(**__UpperCamelCase ) snake_case_ : List[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) snake_case_ : str = pipe(**__UpperCamelCase ) snake_case_ : Dict = output.audios snake_case_ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) snake_case_ : str = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = torch_device snake_case_ : Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) snake_case_ : List[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Optional[Any] = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) snake_case_ : Optional[int] = output.audios snake_case_ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case_ : Optional[int] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[str] = torch_device snake_case_ : Any = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) snake_case_ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : str = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) snake_case_ : int = output.audios snake_case_ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) snake_case_ : List[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("""only integers accepted as input""" ) else: snake_case_ : Union[str, Any] = str(abs(_UpperCamelCase ) ) snake_case_ : Tuple = [list(_UpperCamelCase ) for char in range(len(_UpperCamelCase ) )] for index in range(len(_UpperCamelCase ) ): num_transpositions[index].pop(_UpperCamelCase ) return max( int("""""".join(list(_UpperCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : Optional[int] = 3 snake_case_ : int = 2_5_0 snake_case_ : List[str] = ids_tensor((batch_size, length) , _lowercase ) snake_case_ : List[Any] = torch.ones((batch_size, length) , device=_lowercase , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = self._get_tensors(5 ) snake_case_ : Optional[int] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : Optional[Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = MaxLengthCriteria(max_length=1_0 ) snake_case_ , snake_case_ : Any = self._get_tensors(5 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : str = self._get_tensors(1_0 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case_ , snake_case_ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ , snake_case_ : Union[str, Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) snake_case_ : Optional[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ , snake_case_ : Optional[Any] = self._get_tensors(5 ) snake_case_ : Optional[int] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) snake_case_ : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(_lowercase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) snake_case_ : List[str] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(_lowercase ) , 1 )
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = mock.Mock() snake_case_ : Tuple = 5_0_0 snake_case_ : Dict = {} snake_case_ : Dict = HTTPError snake_case_ : Optional[Any] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=lowerCamelCase__ ) as mock_head: snake_case_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = mock.Mock() snake_case_ : Any = 5_0_0 snake_case_ : str = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Tuple = {} # Download this model to make sure it's in the cache. snake_case_ : Optional[Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=lowerCamelCase__ ) as mock_head: snake_case_ : str = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' try: snake_case_ : Dict = tempfile.mktemp() with open(lowerCamelCase__ , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , lowerCamelCase__ ) snake_case_ : Dict = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , lowerCamelCase__ ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCAmelCase__ ( cls ) -> int: '''simple docstring''' snake_case_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__ ( cls ) -> Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : int = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case_ : Tuple = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) snake_case_ : Union[str, Any] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ , repo_id="""test-tokenizer""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) snake_case_ : str = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case_ : List[str] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) snake_case_ : Optional[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) snake_case_ : Union[str, Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : List[Any] = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case_ : Any = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) snake_case_ : str = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : List[Any] = os.path.join(lowerCamelCase__ , """vocab.txt""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case_ : List[Any] = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) snake_case_ : Optional[int] = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) snake_case_ : str = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) snake_case_ : int = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' , use_fast=lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = Trie() snake_case_ : Optional[Any] = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ , ["""AB""", """C"""] )
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
import os import pytest from attr import dataclass __lowerCAmelCase : Optional[Any] = 'us-east-1' # defaults region @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _lowerCamelCase = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5_500, } _lowerCamelCase = {**hyperparameters, '''max_steps''': 1_000} @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return f'{self.framework}-transfromers-test' @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return f'./tests/sagemaker/scripts/{self.framework}' @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = SageMakerTestEnvironment(framework=request.cls.framework )
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : Dict = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = ["""DeiTFeatureExtractor"""] __lowerCAmelCase : Any = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCAmelCase : Union[str, Any] = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __lowerCAmelCase : Optional[Any] = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) snake_case_ : Tuple = bs[:] snake_case_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 snake_case_ : List[str] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[Any] = set() snake_case_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Dict = char return pairs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , _lowercase , _lowercase , _lowercase="replace" , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=False , **_lowercase , ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token snake_case_ : Optional[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token snake_case_ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding="""utf-8""" ) as vocab_handle: snake_case_ : List[Any] = json.load(_lowercase ) snake_case_ : List[str] = {v: k for k, v in self.encoder.items()} snake_case_ : Dict = errors # how to handle errors in decoding snake_case_ : Union[str, Any] = bytes_to_unicode() snake_case_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding="""utf-8""" ) as merges_handle: snake_case_ : List[str] = merges_handle.read().split("""\n""" )[1:-1] snake_case_ : str = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : Optional[int] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : List[Any] = {} snake_case_ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : List[Any] = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case_ : int = tuple(_lowercase ) snake_case_ : str = get_pairs(_lowercase ) if not pairs: return token while True: snake_case_ : List[Any] = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : int = bigram snake_case_ : Any = [] snake_case_ : Any = 0 while i < len(_lowercase ): try: snake_case_ : Any = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : Any = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[Any] = tuple(_lowercase ) snake_case_ : List[str] = new_word if len(_lowercase ) == 1: break else: snake_case_ : List[Any] = get_pairs(_lowercase ) snake_case_ : str = """ """.join(_lowercase ) snake_case_ : Optional[Any] = word return word def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : str = [] for token in re.findall(self.pat , _lowercase ): snake_case_ : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' return self.decoder.get(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """""".join(_lowercase ) snake_case_ : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : List[Any] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : List[Any] = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + """\n""" ) snake_case_ : Dict = 0 with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) snake_case_ : Union[str, Any] = token_index writer.write(""" """.join(_lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , **_lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): snake_case_ : Union[str, Any] = """ """ + text return (text, kwargs) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Dict: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(_lowercase ) snake_case_ : List[str] = """ """.join(_lowercase ) snake_case_ : Tuple = self.encode(_lowercase ) if len(_lowercase ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : int = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _lowerCAmelCase ( snake_case__ ): """simple docstring""" _lowerCamelCase = '''segformer''' def __init__( self , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[3_2, 6_4, 1_6_0, 2_5_6] , _lowercase=[7, 3, 3, 3] , _lowercase=[4, 2, 2, 2] , _lowercase=[1, 2, 5, 8] , _lowercase=[4, 4, 4, 4] , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=0.1 , _lowercase=1E-6 , _lowercase=2_5_6 , _lowercase=2_5_5 , **_lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = num_channels snake_case_ : List[str] = num_encoder_blocks snake_case_ : str = depths snake_case_ : Optional[Any] = sr_ratios snake_case_ : Dict = hidden_sizes snake_case_ : Tuple = patch_sizes snake_case_ : Optional[Any] = strides snake_case_ : List[Any] = mlp_ratios snake_case_ : Dict = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[int] = classifier_dropout_prob snake_case_ : int = initializer_range snake_case_ : str = drop_path_rate snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = decoder_hidden_size snake_case_ : Any = kwargs.get("""reshape_last_stage""" , _SCREAMING_SNAKE_CASE ) snake_case_ : str = semantic_loss_ignore_index class _lowerCAmelCase ( snake_case__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 1_2
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = False , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : List[Any] = nn.Embedding(_lowercase , _lowercase ) snake_case_ : str = nn.Embedding(_lowercase , _lowercase ) snake_case_ : Dict = False snake_case_ : Optional[int] = nn.Dropout(p=_lowercase ) snake_case_ : Any = TaConfig( vocab_size=_lowercase , d_model=_lowercase , num_heads=_lowercase , d_kv=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , feed_forward_proj=_lowercase , is_decoder=_lowercase , is_encoder_decoder=_lowercase , ) snake_case_ : Optional[Any] = nn.ModuleList() for lyr_num in range(_lowercase ): snake_case_ : Dict = TaBlock(_lowercase ) self.encoders.append(_lowercase ) snake_case_ : Tuple = TaLayerNorm(_lowercase ) snake_case_ : List[str] = nn.Dropout(p=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = self.token_embedder(_lowercase ) snake_case_ : Optional[Any] = encoder_input_tokens.shape[1] snake_case_ : str = torch.arange(_lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowercase ) snake_case_ : Optional[Any] = self.dropout_pre(_lowercase ) # inverted the attention mask snake_case_ : Optional[int] = encoder_input_tokens.size() snake_case_ : Optional[int] = self.get_extended_attention_mask(_lowercase , _lowercase ) for lyr in self.encoders: snake_case_ : Union[str, Any] = lyr(_lowercase , _lowercase )[0] snake_case_ : str = self.layer_norm(_lowercase ) return self.dropout_post(_lowercase ), encoder_inputs_mask
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , ): '''simple docstring''' snake_case_ : int = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } snake_case_ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case_ : Optional[Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) snake_case_ : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Optional[Any] = file_path.read_text(encoding="""utf-8""" ) else: snake_case_ : Dict = output_path.read_text(encoding="""utf-8""" ) snake_case_ : Any = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : int , ): '''simple docstring''' snake_case_ : int = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } snake_case_ : Tuple = input_paths[compression_format] if input_path is None: snake_case_ : str = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) snake_case_ : str = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None snake_case_ : List[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case_ : Optional[int] = file_path.read_text(encoding="""utf-8""" ) else: snake_case_ : str = output_path.read_text(encoding="""utf-8""" ) snake_case_ : Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): '''simple docstring''' import tarfile snake_case_ : Any = tmp_path / """data_dot_dot""" directory.mkdir() snake_case_ : Dict = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' import tarfile snake_case_ : List[str] = tmp_path / """data_sym_link""" directory.mkdir() snake_case_ : Optional[Any] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } snake_case_ : Dict = insecure_tar_files[insecure_tar_file] snake_case_ : str = tmp_path / """extracted""" TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 snake_case_ : Optional[Any] = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase : List[Any] = '''src/transformers''' __lowerCAmelCase : Dict = '''docs/source/en''' __lowerCAmelCase : Optional[Any] = '''.''' def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : int = f.readlines() # Find the start prompt. snake_case_ : int = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 snake_case_ : Union[str, Any] = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase : int = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __lowerCAmelCase : Any = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : int = direct_transformers_import(TRANSFORMERS_PATH) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __UpperCamelCase ) return [m.group(0 ) for m in matches] def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Dict = 2 if text == """✅""" or text == """❌""" else len(__UpperCamelCase ) snake_case_ : Tuple = (width - text_length) // 2 snake_case_ : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } snake_case_ : List[str] = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. snake_case_ : Dict = collections.defaultdict(__UpperCamelCase ) snake_case_ : List[Any] = collections.defaultdict(__UpperCamelCase ) snake_case_ : str = collections.defaultdict(__UpperCamelCase ) snake_case_ : str = collections.defaultdict(__UpperCamelCase ) snake_case_ : Dict = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): snake_case_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): snake_case_ : Dict = slow_tokenizers snake_case_ : Any = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): snake_case_ : Optional[Any] = fast_tokenizers snake_case_ : str = attr_name[:-1_3] elif _re_tf_models.match(__UpperCamelCase ) is not None: snake_case_ : List[Any] = tf_models snake_case_ : Tuple = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: snake_case_ : Dict = flax_models snake_case_ : Tuple = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: snake_case_ : List[Any] = pt_models snake_case_ : Any = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): snake_case_ : Any = True break # Try again after removing the last word in the name snake_case_ : Tuple = """""".join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! snake_case_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) snake_case_ : str = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). snake_case_ : str = [len(__UpperCamelCase ) + 2 for c in columns] snake_case_ : Dict = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se snake_case_ : List[Any] = """|""" + """|""".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for c, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" snake_case_ : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: snake_case_ : Union[str, Any] = model_name_to_prefix[name] snake_case_ : Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for l, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + "|\n" return table def __lowerCAmelCase ( __UpperCamelCase : Any=False ): '''simple docstring''' snake_case_ : Optional[int] = _find_text_in_file( filename=os.path.join(__UpperCamelCase , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) snake_case_ : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowerCAmelCase : Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __lowerCAmelCase : List[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase : Dict = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : Optional[Any] = new_key.replace(__UpperCamelCase , __UpperCamelCase ) print(F'{key} -> {new_key}' ) snake_case_ : Tuple = s_dict.pop(__UpperCamelCase ) return s_dict def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : str = emb.weight.shape snake_case_ : List[str] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Optional[Any] = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ : Optional[int] = os.path.basename(__UpperCamelCase ) snake_case_ : List[str] = url.split("""/""" )[-2] snake_case_ : Tuple = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not os.path.isfile(__UpperCamelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(__UpperCamelCase ): snake_case_ : Optional[Any] = open(__UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(__UpperCamelCase ) as source, open(__UpperCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=8_0 , unit="""iB""" , unit_scale=__UpperCamelCase , unit_divisor=1_0_2_4 ) as loop: while True: snake_case_ : Optional[int] = source.read(8_1_9_2 ) if not buffer: break output.write(__UpperCamelCase ) loop.update(len(__UpperCamelCase ) ) snake_case_ : List[Any] = open(__UpperCamelCase , """rb""" ).read() if hashlib.shaaaa(__UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : str ): '''simple docstring''' if ".pt" not in checkpoint_path: snake_case_ : int = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Optional[int] = original_checkpoint["""dims"""] snake_case_ : int = original_checkpoint["""model_state_dict"""] snake_case_ : List[str] = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(__UpperCamelCase ) rename_keys(__UpperCamelCase ) snake_case_ : Union[str, Any] = True snake_case_ : int = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case_ : Dict = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=__UpperCamelCase , decoder_ffn_dim=__UpperCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case_ : Optional[Any] = WhisperForConditionalGeneration(__UpperCamelCase ) snake_case_ : Dict = model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}' ) if tie_embeds: snake_case_ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCAmelCase : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_lowercase , dtype=jnp.bfloataa ) snake_case_ : Tuple = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) snake_case_ : Tuple = controlnet_params snake_case_ : int = """bird""" snake_case_ : Any = jax.device_count() snake_case_ : List[str] = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) snake_case_ : Any = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case_ : List[Any] = jax.random.PRNGKey(0 ) snake_case_ : int = jax.random.split(_lowercase , jax.device_count() ) snake_case_ : List[str] = replicate(_lowercase ) snake_case_ : Optional[int] = shard(_lowercase ) snake_case_ : Optional[Any] = shard(_lowercase ) snake_case_ : str = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=5_0 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) snake_case_ : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : Dict = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] snake_case_ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : Dict = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_lowercase , dtype=jnp.bfloataa ) snake_case_ : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_lowercase , from_pt=_lowercase , dtype=jnp.bfloataa ) snake_case_ : str = controlnet_params snake_case_ : List[str] = """Chef in the kitchen""" snake_case_ : int = jax.device_count() snake_case_ : int = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) snake_case_ : Tuple = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case_ : Tuple = jax.random.PRNGKey(0 ) snake_case_ : Optional[Any] = jax.random.split(_lowercase , jax.device_count() ) snake_case_ : Dict = replicate(_lowercase ) snake_case_ : Union[str, Any] = shard(_lowercase ) snake_case_ : Optional[int] = shard(_lowercase ) snake_case_ : Dict = pipe( prompt_ids=_lowercase , image=_lowercase , params=_lowercase , prng_seed=_lowercase , num_inference_steps=5_0 , jit=_lowercase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) snake_case_ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : Dict = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] snake_case_ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : Tuple = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=True , _lowercase=None , _lowercase=True , ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : str = num_channels snake_case_ : Dict = image_size snake_case_ : Dict = min_resolution snake_case_ : str = max_resolution snake_case_ : Dict = do_resize snake_case_ : List[str] = size snake_case_ : Union[str, Any] = apply_ocr def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """apply_ocr""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched snake_case_ : Union[str, Any] = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : Union[str, Any] = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input snake_case_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : Dict = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : Dict = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case_ : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : List[str] = image_processing(_lowercase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : int = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False snake_case_ : int = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) snake_case_ : int = image_processing(_lowercase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) snake_case_ : int = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case_ : str = model(_lowercase )["""last_hidden_state"""] snake_case_ : int = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. snake_case_ : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[str] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(_lowercase ): snake_case_ : Dict = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' with self.assertRaises(_lowercase ): snake_case_ : str = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ : List[str] = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' import PIL.Image snake_case_ : int = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_lowercase ) as mock_cast_to_python_objects: snake_case_ : Any = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) snake_case_ : List[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _lowercase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[str] = pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) snake_case_ : Optional[Any] = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = pa.BufferOutputStream() snake_case_ : List[Any] = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : Optional[Any] = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) snake_case_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ : int = pa.BufferReader(output.getvalue() ) snake_case_ : Optional[int] = pa.ipc.open_stream(__UpperCamelCase ) snake_case_ : pa.Table = f.read_all() snake_case_ : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) snake_case_ : List[Any] = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) snake_case_ : Dict = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt="""split_name""" , check_duplicates=__UpperCamelCase , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) snake_case_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : int = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) snake_case_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : Tuple = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() snake_case_ : str = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) snake_case_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : List[str] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = pa.BufferOutputStream() snake_case_ : Optional[int] = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) snake_case_ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ : List[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCAmelCase ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : str = {"""col_1""": pa.string(), """col_2""": pa.intaa()} snake_case_ : Any = os.path.join(__UpperCamelCase , """test.arrow""" ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) snake_case_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Dict ): '''simple docstring''' if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: snake_case_ : Tuple = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : str = pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ : Any = copy.deepcopy(__UpperCamelCase ) snake_case_ : List[str] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : List[str] = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = """mock://dataset-train.arrow""" with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ : Optional[int] = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): '''simple docstring''' import PIL.Image snake_case_ : int = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format="""png""" ) snake_case_ : List[str] = pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({"""image""": Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({"""image""": image_path} ) writer.finalize() snake_case_ : Tuple = pa.BufferReader(output.getvalue() ) snake_case_ : pa.Table = pq.read_table(__UpperCamelCase ) snake_case_ : List[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __UpperCamelCase ) with open(__UpperCamelCase , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__UpperCamelCase )] ) snake_case_ : Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCAmelCase ( __UpperCamelCase : int = 8 ): '''simple docstring''' snake_case_ : int = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' i -= len(__UpperCamelCase ) snake_case_ : Union[str, Any] = i // 3 snake_case_ : Optional[int] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case_ : str = ( chars_incl + random(__UpperCamelCase , quotient + remainder ) + random(__UpperCamelCase , __UpperCamelCase ) + random(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ : str = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : str ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ): '''simple docstring''' pass # Put your code here... def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int = 8 ): '''simple docstring''' if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case_ : Tuple = any(char in ascii_uppercase for char in password ) snake_case_ : str = any(char in ascii_lowercase for char in password ) snake_case_ : int = any(char in digits for char in password ) snake_case_ : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = int(input("""Please indicate the max length of your password: """ ).strip() ) snake_case_ : Tuple = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__UpperCamelCase ) ) print( """Alternative Password generated:""" , alternative_password_generator(__UpperCamelCase , __UpperCamelCase ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" _lowerCamelCase = 10_000 _lowerCamelCase = None _lowerCamelCase = None class _lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCamelCase = ParquetConfig def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case_ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowercase , (str, list, tuple) ): snake_case_ : Union[str, Any] = data_files if isinstance(_lowercase , _lowercase ): snake_case_ : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ : str = [dl_manager.iter_files(_lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] snake_case_ : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase ): snake_case_ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ : List[str] = [dl_manager.iter_files(_lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowercase ): with open(_lowercase , """rb""" ) as f: snake_case_ : List[str] = datasets.Features.from_arrow_schema(pq.read_schema(_lowercase ) ) break splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self , _lowercase ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ : Dict = table_cast(_lowercase , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowercase ) ): with open(_lowercase , """rb""" ) as f: snake_case_ : int = pq.ParquetFile(_lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ : Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(_lowercase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowercase )}: {e}' ) raise
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ ( _lowercase ) -> List[str]: '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" __lowerCAmelCase : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = [False] * len(__UpperCamelCase ) snake_case_ : str = [s] snake_case_ : Tuple = True while queue: snake_case_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) snake_case_ : Dict = True snake_case_ : Tuple = u return visited[t] def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (len(__UpperCamelCase )) snake_case_ : Any = 0 snake_case_ : Optional[Any] = [] snake_case_ : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ : Dict = float("""Inf""" ) snake_case_ : List[Any] = sink while s != source: # Find the minimum value in select path snake_case_ : Optional[int] = min(__UpperCamelCase , graph[parent[s]][s] ) snake_case_ : Dict = parent[s] max_flow += path_flow snake_case_ : Tuple = sink while v != source: snake_case_ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ : Optional[int] = parent[v] for i in range(len(__UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = SpeechTaTokenizer _lowerCamelCase = False _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : Tuple = SpeechTaTokenizer(_lowercase ) snake_case_ : List[str] = AddedToken("""<mask>""" , lstrip=_lowercase , rstrip=_lowercase ) snake_case_ : int = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = """this is a test""" snake_case_ : Dict = """this is a test""" return input_text, output_text def UpperCAmelCase__ ( self , _lowercase , _lowercase=False , _lowercase=2_0 , _lowercase=5 ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Optional[Any] = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) return text, ids def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = """<pad>""" snake_case_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(_lowercase ) , 8_1 ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = tokenizer.vocab_size snake_case_ : str = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ : Dict = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ : Optional[Any] = tokenizer.add_tokens(_lowercase ) snake_case_ : int = tokenizer.vocab_size snake_case_ : int = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size + len(_lowercase ) ) snake_case_ : Optional[int] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ : Optional[Any] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ : str = tokenizer.add_special_tokens(_lowercase ) snake_case_ : List[Any] = tokenizer.vocab_size snake_case_ : Tuple = len(_lowercase ) self.assertNotEqual(_lowercase , 0 ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , len(_lowercase ) ) self.assertEqual(_lowercase , all_size_a + len(_lowercase ) ) snake_case_ : List[str] = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=_lowercase ) self.assertGreaterEqual(len(_lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.get_tokenizer() snake_case_ : Any = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(_lowercase , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) snake_case_ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) # fmt: off self.assertListEqual(_lowercase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ : int = { """input_ids""": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=_lowercase , )
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 @register_to_config def __init__( self , _lowercase=2_0_0_0 , _lowercase=0.1 , _lowercase=2_0 , _lowercase=1E-3 ) -> str: '''simple docstring''' snake_case_ : str = None snake_case_ : Union[str, Any] = None snake_case_ : Optional[int] = None def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=None ) -> int: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ : Optional[Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ : Dict = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ : str = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ : List[str] = std.unsqueeze(-1 ) snake_case_ : str = -score / std # compute snake_case_ : Any = -1.0 / len(self.timesteps ) snake_case_ : List[str] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ : Union[str, Any] = beta_t.unsqueeze(-1 ) snake_case_ : List[str] = -0.5 * beta_t * x snake_case_ : Dict = torch.sqrt(_lowercase ) snake_case_ : Any = drift - diffusion**2 * score snake_case_ : str = x + drift * dt # add noise snake_case_ : Dict = randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype ) snake_case_ : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = feature_size snake_case_ : Optional[int] = sampling_rate snake_case_ : Dict = padding_value snake_case_ : Any = kwargs.pop("""padding_side""" , """right""" ) snake_case_ : Dict = kwargs.pop("""return_attention_mask""" , _lowercase ) super().__init__(**_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = True , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(_lowercase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case_ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] snake_case_ : Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_lowercase ) == 0: if return_attention_mask: snake_case_ : Dict = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case_ : Union[str, Any] = required_input[0] if isinstance(_lowercase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_lowercase ): snake_case_ : Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(_lowercase ): snake_case_ : Optional[Any] = """tf""" elif is_torch_tensor(_lowercase ): snake_case_ : Union[str, Any] = """pt""" elif isinstance(_lowercase , (int, float, list, tuple, np.ndarray) ): snake_case_ : int = """np""" else: raise ValueError( f'type of {first_element} unknown: {type(_lowercase )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case_ : Dict = to_numpy(_lowercase ) else: snake_case_ : Optional[int] = [to_numpy(_lowercase ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case_ : List[str] = self._get_padding_strategies(padding=_lowercase , max_length=_lowercase ) snake_case_ : List[Any] = processed_features[self.model_input_names[0]] snake_case_ : str = len(_lowercase ) if not all(len(_lowercase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) snake_case_ : Any = [] for i in range(_lowercase ): snake_case_ : List[str] = {k: v[i] for k, v in processed_features.items()} # truncation snake_case_ : Any = self._truncate( _lowercase , max_length=_lowercase , pad_to_multiple_of=_lowercase , truncation=_lowercase , ) truncated_inputs.append(_lowercase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case_ : Optional[int] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case_ : List[str] = PaddingStrategy.MAX_LENGTH snake_case_ : List[Any] = {} for i in range(_lowercase ): # padding snake_case_ : str = self._pad( truncated_inputs[i] , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): snake_case_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(_lowercase ) return BatchFeature(_lowercase , tensor_type=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = PaddingStrategy.DO_NOT_PAD , _lowercase = None , _lowercase = None , ) -> dict: '''simple docstring''' snake_case_ : List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case_ : Dict = len(_lowercase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowercase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case_ : Any = np.ones(len(_lowercase ) , dtype=np.intaa ) if needs_to_be_padded: snake_case_ : Any = max_length - len(_lowercase ) if self.padding_side == "right": if return_attention_mask: snake_case_ : Any = np.pad( processed_features["""attention_mask"""] , (0, difference) ) snake_case_ : List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case_ : Dict = np.pad( _lowercase , _lowercase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case_ : Optional[Any] = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) snake_case_ : Optional[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case_ : Optional[Any] = np.pad( _lowercase , _lowercase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ) -> str: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) snake_case_ : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case_ : List[str] = len(_lowercase ) > max_length if needs_to_be_truncated: snake_case_ : Tuple = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case_ : Any = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self , _lowercase=False , _lowercase=None ) -> Tuple: '''simple docstring''' if padding is not False: if padding is True: snake_case_ : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_lowercase , _lowercase ): snake_case_ : Union[str, Any] = PaddingStrategy(_lowercase ) elif isinstance(_lowercase , _lowercase ): snake_case_ : Dict = padding else: snake_case_ : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' def decorator(__UpperCamelCase : str ): snake_case_ : Dict = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += [key] setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator def __lowerCAmelCase ( *__UpperCamelCase : List[str] ): '''simple docstring''' def decorator(__UpperCamelCase : Optional[int] ): snake_case_ : Optional[int] = getattr(__UpperCamelCase , """handle_key""" , [] ) handle += keys setattr(__UpperCamelCase , """handle_key""" , __UpperCamelCase ) return func return decorator class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __new__( cls , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Any = super().__new__(cls , _lowercase , _lowercase , _lowercase ) if not hasattr(_lowercase , """key_handler""" ): setattr(_lowercase , """key_handler""" , {} ) setattr(_lowercase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ : List[str] = getattr(_lowercase , """handle_key""" , [] ) for key in handled_keys: snake_case_ : List[str] = value return new_cls @staticmethod def UpperCAmelCase__ ( cls ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = get_character() if char != KEYMAP["undefined"]: snake_case_ : int = ord(_lowercase ) snake_case_ : Tuple = cls.key_handler.get(_lowercase ) if handler: snake_case_ : Union[str, Any] = char return handler(cls ) else: return None def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __lowerCAmelCase : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __lowerCAmelCase : Dict = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __lowerCAmelCase : int = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_lowercase , _lowercase , sample_weight=_lowercase ) ), }
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : str = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''roformer''' def __init__( self , _lowercase=5_0_0_0_0 , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_5_3_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=0 , _lowercase=False , _lowercase=True , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = vocab_size snake_case_ : str = hidden_size if embedding_size is None else embedding_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : str = hidden_act snake_case_ : Any = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : str = rotary_value snake_case_ : List[Any] = use_cache class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} snake_case_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[Any] = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["""stage2""", """stage3""", """stage4"""] , ) snake_case_ : Optional[Any] = DetaConfig( backbone_config=__UpperCamelCase , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=__UpperCamelCase , with_box_refine=__UpperCamelCase , two_stage=__UpperCamelCase , ) # set labels snake_case_ : str = """huggingface/label-files""" if "o365" in model_name: snake_case_ : List[str] = 3_6_6 snake_case_ : Dict = """object365-id2label.json""" else: snake_case_ : Optional[Any] = 9_1 snake_case_ : int = """coco-detection-id2label.json""" snake_case_ : Optional[Any] = num_labels snake_case_ : int = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : Optional[int] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Tuple = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[int] = dct.pop(__UpperCamelCase ) snake_case_ : Tuple = val def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ : Optional[int] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) snake_case_ : Optional[int] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Union[str, Any] = in_proj_weight[:dim, :] snake_case_ : List[str] = in_proj_bias[: dim] snake_case_ : str = in_proj_weight[ dim : dim * 2, : ] snake_case_ : Any = in_proj_bias[ dim : dim * 2 ] snake_case_ : Any = in_proj_weight[ -dim :, : ] snake_case_ : str = in_proj_bias[-dim :] # fmt: on def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case_ : List[str] = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : str = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Optional[Any] = in_proj_weight[:hidden_size, :] snake_case_ : Union[str, Any] = in_proj_bias[:hidden_size] snake_case_ : Tuple = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case_ : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] snake_case_ : Union[str, Any] = in_proj_weight[-hidden_size:, :] snake_case_ : List[Any] = in_proj_bias[-hidden_size:] def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Union[str, Any] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = get_deta_config(__UpperCamelCase ) # load original state dict if model_name == "deta-swin-large": snake_case_ : Optional[Any] = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": snake_case_ : Any = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F'Model name {model_name} not supported' ) snake_case_ : int = torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__UpperCamelCase , param.shape ) # rename keys snake_case_ : Union[str, Any] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase , __UpperCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case_ : Optional[int] = state_dict.pop(__UpperCamelCase ) snake_case_ : Tuple = val if "input_proj" in key: snake_case_ : Dict = state_dict.pop(__UpperCamelCase ) snake_case_ : List[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case_ : Optional[Any] = state_dict.pop(__UpperCamelCase ) snake_case_ : Union[str, Any] = val # finally, create HuggingFace model and load state dict snake_case_ : List[str] = DetaForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() snake_case_ : int = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(__UpperCamelCase ) # load image processor snake_case_ : Any = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image snake_case_ : Dict = prepare_img() snake_case_ : str = processor(images=__UpperCamelCase , return_tensors="""pt""" ) snake_case_ : Optional[Any] = encoding["""pixel_values"""] snake_case_ : int = model(pixel_values.to(__UpperCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case_ : Any = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) snake_case_ : Optional[int] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": snake_case_ : Dict = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) snake_case_ : Optional[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__UpperCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__UpperCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' snake_case_ : Optional[int] = 2**power snake_case_ : Dict = 0 while n: snake_case_ : Optional[Any] = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) _lowerCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = self.task_name.lower() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''train''' _lowerCamelCase = '''dev''' _lowerCamelCase = '''test''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = None , ) -> Optional[Any]: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowercase , ) snake_case_ : List[Any] = args snake_case_ : List[str] = glue_processors[args.task_name]() snake_case_ : Union[str, Any] = glue_output_modes[args.task_name] if isinstance(_lowercase , _lowercase ): try: snake_case_ : Optional[Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file snake_case_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) snake_case_ : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case_ : List[Any] = label_list[2], label_list[1] snake_case_ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Optional[Any] = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: snake_case_ : str = time.time() snake_case_ : Tuple = torch.load(_lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: snake_case_ : Any = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case_ : Optional[Any] = self.processor.get_test_examples(args.data_dir ) else: snake_case_ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case_ : str = examples[:limit_length] snake_case_ : Tuple = glue_convert_examples_to_features( _lowercase , _lowercase , max_length=args.max_seq_length , label_list=_lowercase , output_mode=self.output_mode , ) snake_case_ : List[str] = time.time() torch.save(self.features , _lowercase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> int: '''simple docstring''' return len(self.features ) def __getitem__( self , _lowercase ) -> InputFeatures: '''simple docstring''' return self.features[i] def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.label_list
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' snake_case_ : int = -1 snake_case_ : Tuple = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case_ : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case_ : Dict = n - a - b if c * c == (a * a + b * b): snake_case_ : Tuple = a * b * c if candidate >= product: snake_case_ : Union[str, Any] = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : str = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = 1 / 2_5_5 , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , ) -> None: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : int = size if size is not None else {"""shortest_edge""": 3_8_4} snake_case_ : Optional[Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) snake_case_ : Any = do_resize snake_case_ : int = size # Default value set here for backwards compatibility where the value in config is None snake_case_ : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 snake_case_ : Optional[Any] = resample snake_case_ : List[str] = do_rescale snake_case_ : List[Any] = rescale_factor snake_case_ : List[Any] = do_normalize snake_case_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: '''simple docstring''' snake_case_ : Any = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) snake_case_ : List[Any] = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case_ : Any = int(shortest_edge / crop_pct ) snake_case_ : Optional[int] = get_resize_output_image_size(_lowercase , size=_lowercase , default_to_square=_lowercase ) snake_case_ : Union[str, Any] = resize(image=_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowercase , size=(shortest_edge, shortest_edge) , data_format=_lowercase , **_lowercase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowercase , size=(shortest_edge, shortest_edge) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: '''simple docstring''' snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : List[str] = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : str = resample if resample is not None else self.resample snake_case_ : int = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[int] = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : int = get_size_dict(_lowercase , default_to_square=_lowercase ) snake_case_ : str = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: snake_case_ : Tuple = [self.resize(image=_lowercase , size=_lowercase , crop_pct=_lowercase , resample=_lowercase ) for image in images] if do_rescale: snake_case_ : int = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: snake_case_ : int = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] snake_case_ : List[str] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] snake_case_ : int = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''segformer''' def __init__( self , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[3_2, 6_4, 1_6_0, 2_5_6] , _lowercase=[7, 3, 3, 3] , _lowercase=[4, 2, 2, 2] , _lowercase=[1, 2, 5, 8] , _lowercase=[4, 4, 4, 4] , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=0.1 , _lowercase=1E-6 , _lowercase=2_5_6 , _lowercase=2_5_5 , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , _lowercase , ) snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[int] = num_encoder_blocks snake_case_ : Union[str, Any] = depths snake_case_ : Optional[int] = sr_ratios snake_case_ : Dict = hidden_sizes snake_case_ : str = patch_sizes snake_case_ : Optional[int] = strides snake_case_ : Union[str, Any] = mlp_ratios snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Union[str, Any] = classifier_dropout_prob snake_case_ : str = initializer_range snake_case_ : Optional[int] = drop_path_rate snake_case_ : Tuple = layer_norm_eps snake_case_ : List[str] = decoder_hidden_size snake_case_ : Optional[Any] = kwargs.get("""reshape_last_stage""" , _lowercase ) snake_case_ : List[str] = semantic_loss_ignore_index class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 1_2
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''ibert''' def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=False , _lowercase="none" , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : Dict = vocab_size snake_case_ : Tuple = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : Tuple = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : List[Any] = type_vocab_size snake_case_ : str = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : str = position_embedding_type snake_case_ : Union[str, Any] = quant_mode snake_case_ : List[str] = force_dequant class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=2 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=False , _lowercase=True , _lowercase="None" , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Tuple = batch_size snake_case_ : Tuple = seq_length snake_case_ : List[str] = is_training snake_case_ : Tuple = use_input_mask snake_case_ : Dict = use_token_type_ids snake_case_ : str = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : Any = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_labels snake_case_ : Tuple = num_choices snake_case_ : Dict = relative_attention snake_case_ : List[Any] = position_biased_input snake_case_ : Tuple = pos_att_type snake_case_ : Dict = scope def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : int = None if self.use_input_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[Any] = None if self.use_token_type_ids: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = None snake_case_ : int = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : int = TFDebertaVaModel(config=_lowercase ) snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Any = [input_ids, input_mask] snake_case_ : str = model(_lowercase ) snake_case_ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : int = TFDebertaVaForMaskedLM(config=_lowercase ) snake_case_ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Any = self.num_labels snake_case_ : Any = TFDebertaVaForSequenceClassification(config=_lowercase ) snake_case_ : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case_ : int = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : int = self.num_labels snake_case_ : Union[str, Any] = TFDebertaVaForTokenClassification(config=_lowercase ) snake_case_ : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case_ : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = TFDebertaVaForQuestionAnswering(config=_lowercase ) snake_case_ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() ( snake_case_ ) : str = config_and_inputs snake_case_ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = TFDebertaVaModelTester(self ) snake_case_ : int = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(_lowercase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : int = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) snake_case_ : Any = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) snake_case_ : List[str] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Optional[int] = model(_lowercase , attention_mask=_lowercase )[0] snake_case_ : Any = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 )
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0