code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = tempfile.mkdtemp() # fmt: off snake_case_ : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case_ : Tuple = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case_ : List[str] = {"""unk_token""": """<unk>"""} snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) snake_case_ : Optional[Any] = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ : Tuple = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Any: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case_ : Optional[int] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_rust_tokenizer() snake_case_ : List[Any] = self.get_image_processor() snake_case_ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : List[str] = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) snake_case_ : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : str = self.prepare_image_inputs() snake_case_ : Union[str, Any] = image_processor(_lowercase , return_tensors="""np""" ) snake_case_ : Any = processor(images=_lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : int = """lower newer""" snake_case_ : List[str] = processor(text=_lowercase ) snake_case_ : Optional[int] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = self.get_image_processor() snake_case_ : str = self.get_tokenizer() snake_case_ : Union[str, Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : str = """lower newer""" snake_case_ : Tuple = self.prepare_image_inputs() snake_case_ : Dict = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.batch_decode(_lowercase ) snake_case_ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case_ : Union[str, Any] = """lower newer""" snake_case_ : Optional[Any] = self.prepare_image_inputs() snake_case_ : Optional[Any] = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) __lowerCAmelCase : Optional[int] = tf.data.AUTOTUNE def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=__UpperCamelCase , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=__UpperCamelCase , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=__UpperCamelCase , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=__UpperCamelCase , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=__UpperCamelCase , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=__UpperCamelCase , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=__UpperCamelCase , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=__UpperCamelCase , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=__UpperCamelCase , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=__UpperCamelCase , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=__UpperCamelCase , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=__UpperCamelCase , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=__UpperCamelCase , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=__UpperCamelCase , help="""Model ID to upload to on the Hugging Face Hub.""" ) snake_case_ : List[Any] = parser.parse_args() return args def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' try: if args.tpu_name: snake_case_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__UpperCamelCase ) tf.tpu.experimental.initialize_tpu_system(__UpperCamelCase ) return tpu def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[int] = 0 for file in file_list: snake_case_ : List[str] = file.split("""/""" )[-1] snake_case_ : Tuple = re.search(r"""-\d+-(\d+)\.tfrecord""" , __UpperCamelCase ).group(1 ) snake_case_ : int = int(__UpperCamelCase ) num_samples += sample_count return num_samples def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=None ): '''simple docstring''' snake_case_ : Tuple = count_samples(__UpperCamelCase ) snake_case_ : List[Any] = tf.data.Dataset.from_tensor_slices(__UpperCamelCase ) if shuffle: snake_case_ : Union[str, Any] = dataset.shuffle(len(__UpperCamelCase ) ) snake_case_ : Dict = tf.data.TFRecordDataset(__UpperCamelCase , num_parallel_reads=__UpperCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ : List[str] = dataset.apply(tf.data.experimental.assert_cardinality(__UpperCamelCase ) ) snake_case_ : int = dataset.map(__UpperCamelCase , num_parallel_calls=__UpperCamelCase ) if shuffle: assert shuffle_buffer_size is not None snake_case_ : str = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ : Optional[int] = dataset.batch(__UpperCamelCase , drop_remainder=__UpperCamelCase ) snake_case_ : Union[str, Any] = dataset.map(__UpperCamelCase , num_parallel_calls=__UpperCamelCase ) snake_case_ : Dict = dataset.prefetch(__UpperCamelCase ) return dataset def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' if not args.no_tpu: snake_case_ : List[Any] = initialize_tpu(__UpperCamelCase ) snake_case_ : Dict = tf.distribute.TPUStrategy(__UpperCamelCase ) else: snake_case_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ : Optional[int] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ : int = tokenizer.vocab_size snake_case_ : List[str] = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) snake_case_ : Tuple = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) snake_case_ : Optional[int] = count_samples(__UpperCamelCase ) snake_case_ : Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ : Dict = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ : List[str] = TFAutoModelForMaskedLM.from_config(__UpperCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ : Union[str, Any] = create_optimizer( num_train_steps=__UpperCamelCase , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__UpperCamelCase , metrics=["""accuracy"""] ) def decode_fn(__UpperCamelCase : Union[str, Any] ): snake_case_ : Tuple = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__UpperCamelCase , __UpperCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ : int = DataCollatorForLanguageModeling( tokenizer=__UpperCamelCase , mlm_probability=args.mlm_probability , mlm=__UpperCamelCase , return_tensors="""tf""" ) def mask_with_collator(__UpperCamelCase : Tuple ): # TF really needs an isin() function snake_case_ : Optional[Any] = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) snake_case_ : int = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(__UpperCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__UpperCamelCase , ) return batch snake_case_ : Optional[int] = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ : Any = prepare_dataset( __UpperCamelCase , decode_fn=__UpperCamelCase , mask_fn=__UpperCamelCase , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ : List[Any] = prepare_dataset( __UpperCamelCase , decode_fn=__UpperCamelCase , mask_fn=__UpperCamelCase , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , ) snake_case_ : List[str] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__UpperCamelCase ) ) model.fit( __UpperCamelCase , validation_data=__UpperCamelCase , epochs=args.num_epochs , callbacks=__UpperCamelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : int = parse_args() main(args)
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=2 , _lowercase=True , _lowercase=False , _lowercase=1_0 , _lowercase=3 , _lowercase=3_2 * 8 , _lowercase=3_2 * 8 , _lowercase=4 , _lowercase=6_4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = is_training snake_case_ : int = use_auxiliary_loss snake_case_ : List[str] = num_queries snake_case_ : Tuple = num_channels snake_case_ : Any = min_size snake_case_ : List[Any] = max_size snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = hidden_dim snake_case_ : Any = hidden_dim def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) snake_case_ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) snake_case_ : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() snake_case_ : Any = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() snake_case_ : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case_ : List[Any] = self.num_queries snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Union[str, Any] = [1, 1, 1, 1] snake_case_ : str = self.num_channels snake_case_ : Any = 6_4 snake_case_ : int = 1_2_8 snake_case_ : Optional[Any] = self.hidden_dim snake_case_ : Any = self.hidden_dim snake_case_ : str = self.hidden_dim return config def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ : Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = output.encoder_hidden_states snake_case_ : Dict = output.pixel_decoder_hidden_states snake_case_ : List[str] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_layers ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase=False ) -> int: '''simple docstring''' with torch.no_grad(): snake_case_ : Dict = MaskaFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case_ : Optional[int] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) snake_case_ : Optional[Any] = model(_lowercase , output_hidden_states=_lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : List[str] = MaskaFormerForUniversalSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ : List[str] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) snake_case_ : List[Any] = model(_lowercase ) comm_check_on_output(_lowercase ) snake_case_ : Optional[Any] = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(_lowercase ) snake_case_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : str = [*signature.parameters.keys()] snake_case_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case_ : Tuple = MaskaFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = (self.model_tester.min_size,) * 2 snake_case_ : Union[str, Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowercase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=_lowercase ), """class_labels""": torch.zeros(2 , 1_0 , device=_lowercase ).long(), } snake_case_ : int = self.model_tester.get_config() snake_case_ : int = MaskaFormerForUniversalSegmentation(_lowercase ).to(_lowercase ) snake_case_ : List[str] = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : str = model_class(_lowercase ).to(_lowercase ) snake_case_ : Optional[int] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if not self.model_tester.is_training: return snake_case_ : int = self.all_model_classes[1] snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() snake_case_ : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() snake_case_ : Optional[Any] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.all_model_classes[1] snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() snake_case_ : str = True snake_case_ : List[str] = True snake_case_ : str = model_class(_lowercase ).to(_lowercase ) model.train() snake_case_ : Dict = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) snake_case_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case_ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : List[str] = 1e-4 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowercase ) snake_case_ : List[str] = self.default_image_processor snake_case_ : List[str] = prepare_img() snake_case_ : Any = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) snake_case_ : List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_lowercase ) snake_case_ : Optional[int] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) snake_case_ : List[str] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) snake_case_ : List[str] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() snake_case_ : str = self.default_image_processor snake_case_ : Any = prepare_img() snake_case_ : str = image_processor(_lowercase , return_tensors="""pt""" ).to(_lowercase ) snake_case_ : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case_ : List[str] = model(**_lowercase ) # masks_queries_logits snake_case_ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case_ : Union[str, Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case_ : int = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits snake_case_ : Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case_ : int = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() snake_case_ : Union[str, Any] = self.default_image_processor snake_case_ : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) snake_case_ : List[Any] = inputs["""pixel_values"""].to(_lowercase ) snake_case_ : Optional[int] = [el.to(_lowercase ) for el in inputs["""mask_labels"""]] snake_case_ : Any = [el.to(_lowercase ) for el in inputs["""class_labels"""]] with torch.no_grad(): snake_case_ : Optional[Any] = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''autoformer''' _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _lowercase = None , _lowercase = None , _lowercase = "student_t" , _lowercase = "nll" , _lowercase = 1 , _lowercase = [1, 2, 3, 4, 5, 6, 7] , _lowercase = True , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = 6_4 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = 2 , _lowercase = 3_2 , _lowercase = 3_2 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 1_0_0 , _lowercase = 0.02 , _lowercase = True , _lowercase=True , _lowercase = 1_0 , _lowercase = 2_5 , _lowercase = 3 , **_lowercase , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = prediction_length snake_case_ : Tuple = context_length if context_length is not None else prediction_length snake_case_ : Optional[int] = distribution_output snake_case_ : List[str] = loss snake_case_ : Dict = input_size snake_case_ : str = num_time_features snake_case_ : Union[str, Any] = lags_sequence snake_case_ : Union[str, Any] = scaling snake_case_ : str = num_dynamic_real_features snake_case_ : List[Any] = num_static_real_features snake_case_ : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Optional[Any] = cardinality else: snake_case_ : Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Optional[int] = embedding_dimension else: snake_case_ : str = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ : str = num_parallel_samples # Transformer architecture configuration snake_case_ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ : Any = d_model snake_case_ : Optional[Any] = encoder_attention_heads snake_case_ : Optional[int] = decoder_attention_heads snake_case_ : List[Any] = encoder_ffn_dim snake_case_ : Optional[int] = decoder_ffn_dim snake_case_ : Any = encoder_layers snake_case_ : Any = decoder_layers snake_case_ : Union[str, Any] = dropout snake_case_ : List[Any] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : str = encoder_layerdrop snake_case_ : Any = decoder_layerdrop snake_case_ : Tuple = activation_function snake_case_ : Optional[Any] = init_std snake_case_ : Optional[int] = use_cache # Autoformer snake_case_ : List[Any] = label_length snake_case_ : Union[str, Any] = moving_average snake_case_ : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int=True , __UpperCamelCase : Union[str, Any]="pt" ): '''simple docstring''' snake_case_ : Union[str, Any] = {"""add_prefix_space""": True} if isinstance(__UpperCamelCase , __UpperCamelCase ) and not line.startswith(""" """ ) else {} snake_case_ : Any = padding_side return tokenizer( [line] , max_length=__UpperCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Optional[int]=None , ): '''simple docstring''' snake_case_ : List[Any] = input_ids.ne(__UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase="train" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="" , ) -> Dict: '''simple docstring''' super().__init__() snake_case_ : List[str] = Path(_lowercase ).joinpath(type_path + """.source""" ) snake_case_ : Dict = Path(_lowercase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : str = max_source_length snake_case_ : List[Any] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' snake_case_ : List[Any] = tokenizer snake_case_ : Dict = prefix if n_obs is not None: snake_case_ : Dict = self.src_lens[:n_obs] snake_case_ : List[Any] = src_lang snake_case_ : Optional[int] = tgt_lang def __len__( self ) -> Any: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _lowercase ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case_ : Optional[Any] = index + 1 # linecache starts at 1 snake_case_ : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip("""\n""" ) snake_case_ : Union[str, Any] = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) snake_case_ : Dict = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer snake_case_ : str = encode_line(_lowercase , _lowercase , self.max_source_length , """right""" ) snake_case_ : Dict = encode_line(_lowercase , _lowercase , self.max_target_length , """right""" ) snake_case_ : Optional[int] = source_inputs["""input_ids"""].squeeze() snake_case_ : Optional[Any] = target_inputs["""input_ids"""].squeeze() snake_case_ : Optional[int] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( _lowercase ) -> List[str]: '''simple docstring''' return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def UpperCAmelCase__ ( self , _lowercase ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case_ : List[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Optional[Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) snake_case_ : Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) snake_case_ : Union[str, Any] = trim_batch(_lowercase , _lowercase ) snake_case_ : Dict = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) snake_case_ : Union[str, Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __lowerCAmelCase : List[Any] = getLogger(__name__) def __lowerCAmelCase ( __UpperCamelCase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Any = get_git_info() save_json(__UpperCamelCase , os.path.join(__UpperCamelCase , """git_log.json""" ) ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any]=4 , **__UpperCamelCase : Optional[Any] ): '''simple docstring''' with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' with open(__UpperCamelCase ) as f: return json.load(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = git.Repo(search_parent_directories=__UpperCamelCase ) snake_case_ : Dict = { """repo_id""": str(__UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( __UpperCamelCase : Callable , __UpperCamelCase : Iterable ): '''simple docstring''' return list(map(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(__UpperCamelCase , """wb""" ) as f: return pickle.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' def remove_articles(__UpperCamelCase : List[str] ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Optional[int] ): snake_case_ : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[int] = normalize_answer(__UpperCamelCase ).split() snake_case_ : Optional[int] = normalize_answer(__UpperCamelCase ).split() snake_case_ : int = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase ) snake_case_ : str = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(__UpperCamelCase ) snake_case_ : Tuple = 1.0 * num_same / len(__UpperCamelCase ) snake_case_ : Tuple = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ): '''simple docstring''' assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : Optional[Any] = 0 for hypo, pred in zip(__UpperCamelCase , __UpperCamelCase ): em += exact_match_score(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: em /= len(__UpperCamelCase ) return {"em": em} def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not hasattr(__UpperCamelCase , __UpperCamelCase ) and not hasattr(__UpperCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) continue snake_case_ : int = p if hasattr(__UpperCamelCase , __UpperCamelCase ) else equivalent_param[p] setattr(__UpperCamelCase , __UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) return hparams, config
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = CanineTokenizer _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() snake_case_ : List[str] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained("""google/canine-s""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> CanineTokenizer: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) snake_case_ : Any = 1_0_2_4 return tokenizer @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.canine_tokenizer snake_case_ : Any = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off snake_case_ : str = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on snake_case_ : str = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) snake_case_ : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowercase , _lowercase ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = self.canine_tokenizer snake_case_ : Dict = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] snake_case_ : str = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertIn("""token_type_ids""" , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.canine_tokenizer snake_case_ : List[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] snake_case_ : Union[str, Any] = tokenizer( text_target=_lowercase , max_length=3_2 , padding="""max_length""" , truncation=_lowercase , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Any = tempfile.mkdtemp() snake_case_ : List[Any] = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) snake_case_ : int = tokenizer.__class__.from_pretrained(_lowercase ) snake_case_ : int = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) shutil.rmtree(_lowercase ) snake_case_ : List[str] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Tuple = tempfile.mkdtemp() snake_case_ : Any = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : Union[str, Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case_ : Tuple = chr(0Xe0_07 ) additional_special_tokens.append(_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) snake_case_ : Tuple = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer.__class__.from_pretrained(_lowercase ) snake_case_ : Any = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertIn(_lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case_ : str = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : int = self.get_clean_sequence(_lowercase ) # a special token for Canine can be defined as follows: snake_case_ : int = 0Xe0_05 snake_case_ : Dict = chr(_lowercase ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Dict = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[str] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowercase ) snake_case_ : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : List[Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(_lowercase , input_encoded + special_token_id ) snake_case_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : str = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Any = chr(0Xe0_05 ) snake_case_ : Optional[int] = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) snake_case_ : Tuple = tokenizer.tokenize(_lowercase ) snake_case_ : Optional[Any] = tokenizer.tokenize(_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(token_a[0] , _lowercase ) self.assertEqual(token_a[0] , _lowercase ) @require_tokenizers def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: snake_case_ : Tuple = 0Xe0_06 snake_case_ : Any = chr(_lowercase ) snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowercase ) tokenizer.from_pretrained(_lowercase ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: snake_case_ : Optional[int] = json.load(_lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: snake_case_ : str = json.load(_lowercase ) # a special token for Canine can be defined as follows: snake_case_ : Tuple = 0Xe0_06 snake_case_ : List[Any] = chr(_lowercase ) snake_case_ : List[Any] = [new_token_a] snake_case_ : List[str] = [new_token_a] with open(os.path.join(_lowercase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_lowercase , _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ : Any = tokenizer_class.from_pretrained(_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) snake_case_ : Any = 0Xe0_07 snake_case_ : int = chr(_lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ : Tuple = [AddedToken(_lowercase , lstrip=_lowercase )] snake_case_ : Dict = tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : int = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """hello world""" if self.space_between_special_tokens: snake_case_ : str = """[CLS] hello world [SEP]""" else: snake_case_ : List[Any] = input snake_case_ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = tokenizer.decode(_lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowercase , [output, output.lower()] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[int] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] snake_case_ : int = """a""" snake_case_ : Dict = ord(_lowercase ) for attr in attributes_list: setattr(_lowercase , attr + """_id""" , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + """_id""" ) , _lowercase ) setattr(_lowercase , attr + """_id""" , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + """_id""" ) , _lowercase ) setattr(_lowercase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens_ids""" ) , [] ) snake_case_ : Dict = 0Xe0_06 snake_case_ : Dict = chr(_lowercase ) setattr(_lowercase , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowercase , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> str: '''simple docstring''' super().__init__() snake_case_ : str = nn.Linear(3 , 4 ) snake_case_ : Tuple = nn.BatchNormad(4 ) snake_case_ : str = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' return output + 1 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Union[str, Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) self.assertEqual(test_model._hf_hook , _lowercase ) self.assertTrue(hasattr(_lowercase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowercase , """_old_forward""" ) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : str = ModelForTest() snake_case_ : List[Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) add_hook_to_module(_lowercase , _lowercase , append=_lowercase ) self.assertEqual(isinstance(test_model._hf_hook , _lowercase ) , _lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowercase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowercase , """_old_forward""" ) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = ModelForTest() snake_case_ : List[Any] = torch.randn(2 , 3 ) snake_case_ : List[Any] = test_model(x + 1 ) snake_case_ : Tuple = test_model(x + 2 ) snake_case_ : List[str] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case_ : List[Any] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case_ : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) snake_case_ : List[Any] = test_model(_lowercase ) assert torch.allclose(_lowercase , _lowercase , atol=1E-5 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Union[str, Any] = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = test_model(_lowercase ) snake_case_ : int = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case_ : Dict = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case_ : List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) snake_case_ : str = test_model(_lowercase ) assert torch.allclose(_lowercase , output + 2 , atol=1E-5 ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = ModelForTest() snake_case_ : Dict = torch.randn(2 , 3 ) snake_case_ : Optional[int] = test_model(_lowercase ) snake_case_ : List[str] = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) snake_case_ : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) snake_case_ : Optional[int] = True snake_case_ : List[Any] = test_model(_lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device snake_case_ : Tuple = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase ) ) snake_case_ : List[Any] = torch.randn(2 , 3 ).to(0 ) snake_case_ : Tuple = model(_lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Optional[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : Union[str, Any] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : Optional[int] = torch.randn(2 , 3 ) snake_case_ : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload snake_case_ : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : Dict = torch.randn(2 , 3 ) snake_case_ : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : int = torch.randn(2 , 3 ) snake_case_ : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : List[Any] = torch.randn(2 , 3 ) snake_case_ : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices snake_case_ : Dict = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case_ : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) snake_case_ : Any = torch.randn(2 , 3 ) snake_case_ : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) snake_case_ : Optional[int] = torch.randn(2 , 3 ) snake_case_ : str = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : int=None , __UpperCamelCase : Dict=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) _lowerCamelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) _lowerCamelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Benchmark training of model'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Verbose memory tracing'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Trace memory line by line'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Save result to a CSV file'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Save all print statements in a log file'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to print environment information'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) _lowerCamelCase = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) _lowerCamelCase = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) _lowerCamelCase = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) _lowerCamelCase = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) _lowerCamelCase = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) _lowerCamelCase = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) _lowerCamelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , _lowercase , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = (KDPMaDiscreteScheduler,) _lowerCamelCase = 10 def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_lowercase ) return config def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : Union[str, Any] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Any = self.dummy_model() snake_case_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Optional[int] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : List[str] = model(_lowercase , _lowercase ) snake_case_ : Optional[Any] = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : int = output.prev_sample snake_case_ : List[str] = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Tuple = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' if torch_device == "mps": return snake_case_ : Optional[Any] = self.scheduler_classes[0] snake_case_ : str = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : int = self.dummy_model() snake_case_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : List[str] = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[Any] = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : str = model(_lowercase , _lowercase ) snake_case_ : str = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : int = output.prev_sample snake_case_ : int = torch.sum(torch.abs(_lowercase ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(_lowercase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if torch_device == "mps": return snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : Optional[Any] = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) snake_case_ : str = self.dummy_model() snake_case_ : List[Any] = self.dummy_sample_deter.to(_lowercase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ : Tuple = scheduler.scale_model_input(_lowercase , _lowercase ) snake_case_ : List[Any] = model(_lowercase , _lowercase ) snake_case_ : str = scheduler.step(_lowercase , _lowercase , _lowercase ) snake_case_ : Optional[Any] = output.prev_sample snake_case_ : int = torch.sum(torch.abs(_lowercase ) ) snake_case_ : str = torch.mean(torch.abs(_lowercase ) ) if str(_lowercase ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __lowerCAmelCase : Dict = logging.getLogger(__name__) __lowerCAmelCase : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __lowerCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _lowerCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowerCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _lowerCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.train_file is not None: snake_case_ : Dict = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case_ : Any = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Any = [json.loads(__UpperCamelCase ) for line in f.read().splitlines() if (len(__UpperCamelCase ) > 0 and not line.isspace())] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) snake_case_ : str = {c: dataset[c] for c in dataset.column_names} snake_case_ : Dict = refs return Dataset.from_dict(__UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __UpperCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) snake_case_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: snake_case_ : List[str] = {} if data_args.train_file is not None: snake_case_ : Dict = data_args.train_file if data_args.validation_file is not None: snake_case_ : Any = data_args.validation_file snake_case_ : Tuple = data_args.train_file.split(""".""" )[-1] if extension == "txt": snake_case_ : Optional[int] = """text""" snake_case_ : List[str] = load_dataset(__UpperCamelCase , data_files=__UpperCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: snake_case_ : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: snake_case_ : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) snake_case_ : Any = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__UpperCamelCase ) elif model_args.model_name_or_path: snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: snake_case_ : Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ : Dict = AutoModelForMaskedLM.from_config(__UpperCamelCase ) model.resize_token_embeddings(len(__UpperCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case_ : Optional[int] = datasets["""train"""].column_names else: snake_case_ : List[str] = datasets["""validation"""].column_names snake_case_ : List[str] = """text""" if """text""" in column_names else column_names[0] snake_case_ : Optional[Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(__UpperCamelCase : List[Any] ): # Remove empty lines snake_case_ : Optional[Any] = [line for line in examples["""text"""] if len(__UpperCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=data_args.max_seq_length ) snake_case_ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case_ : Union[str, Any] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case_ : Optional[Any] = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case_ : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case_ : Union[str, Any] = False # Data collator # This one will take care of randomly masking the tokens. snake_case_ : Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=__UpperCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case_ : Optional[int] = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case_ : List[str] = model_args.model_name_or_path else: snake_case_ : Optional[int] = None snake_case_ : Any = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ : List[str] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation snake_case_ : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : str = trainer.evaluate() snake_case_ : Tuple = math.exp(eval_output["""eval_loss"""] ) snake_case_ : int = perplexity snake_case_ : str = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] , __UpperCamelCase : Any ): '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(__UpperCamelCase ): print(F'{i}\t\t{d}' ) def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : list[float] , __UpperCamelCase : int ): '''simple docstring''' for j in range(__UpperCamelCase ): snake_case_ : Any = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [float("""inf""" )] * vertex_count snake_case_ : List[str] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__UpperCamelCase ): snake_case_ : Tuple = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: snake_case_ : Optional[Any] = distance[u] + w snake_case_ : Tuple = check_negative_cycle(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = int(input('''Enter number of vertices: ''').strip()) __lowerCAmelCase : List[Any] = int(input('''Enter number of edges: ''').strip()) __lowerCAmelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) __lowerCAmelCase : Dict = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) __lowerCAmelCase : List[str] = {'''src''': src, '''dst''': dest, '''weight''': weight} __lowerCAmelCase : List[Any] = int(input('''\nEnter shortest path source:''').strip()) __lowerCAmelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase : Any = random.Random() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=1.0 , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=None ): '''simple docstring''' if rng is None: snake_case_ : Union[str, Any] = global_rng snake_case_ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=4_0_0 , _lowercase=2_0_0_0 , _lowercase=1_0 , _lowercase=1_6_0 , _lowercase=8 , _lowercase=0.0 , _lowercase=4_0_0_0 , _lowercase=False , _lowercase=True , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Optional[int] = min_seq_length snake_case_ : Optional[Any] = max_seq_length snake_case_ : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : str = padding_value snake_case_ : Tuple = sampling_rate snake_case_ : List[str] = return_attention_mask snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = feature_size snake_case_ : List[Any] = chunk_length snake_case_ : int = hop_length def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self , _lowercase=False , _lowercase=False ) -> List[str]: '''simple docstring''' def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: snake_case_ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : List[Any] = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Any = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Any = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) snake_case_ : Dict = self.feature_extraction_class.from_pretrained(_lowercase ) snake_case_ : List[Any] = feat_extract_first.to_dict() snake_case_ : Tuple = feat_extract_second.to_dict() snake_case_ : Tuple = feat_extract_first.mel_filters snake_case_ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[str] = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) snake_case_ : Tuple = self.feature_extraction_class.from_json_file(_lowercase ) snake_case_ : Dict = feat_extract_first.to_dict() snake_case_ : str = feat_extract_second.to_dict() snake_case_ : Any = feat_extract_first.mel_filters snake_case_ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ : Union[str, Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test feature size snake_case_ : List[str] = feature_extractor(_lowercase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features snake_case_ : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test batched snake_case_ : int = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : Optional[int] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ : Tuple = np.asarray(_lowercase ) snake_case_ : Dict = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # Test truncation required snake_case_ : List[Any] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case_ : str = [np.asarray(_lowercase ) for speech_input in speech_inputs] snake_case_ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : List[Any] = [np.asarray(_lowercase ) for speech_input in speech_inputs_truncated] snake_case_ : Optional[Any] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features snake_case_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' import torch snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Tuple = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case_ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech snake_case_ : Optional[int] = ds.sort("""id""" ).select(range(_lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case_ : Tuple = self._load_datasamples(1 ) snake_case_ : Dict = WhisperFeatureExtractor() snake_case_ : List[str] = feature_extractor(_lowercase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , _lowercase , atol=1E-4 ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Dict = self._load_datasamples(1 )[0] snake_case_ : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case_ : int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowercase )[0] self.assertTrue(np.all(np.mean(_lowercase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase ) - 1 ) < 1E-3 ) )
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''philschmid/bart-large-cnn-samsum''' _lowerCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) _lowerCamelCase = '''summarizer''' _lowerCamelCase = AutoTokenizer _lowerCamelCase = AutoModelForSeqaSeqLM _lowerCamelCase = ['''text'''] _lowerCamelCase = ['''text'''] def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.pre_processor(_lowercase , return_tensors="""pt""" , truncation=_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' return self.model.generate(**_lowercase )[0] def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.pre_processor.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase )
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , __UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase=1_2_5 , _lowercase=None , **_lowercase , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: snake_case_ : Dict = [f'<extra_id_{i}>' for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ : Optional[Any] = len(set(filter(lambda _lowercase : bool("""extra_id""" in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) snake_case_ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token snake_case_ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token super().__init__( eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) snake_case_ : List[str] = extra_ids snake_case_ : Tuple = 2**8 # utf is 8 bits # define special tokens dict snake_case_ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case_ : int = len(self.special_tokens_encoder ) snake_case_ : Tuple = len(_lowercase ) for i, token in enumerate(_lowercase ): snake_case_ : List[str] = self.vocab_size + i - n snake_case_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowercase )) + [1] return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase ) -> List[int]: '''simple docstring''' if len(_lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = self._add_eos_if_not_present(_lowercase ) if token_ids_a is None: return token_ids_a else: snake_case_ : List[Any] = self._add_eos_if_not_present(_lowercase ) return token_ids_a + token_ids_a def UpperCAmelCase__ ( self , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : int = [chr(_lowercase ) for i in text.encode("""utf-8""" )] return tokens def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' if token in self.special_tokens_encoder: snake_case_ : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case_ : List[Any] = self.added_tokens_encoder[token] elif len(_lowercase ) != 1: snake_case_ : List[Any] = self.unk_token_id else: snake_case_ : List[Any] = ord(_lowercase ) + self._num_special_tokens return token_id def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' if index in self.special_tokens_decoder: snake_case_ : Dict = self.special_tokens_decoder[index] else: snake_case_ : Any = chr(index - self._num_special_tokens ) return token def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = b"""""" for token in tokens: if token in self.special_tokens_decoder: snake_case_ : List[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: snake_case_ : Optional[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: snake_case_ : Optional[Any] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: snake_case_ : Optional[int] = token.encode("""utf-8""" ) else: snake_case_ : Optional[Any] = bytes([ord(_lowercase )] ) bstring += tok_string snake_case_ : List[Any] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' return ()
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' debug_launcher(test_script.main ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' debug_launcher(test_ops.main )
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 2_0_0 ): '''simple docstring''' snake_case_ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] snake_case_ : Union[str, Any] = [0] * (pence + 1) snake_case_ : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
from scipy.stats import spearmanr import datasets __lowerCAmelCase : Optional[Any] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCAmelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCAmelCase : List[Any] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = spearmanr(_lowercase , _lowercase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" __lowerCAmelCase : List[str] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : bytes ): '''simple docstring''' return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(__UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __lowerCAmelCase : Dict = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowerCAmelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowerCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowerCAmelCase : set[int] = {ord(char) for char in VALID_CHARS} __lowerCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __lowerCAmelCase ( __UpperCamelCase : list[int] , __UpperCamelCase : tuple[int, ...] ): '''simple docstring''' snake_case_ : str = "" snake_case_ : int snake_case_ : int snake_case_ : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) , __UpperCamelCase ): snake_case_ : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def __lowerCAmelCase ( __UpperCamelCase : list[int] ): '''simple docstring''' snake_case_ : list[str] = [] for key in product(__UpperCamelCase , repeat=3 ): snake_case_ : Dict = try_key(__UpperCamelCase , __UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def __lowerCAmelCase ( __UpperCamelCase : list[str] , __UpperCamelCase : str ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __lowerCAmelCase ( __UpperCamelCase : str = "p059_cipher.txt" ): '''simple docstring''' snake_case_ : list[int] snake_case_ : list[str] snake_case_ : str snake_case_ : str snake_case_ : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding="""utf-8""" ) snake_case_ : int = [int(__UpperCamelCase ) for number in data.strip().split(""",""" )] snake_case_ : Tuple = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: snake_case_ : Optional[int] = filter_common_word(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: break snake_case_ : Optional[int] = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def __lowerCAmelCase ( __UpperCamelCase : List[DatasetType] , __UpperCamelCase : Optional[List[float]] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( F'Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}.' ) if i == 0: snake_case_ : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase , __UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , stopping_strategy=__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : List[DatasetType] , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( F'Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}.' ) if i == 0: snake_case_ : List[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase , __UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , axis=__UpperCamelCase )
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''longformer''' def __init__( self , _lowercase = 5_1_2 , _lowercase = 2 , _lowercase = 1 , _lowercase = 0 , _lowercase = 2 , _lowercase = 3_0_5_2_2 , _lowercase = 7_6_8 , _lowercase = 1_2 , _lowercase = 1_2 , _lowercase = 3_0_7_2 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 5_1_2 , _lowercase = 2 , _lowercase = 0.02 , _lowercase = 1E-12 , _lowercase = False , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = attention_window snake_case_ : int = sep_token_id snake_case_ : Dict = bos_token_id snake_case_ : List[Any] = eos_token_id snake_case_ : List[Any] = vocab_size snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : List[str] = hidden_act snake_case_ : str = intermediate_size snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Tuple = onnx_export class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase = "default" , _lowercase = None ) -> List[Any]: '''simple docstring''' super().__init__(_lowercase , _lowercase , _lowercase ) snake_case_ : List[Any] = True @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case_ : List[Any] = super().outputs if self.task == "default": snake_case_ : Optional[int] = {0: """batch"""} return outputs @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case_ : Union[str, Any] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global snake_case_ : Dict = 1 return inputs
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCAmelCase : List[Any] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" __lowerCAmelCase : Tuple = 0 # The first color of the flag. __lowerCAmelCase : List[Any] = 1 # The second color of the flag. __lowerCAmelCase : int = 2 # The third color of the flag. __lowerCAmelCase : Optional[int] = (red, white, blue) def __lowerCAmelCase ( __UpperCamelCase : list ): '''simple docstring''' if not sequence: return [] if len(__UpperCamelCase ) == 1: return list(__UpperCamelCase ) snake_case_ : Dict = 0 snake_case_ : Optional[Any] = len(__UpperCamelCase ) - 1 snake_case_ : int = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case_ : Dict = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case_ : Optional[int] = sequence[high], sequence[mid] high -= 1 else: snake_case_ : List[Any] = F'The elements inside the sequence must contains only {colors} values' raise ValueError(__UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by commas:\n''').strip() __lowerCAmelCase : int = [int(item.strip()) for item in user_input.split(''',''')] print(F'''{dutch_national_flag_sort(unsorted)}''')
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gptsan-japanese''' _lowerCamelCase = [ '''past_key_values''', ] _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=3_6_0_0_0 , _lowercase=1_2_8_0 , _lowercase=1_0_2_4 , _lowercase=8_1_9_2 , _lowercase=4_0_9_6 , _lowercase=1_2_8 , _lowercase=1_0 , _lowercase=0 , _lowercase=1_6 , _lowercase=1_6 , _lowercase=1_2_8 , _lowercase=0.0 , _lowercase=1E-5 , _lowercase=False , _lowercase=0.0 , _lowercase="float32" , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=0.002 , _lowercase=False , _lowercase=True , _lowercase=3_5_9_9_8 , _lowercase=3_5_9_9_5 , _lowercase=3_5_9_9_9 , **_lowercase , ) -> int: '''simple docstring''' snake_case_ : Any = vocab_size snake_case_ : int = max_position_embeddings snake_case_ : List[Any] = d_model snake_case_ : Any = d_ff snake_case_ : List[str] = d_ext snake_case_ : str = d_spout snake_case_ : str = num_switch_layers snake_case_ : Optional[Any] = num_ext_layers snake_case_ : Optional[Any] = num_switch_layers + num_ext_layers snake_case_ : List[str] = num_heads snake_case_ : Any = num_experts snake_case_ : List[str] = expert_capacity snake_case_ : Dict = dropout_rate snake_case_ : Optional[Any] = layer_norm_epsilon snake_case_ : List[Any] = router_bias snake_case_ : Tuple = router_jitter_noise snake_case_ : str = router_dtype snake_case_ : Tuple = router_ignore_padding_tokens snake_case_ : str = output_hidden_states snake_case_ : Optional[Any] = output_attentions snake_case_ : str = initializer_factor snake_case_ : Tuple = output_router_logits snake_case_ : List[Any] = use_cache super().__init__( separator_token_id=_lowercase , pad_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , )
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 2_0, """a """ * 3_0, """b """ * 7], } snake_case_ : Union[str, Any] = Dataset.from_dict(__UpperCamelCase ) return dataset class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[Any] = get_dataset() snake_case_ : Optional[Any] = make_duplicate_clusters(_lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = get_dataset() snake_case_ : Union[str, Any] = deduplicate_dataset(_lowercase ) self.assertEqual(len(_lowercase ) , 2 ) print(_lowercase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowercase )
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase : int = TypeVar('''T''') __lowerCAmelCase : Optional[int] = Union[List[T], Tuple[T, ...]] __lowerCAmelCase : List[Any] = Union[T, List[T], Dict[str, T]] __lowerCAmelCase : Dict = Union[str, bytes, os.PathLike]
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _lowerCamelCase = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _lowerCamelCase = '''question''' _lowerCamelCase = '''context''' _lowerCamelCase = '''answers''' @property def UpperCAmelCase__ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCAmelCase : Optional[Any] = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) __lowerCAmelCase : str = dataset.iloc[:, 1:2].values __lowerCAmelCase : Optional[int] = dataset.iloc[:, 2].values __lowerCAmelCase : Union[str, Any] = train_test_split(X, y, test_size=0.2, random_state=0) __lowerCAmelCase : Dict = PolynomialFeatures(degree=4) __lowerCAmelCase : int = poly_reg.fit_transform(X) __lowerCAmelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __lowerCAmelCase ( ): '''simple docstring''' plt.scatter(__UpperCamelCase , __UpperCamelCase , color="""red""" ) plt.plot(__UpperCamelCase , pol_reg.predict(poly_reg.fit_transform(__UpperCamelCase ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] ): '''simple docstring''' if len(__UpperCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) snake_case_ : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCAmelCase : Optional[int] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_lowercase , _lowercase ): snake_case_ : Union[str, Any] = v.to_dict() return d
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = [] snake_case_ : Optional[Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case_ : int = result + left + right return input_list def __lowerCAmelCase ( __UpperCamelCase : list ): '''simple docstring''' if len(__UpperCamelCase ) <= 1: return input_list snake_case_ : Any = list(__UpperCamelCase ) # iteration for two-way merging snake_case_ : Optional[Any] = 2 while p <= len(__UpperCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ): snake_case_ : Tuple = i snake_case_ : List[Any] = i + p - 1 snake_case_ : str = (low + high + 1) // 2 snake_case_ : Union[str, Any] = merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # final merge of last two parts if p * 2 >= len(__UpperCamelCase ): snake_case_ : Optional[Any] = i snake_case_ : List[Any] = merge(__UpperCamelCase , 0 , __UpperCamelCase , len(__UpperCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": __lowerCAmelCase : str = [] else: __lowerCAmelCase : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def __lowerCAmelCase ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = x snake_case_ : str = y for step in range(__UpperCamelCase ): # noqa: B007 snake_case_ : List[str] = a * a - b * b + x snake_case_ : Tuple = 2 * a * b + y snake_case_ : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCAmelCase ( __UpperCamelCase : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowerCAmelCase ( __UpperCamelCase : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase , 1 , 1 ) ) def __lowerCAmelCase ( __UpperCamelCase : int = 8_0_0 , __UpperCamelCase : int = 6_0_0 , __UpperCamelCase : float = -0.6 , __UpperCamelCase : float = 0 , __UpperCamelCase : float = 3.2 , __UpperCamelCase : int = 5_0 , __UpperCamelCase : bool = True , ): '''simple docstring''' snake_case_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) snake_case_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(__UpperCamelCase ): for image_y in range(__UpperCamelCase ): # determine the figure-coordinates based on the image-coordinates snake_case_ : Dict = figure_width / image_width * image_height snake_case_ : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ : Tuple = get_distance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ : str = get_color_coded_rgb(__UpperCamelCase ) else: snake_case_ : List[Any] = get_black_and_white_rgb(__UpperCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __lowerCAmelCase : Tuple = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''encodec''' def __init__( self , _lowercase=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowercase=2_4_0_0_0 , _lowercase=1 , _lowercase=False , _lowercase=None , _lowercase=None , _lowercase=1_2_8 , _lowercase=3_2 , _lowercase=1 , _lowercase=[8, 5, 4, 2] , _lowercase="weight_norm" , _lowercase=7 , _lowercase=7 , _lowercase=3 , _lowercase=2 , _lowercase=True , _lowercase="reflect" , _lowercase=2 , _lowercase=2 , _lowercase=1.0 , _lowercase=1_0_2_4 , _lowercase=None , _lowercase=True , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : int = target_bandwidths snake_case_ : Optional[Any] = sampling_rate snake_case_ : List[str] = audio_channels snake_case_ : Union[str, Any] = normalize snake_case_ : List[str] = chunk_length_s snake_case_ : Union[str, Any] = overlap snake_case_ : Dict = hidden_size snake_case_ : Union[str, Any] = num_filters snake_case_ : Dict = num_residual_layers snake_case_ : Dict = upsampling_ratios snake_case_ : Optional[int] = norm_type snake_case_ : Optional[Any] = kernel_size snake_case_ : Dict = last_kernel_size snake_case_ : Tuple = residual_kernel_size snake_case_ : Tuple = dilation_growth_rate snake_case_ : List[Any] = use_causal_conv snake_case_ : Optional[int] = pad_mode snake_case_ : int = compress snake_case_ : int = num_lstm_layers snake_case_ : Optional[int] = trim_right_ratio snake_case_ : List[Any] = codebook_size snake_case_ : Dict = codebook_dim if codebook_dim is not None else hidden_size snake_case_ : Union[str, Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**_lowercase ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''levit''' def __init__( self , _lowercase=2_2_4 , _lowercase=3 , _lowercase=3 , _lowercase=2 , _lowercase=1 , _lowercase=1_6 , _lowercase=[1_2_8, 2_5_6, 3_8_4] , _lowercase=[4, 8, 1_2] , _lowercase=[4, 4, 4] , _lowercase=[1_6, 1_6, 1_6] , _lowercase=0 , _lowercase=[2, 2, 2] , _lowercase=[2, 2, 2] , _lowercase=0.02 , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Union[str, Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = kernel_size snake_case_ : str = stride snake_case_ : Any = padding snake_case_ : Dict = hidden_sizes snake_case_ : Optional[Any] = num_attention_heads snake_case_ : List[str] = depths snake_case_ : List[Any] = key_dim snake_case_ : List[Any] = drop_path_rate snake_case_ : List[Any] = patch_size snake_case_ : int = attention_ratio snake_case_ : int = mlp_ratio snake_case_ : int = initializer_range snake_case_ : Tuple = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = ort.SessionOptions() snake_case_ : List[str] = False return options def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[int] = """A red cat sitting on a park bench""" snake_case_ : Optional[Any] = np.random.RandomState(0 ) snake_case_ : Tuple = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : str = output.images snake_case_ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case_ : Dict = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """A red cat sitting on a park bench""" snake_case_ : List[Any] = np.random.RandomState(0 ) snake_case_ : List[Any] = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Tuple = output.images snake_case_ : int = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : List[str] = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCAmelCase : Optional[int] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __lowerCAmelCase : Dict = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def remove_articles(__UpperCamelCase : str ): snake_case_ : Tuple = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__UpperCamelCase , """ """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : Optional[Any] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Any ): snake_case_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = [any(compute_exact(__UpperCamelCase , __UpperCamelCase ) for ref in refs ) for pred, refs in zip(__UpperCamelCase , __UpperCamelCase )] return (sum(__UpperCamelCase ) / len(__UpperCamelCase )) * 1_0_0 def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = [rgram for rgrams in rgramslist for rgram in rgrams] snake_case_ : List[str] = Counter(__UpperCamelCase ) snake_case_ : str = Counter(__UpperCamelCase ) snake_case_ : str = Counter() for sgram, scount in sgramcounter.items(): snake_case_ : Optional[int] = scount * numref snake_case_ : int = Counter(__UpperCamelCase ) snake_case_ : Tuple = Counter() for cgram, ccount in cgramcounter.items(): snake_case_ : str = ccount * numref # KEEP snake_case_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep snake_case_ : Dict = keepgramcounter_rep & rgramcounter snake_case_ : Optional[Any] = sgramcounter_rep & rgramcounter snake_case_ : Optional[int] = 0 snake_case_ : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : Optional[int] = 1 snake_case_ : Tuple = 1 if len(__UpperCamelCase ) > 0: snake_case_ : int = keeptmpscorea / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case_ : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case_ : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case_ : Union[str, Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case_ : Union[str, Any] = sgramcounter_rep - cgramcounter_rep snake_case_ : Optional[Any] = delgramcounter_rep - rgramcounter snake_case_ : Tuple = sgramcounter_rep - rgramcounter snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : str = 1 if len(__UpperCamelCase ) > 0: snake_case_ : Tuple = deltmpscorea / len(__UpperCamelCase ) # ADDITION snake_case_ : Any = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case_ : Tuple = set(__UpperCamelCase ) & set(__UpperCamelCase ) snake_case_ : Union[str, Any] = set(__UpperCamelCase ) - set(__UpperCamelCase ) snake_case_ : int = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case_ : Tuple = 1 snake_case_ : Optional[Any] = 1 if len(__UpperCamelCase ) > 0: snake_case_ : Dict = addtmpscore / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: snake_case_ : Tuple = addtmpscore / len(__UpperCamelCase ) snake_case_ : int = 0 if addscore_precision > 0 or addscore_recall > 0: snake_case_ : Optional[int] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[str] = len(__UpperCamelCase ) snake_case_ : Union[str, Any] = ssent.split(""" """ ) snake_case_ : Optional[Any] = csent.split(""" """ ) snake_case_ : int = [] snake_case_ : int = [] snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] snake_case_ : str = [] snake_case_ : Union[str, Any] = [] snake_case_ : Dict = [] snake_case_ : List[str] = [] snake_case_ : int = [] snake_case_ : Dict = [] for rsent in rsents: snake_case_ : Any = rsent.split(""" """ ) snake_case_ : List[str] = [] snake_case_ : Tuple = [] snake_case_ : Optional[Any] = [] ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Optional[int] = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Union[str, Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Optional[Any] = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : List[str] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Optional[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: snake_case_ : Union[str, Any] = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: snake_case_ : Any = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: snake_case_ : Optional[int] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__UpperCamelCase ) (snake_case_) : Tuple = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case_) : Any = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case_) : Any = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) (snake_case_) : str = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case_ : Tuple = sum([delascore, delascore, delascore, delascore] ) / 4 snake_case_ : Any = sum([addascore, addascore, addascore, addascore] ) / 4 snake_case_ : Tuple = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : bool = True , __UpperCamelCase : str = "13a" , __UpperCamelCase : bool = True ): '''simple docstring''' if lowercase: snake_case_ : Optional[int] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case_ : str = sacrebleu.metrics.bleu._get_tokenizer(__UpperCamelCase )()(__UpperCamelCase ) else: snake_case_ : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__UpperCamelCase ) elif tokenizer == "moses": snake_case_ : int = sacremoses.MosesTokenizer().tokenize(__UpperCamelCase , return_str=__UpperCamelCase , escape=__UpperCamelCase ) elif tokenizer == "penn": snake_case_ : Tuple = sacremoses.MosesTokenizer().penn_tokenize(__UpperCamelCase , return_str=__UpperCamelCase ) else: snake_case_ : str = sentence if not return_str: snake_case_ : List[Any] = normalized_sent.split() return normalized_sent def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): '''simple docstring''' if not (len(__UpperCamelCase ) == len(__UpperCamelCase ) == len(__UpperCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) snake_case_ : Dict = 0 for src, pred, refs in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): sari_score += SARIsent(normalize(__UpperCamelCase ) , normalize(__UpperCamelCase ) , [normalize(__UpperCamelCase ) for sent in refs] ) snake_case_ : Dict = sari_score / len(__UpperCamelCase ) return 1_0_0 * sari_score def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]="exp" , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : str=False , __UpperCamelCase : int=False , ): '''simple docstring''' snake_case_ : str = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case_ : List[str] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] snake_case_ : List[Any] = sacrebleu.corpus_bleu( __UpperCamelCase , __UpperCamelCase , smooth_method=__UpperCamelCase , smooth_value=__UpperCamelCase , force=__UpperCamelCase , lowercase=__UpperCamelCase , use_effective_order=__UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : int = {} result.update({"""sari""": compute_sari(sources=_lowercase , predictions=_lowercase , references=_lowercase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_lowercase , references=_lowercase )} ) result.update({"""exact""": compute_em(predictions=_lowercase , references=_lowercase )} ) return result
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowercase = "" , _lowercase = None , _lowercase = None , **_lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(self , **_lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ : Dict = fsspec.open( _lowercase , mode="""rb""" , protocol=_lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ : List[str] = os.path.basename(self.file.path.split("""::""" )[0] ) snake_case_ : str = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) snake_case_ : Any = None @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> List[Any]: '''simple docstring''' return super()._strip_protocol(_lowercase ).lstrip("""/""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.dir_cache is None: snake_case_ : Any = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} snake_case_ : Dict = {f["""name"""]: f} def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.file.open().read() def UpperCAmelCase__ ( self , _lowercase , _lowercase = "rb" , _lowercase=None , _lowercase=True , _lowercase=None , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : str = self._strip_protocol(_lowercase ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self , _lowercase , _lowercase = "rb" , _lowercase = None , _lowercase = None , _lowercase = DEFAULT_BLOCK_SIZE , **_lowercase , ) -> str: '''simple docstring''' super().__init__( fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ : Union[str, Any] = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = file_ def __enter__( self ) -> Optional[int]: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' self._file.__exit__(*_lowercase , **_lowercase ) def __iter__( self ) -> Dict: '''simple docstring''' return iter(self._file ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return next(self._file ) def __getattr__( self , _lowercase ) -> Any: '''simple docstring''' return getattr(self._file , _lowercase ) def fixed_enter(*_lowercase , **_lowercase ): return WrappedFile(_enter(*_lowercase , **_lowercase ) ) snake_case_ : List[str] = fixed_enter
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrFeatureExtractor'''] __lowerCAmelCase : Optional[Any] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) snake_case_ : Union[str, Any] = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""" , __UpperCamelCase ) if matches: snake_case_ : str = float(matches[1] ) snake_case_ : List[str] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case_ : str = 1_0_0_1 snake_case_ : Optional[int] = """imagenet-1k-id2label.json""" snake_case_ : Optional[int] = """huggingface/label-files""" snake_case_ : Optional[int] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[Any] = {int(__UpperCamelCase ) + 1: v for k, v in idalabel.items()} snake_case_ : Dict = """background""" snake_case_ : Any = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int=False ): '''simple docstring''' snake_case_ : List[Any] = get_mobilenet_va_config(__UpperCamelCase ) # Load 🤗 model snake_case_ : int = MobileNetVaForImageClassification(__UpperCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case_ : List[str] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 3_2} , ) snake_case_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ : Dict = model(**__UpperCamelCase ) snake_case_ : List[Any] = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": snake_case_ : Any = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": snake_case_ : Any = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: snake_case_ : Tuple = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) snake_case_ : int = """google/""" + model_name image_processor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : int = tau * frequency / samplerate snake_case_ : Any = sin(__UpperCamelCase ) snake_case_ : str = cos(__UpperCamelCase ) snake_case_ : List[Any] = _sin / (2 * q_factor) snake_case_ : List[str] = (1 - _cos) / 2 snake_case_ : str = 1 - _cos snake_case_ : Union[str, Any] = 1 + alpha snake_case_ : Tuple = -2 * _cos snake_case_ : int = 1 - alpha snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Any = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(__UpperCamelCase ) snake_case_ : Tuple = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : str = (1 + _cos) / 2 snake_case_ : Union[str, Any] = -1 - _cos snake_case_ : List[Any] = 1 + alpha snake_case_ : str = -2 * _cos snake_case_ : Optional[int] = 1 - alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : str = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(__UpperCamelCase ) snake_case_ : Any = cos(__UpperCamelCase ) snake_case_ : Optional[Any] = _sin / (2 * q_factor) snake_case_ : str = _sin / 2 snake_case_ : List[Any] = 0 snake_case_ : Any = -ba snake_case_ : Optional[int] = 1 + alpha snake_case_ : Union[str, Any] = -2 * _cos snake_case_ : Any = 1 - alpha snake_case_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : int = tau * frequency / samplerate snake_case_ : str = sin(__UpperCamelCase ) snake_case_ : Optional[int] = cos(__UpperCamelCase ) snake_case_ : Any = _sin / (2 * q_factor) snake_case_ : List[str] = 1 - alpha snake_case_ : Optional[Any] = -2 * _cos snake_case_ : List[Any] = 1 + alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Union[str, Any] = tau * frequency / samplerate snake_case_ : Optional[Any] = sin(__UpperCamelCase ) snake_case_ : Tuple = cos(__UpperCamelCase ) snake_case_ : Any = _sin / (2 * q_factor) snake_case_ : Any = 1_0 ** (gain_db / 4_0) snake_case_ : Optional[Any] = 1 + alpha * big_a snake_case_ : Any = -2 * _cos snake_case_ : Any = 1 - alpha * big_a snake_case_ : Union[str, Any] = 1 + alpha / big_a snake_case_ : List[str] = -2 * _cos snake_case_ : int = 1 - alpha / big_a snake_case_ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : List[Any] = tau * frequency / samplerate snake_case_ : List[str] = sin(__UpperCamelCase ) snake_case_ : Optional[int] = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : int = 1_0 ** (gain_db / 4_0) snake_case_ : Tuple = (big_a + 1) - (big_a - 1) * _cos snake_case_ : int = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Any = (big_a - 1) - (big_a + 1) * _cos snake_case_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : List[str] = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : Optional[int] = big_a * (pmc + aaa) snake_case_ : Optional[Any] = 2 * big_a * mpc snake_case_ : Union[str, Any] = big_a * (pmc - aaa) snake_case_ : Dict = ppmc + aaa snake_case_ : str = -2 * pmpc snake_case_ : str = ppmc - aaa snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Dict = tau * frequency / samplerate snake_case_ : int = sin(__UpperCamelCase ) snake_case_ : List[Any] = cos(__UpperCamelCase ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : Dict = 1_0 ** (gain_db / 4_0) snake_case_ : Dict = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Any = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Any = (big_a - 1) - (big_a + 1) * _cos snake_case_ : List[str] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : int = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : Optional[Any] = big_a * (ppmc + aaa) snake_case_ : List[str] = -2 * big_a * pmpc snake_case_ : Any = big_a * (ppmc - aaa) snake_case_ : Optional[Any] = pmc + aaa snake_case_ : Optional[Any] = 2 * mpc snake_case_ : str = pmc - aaa snake_case_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = name snake_case_ : str = val def __str__( self ) -> Dict: '''simple docstring''' return f'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , _lowercase ) -> Tuple: '''simple docstring''' return self.val < other.val class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = {} snake_case_ : Dict = {} snake_case_ : str = self.build_heap(_lowercase ) def __getitem__( self , _lowercase ) -> List[Any]: '''simple docstring''' return self.get_value(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' return (idx - 1) // 2 def UpperCAmelCase__ ( self , _lowercase ) -> Any: '''simple docstring''' return idx * 2 + 1 def UpperCAmelCase__ ( self , _lowercase ) -> List[Any]: '''simple docstring''' return idx * 2 + 2 def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' return self.heap_dict[key] def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : int = len(_lowercase ) - 1 snake_case_ : Optional[int] = self.get_parent_idx(_lowercase ) for idx, i in enumerate(_lowercase ): snake_case_ : Dict = idx snake_case_ : Optional[int] = i.val for i in range(_lowercase , -1 , -1 ): self.sift_down(_lowercase , _lowercase ) return array def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' while True: snake_case_ : Optional[int] = self.get_left_child_idx(_lowercase ) # noqa: E741 snake_case_ : Optional[Any] = self.get_right_child_idx(_lowercase ) snake_case_ : Union[str, Any] = idx if l < len(_lowercase ) and array[l] < array[idx]: snake_case_ : Dict = l if r < len(_lowercase ) and array[r] < array[smallest]: snake_case_ : str = r if smallest != idx: snake_case_ : str = array[smallest], array[idx] ( snake_case_ ) : List[str] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ : List[Any] = smallest else: break def UpperCAmelCase__ ( self , _lowercase ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_parent_idx(_lowercase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ : Dict = self.heap[idx], self.heap[p] snake_case_ : str = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ : Union[str, Any] = p snake_case_ : Any = self.get_parent_idx(_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.heap[0] def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.heap[-1], self.heap[0] snake_case_ : List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ : Optional[int] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' self.heap.append(_lowercase ) snake_case_ : Optional[int] = len(self.heap ) - 1 snake_case_ : int = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.heap ) == 0 def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ : List[Any] = new_value snake_case_ : Any = new_value self.sift_up(self.idx_of_element[node] ) __lowerCAmelCase : Any = Node('''R''', -1) __lowerCAmelCase : List[Any] = Node('''B''', 6) __lowerCAmelCase : Union[str, Any] = Node('''A''', 3) __lowerCAmelCase : Any = Node('''X''', 1) __lowerCAmelCase : Tuple = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __lowerCAmelCase : List[str] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" import requests __lowerCAmelCase : Optional[int] = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __lowerCAmelCase ( __UpperCamelCase : int = 5_0_0_0 ): '''simple docstring''' snake_case_ : str = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): snake_case_ : Optional[int] = pentagonal_nums[j] snake_case_ : List[Any] = pentagonal_i + pentagonal_j snake_case_ : Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" snake_case_ : Optional[Any] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("""RGB""" ) return image def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Tuple = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = dct.pop(__UpperCamelCase ) snake_case_ : Optional[int] = val def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ : Union[str, Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) snake_case_ : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict snake_case_ : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase , requires_grad=__UpperCamelCase ), v_bias) ) snake_case_ : Optional[Any] = qkv_bias def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = 3_6_4 if """coco""" in model_name else 2_2_4 snake_case_ : str = InstructBlipVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: snake_case_ : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ : int = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: snake_case_ : int = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: snake_case_ : Union[str, Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 snake_case_ : str = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() snake_case_ : List[str] = InstructBlipConfig(vision_config=__UpperCamelCase , text_config=__UpperCamelCase , qformer_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[Any]=False ): '''simple docstring''' snake_case_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: snake_case_ : Tuple = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) snake_case_ : Any = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) snake_case_ : Union[str, Any] = get_blipa_config(__UpperCamelCase ) snake_case_ : Optional[Any] = InstructBlipForConditionalGeneration(__UpperCamelCase ).eval() snake_case_ : Tuple = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } snake_case_ : int = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case_ : List[Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" snake_case_ : Dict = """cuda:2""" if torch.cuda.is_available() else """cpu""" snake_case_ : Union[str, Any] = load_model_and_preprocess( name=__UpperCamelCase , model_type=__UpperCamelCase , is_eval=__UpperCamelCase , device=__UpperCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case_ : Any = original_model.state_dict() snake_case_ : List[str] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ : int = state_dict.pop(__UpperCamelCase ) if key.startswith("""Qformer.bert""" ): snake_case_ : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: snake_case_ : Tuple = key.replace("""self""" , """attention""" ) if "llm_proj" in key: snake_case_ : Dict = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: snake_case_ : Dict = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): snake_case_ : Union[str, Any] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): snake_case_ : List[str] = key.replace("""t5""" , """language""" ) snake_case_ : Optional[Any] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase , __UpperCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) snake_case_ : Dict = load_demo_image() snake_case_ : Optional[Any] = """What is unusual about this image?""" # create processor snake_case_ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCamelCase , image_std=__UpperCamelCase ) snake_case_ : List[str] = InstructBlipProcessor( image_processor=__UpperCamelCase , tokenizer=__UpperCamelCase , qformer_tokenizer=__UpperCamelCase , ) snake_case_ : int = processor(images=__UpperCamelCase , text=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # make sure processor creates exact same pixel values snake_case_ : Tuple = vis_processors["""eval"""](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) snake_case_ : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "vicuna" in model_name: snake_case_ : Any = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits snake_case_ : Dict = hf_model(**__UpperCamelCase ).logits else: snake_case_ : Union[str, Any] = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits snake_case_ : List[Any] = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(__UpperCamelCase ) snake_case_ : int = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) snake_case_ : int = hf_model(**__UpperCamelCase , labels=__UpperCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape snake_case_ : str = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __UpperCamelCase , atol=__UpperCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) snake_case_ : int = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) snake_case_ : str = hf_model.generate( **__UpperCamelCase , do_sample=__UpperCamelCase , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? snake_case_ : Any = 2 print("""Original generation:""" , __UpperCamelCase ) snake_case_ : List[Any] = processor.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) snake_case_ : str = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(F'Salesforce/{model_name}' ) hf_model.push_to_hub(F'Salesforce/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() __lowerCAmelCase : Optional[Any] = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __lowerCAmelCase : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : str = ['''model.decoder.embed_positions.weights'''] def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' if "emb" in name: snake_case_ : int = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case_ : Union[str, Any] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case_ : Union[str, Any] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case_ : List[str] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case_ : Any = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case_ : Optional[Any] = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case_ : Union[str, Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case_ : Optional[int] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case_ : List[Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case_ : Optional[Any] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ : List[str] = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __lowerCAmelCase ( __UpperCamelCase : OrderedDict , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[str] = list(state_dict.keys() ) snake_case_ : int = {} for key in keys: snake_case_ : Optional[int] = state_dict.pop(__UpperCamelCase ) snake_case_ : int = rename_keys(__UpperCamelCase ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ : int = val[:hidden_size, :] snake_case_ : int = val[hidden_size : 2 * hidden_size, :] snake_case_ : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ : Union[str, Any] = val else: snake_case_ : Optional[Any] = val return state_dict, enc_dec_proj_state_dict def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' if checkpoint == "small": # default config values snake_case_ : str = 1_0_2_4 snake_case_ : List[str] = 2_4 snake_case_ : List[Any] = 1_6 elif checkpoint == "medium": snake_case_ : List[str] = 1_5_3_6 snake_case_ : str = 4_8 snake_case_ : List[Any] = 2_4 elif checkpoint == "large": snake_case_ : Any = 2_0_4_8 snake_case_ : Dict = 4_8 snake_case_ : str = 3_2 else: raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) snake_case_ : Dict = MusicgenDecoderConfig( hidden_size=__UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , ) return config @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple=None , __UpperCamelCase : str=None , __UpperCamelCase : Optional[Any]="cpu" ): '''simple docstring''' snake_case_ : Any = MusicGen.get_pretrained(__UpperCamelCase , device=__UpperCamelCase ) snake_case_ : List[Any] = decoder_config_from_checkpoint(__UpperCamelCase ) snake_case_ : Optional[Any] = fairseq_model.lm.state_dict() snake_case_ : int = rename_state_dict( __UpperCamelCase , hidden_size=decoder_config.hidden_size ) snake_case_ : Union[str, Any] = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case_ : List[str] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case_ : Dict = MusicgenForCausalLM(__UpperCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ : List[Any] = decoder.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' ) if len(__UpperCamelCase ) > 0: raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model snake_case_ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=__UpperCamelCase , audio_encoder=__UpperCamelCase , decoder=__UpperCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__UpperCamelCase ) # check we can do a forward pass snake_case_ : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ : Any = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ : Any = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case_ : Dict = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case_ : Dict = MusicgenProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) # set the appropriate bos/pad token ids snake_case_ : Union[str, Any] = 2_0_4_8 snake_case_ : Optional[int] = 2_0_4_8 # set other default generation config params snake_case_ : Dict = int(3_0 * audio_encoder.config.frame_rate ) snake_case_ : Optional[Any] = True snake_case_ : Any = 3.0 if pytorch_dump_folder is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if repo_id: logger.info(F'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__UpperCamelCase ) processor.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) __lowerCAmelCase : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
import cmath import math def __lowerCAmelCase ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : List[Any] = math.radians(__UpperCamelCase ) snake_case_ : Union[str, Any] = math.radians(__UpperCamelCase ) # Convert voltage and current to rectangular form snake_case_ : Union[str, Any] = cmath.rect(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = cmath.rect(__UpperCamelCase , __UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Any = str(id_ ) snake_case_ : Optional[int] = None snake_case_ : Dict = None snake_case_ : Tuple = [] snake_case_ : int = {} # {vertex:distance} def __lt__( self , _lowercase ) -> str: '''simple docstring''' return self.key < other.key def __repr__( self ) -> int: '''simple docstring''' return self.id def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' self.neighbors.append(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Dict = weight def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : Vertex ): '''simple docstring''' snake_case_ : Optional[int] = [] for u in graph: snake_case_ : Optional[Any] = math.inf snake_case_ : Optional[int] = None snake_case_ : Tuple = 0 snake_case_ : Tuple = graph[:] while q: snake_case_ : Union[str, Any] = min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): snake_case_ : Optional[int] = u snake_case_ : int = u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : Vertex ): '''simple docstring''' for u in graph: snake_case_ : Optional[Any] = math.inf snake_case_ : str = None snake_case_ : Optional[int] = 0 snake_case_ : int = list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: snake_case_ : Optional[Any] = hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): snake_case_ : List[Any] = u snake_case_ : Dict = u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __lowerCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" __lowerCAmelCase : Any = range(2, 20 + 1) __lowerCAmelCase : Optional[int] = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) snake_case_ : str = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) snake_case_ : str = 0, 0 snake_case_ : int = n - i snake_case_ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: snake_case_ : Any = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over snake_case_ : Optional[int] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ : Union[str, Any] = _k break if max_jump >= 0: snake_case_ : str = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ : List[str] = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): snake_case_ : List[str] = divmod(__UpperCamelCase , 1_0 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ : Tuple = [] else: snake_case_ : List[Any] = {c: []} snake_case_ : Tuple = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_ : Tuple = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_ : List[str] = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped snake_case_ : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ : Union[str, Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ : str = i snake_case_ : List[str] = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ : Union[str, Any] = ds_c + ds_b diff += addend snake_case_ : Tuple = 0 for j in range(__UpperCamelCase ): snake_case_ : Any = a_i[j] + addend snake_case_ : Optional[int] = divmod(__UpperCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): snake_case_ : Tuple = digits[j] + addend if s >= 1_0: snake_case_ : Optional[Any] = divmod(__UpperCamelCase , 1_0 ) snake_case_ : Dict = addend // 1_0 + quotient else: snake_case_ : Tuple = s snake_case_ : Union[str, Any] = addend // 1_0 if addend == 0: break while addend > 0: snake_case_ : Dict = divmod(__UpperCamelCase , 1_0 ) digits.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int = 1_0**1_5 ): '''simple docstring''' snake_case_ : List[str] = [1] snake_case_ : Any = 1 snake_case_ : str = 0 while True: snake_case_ : int = next_term(__UpperCamelCase , 2_0 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break snake_case_ : Tuple = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ : List[Any] = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" snake_case_ : Dict = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number snake_case_ : List[str] = """0""" + str(bin(__UpperCamelCase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ : Optional[Any] = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number snake_case_ : List[str] = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] snake_case_ : str = ( """1""" + """0""" * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Tuple = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __lowerCAmelCase : Dict = {'''allegro/herbert-base-cased''': 514} __lowerCAmelCase : Tuple = {} class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = HerbertTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase="</s>" , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.cls_token_id] snake_case_ : Dict = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
701
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=4 , _lowercase=3 , _lowercase=6_4 , _lowercase=[3, 4, 6, 5] , _lowercase=[2, 4, 8, 1_6] , _lowercase=7 , _lowercase=3.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=0.0 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Any = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Optional[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : int = len(_lowercase ) snake_case_ : Optional[int] = num_heads snake_case_ : List[str] = kernel_size snake_case_ : str = mlp_ratio snake_case_ : str = qkv_bias snake_case_ : str = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = drop_path_rate snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Union[str, Any] = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Union[str, Any] = layer_scale_init_value snake_case_ : Optional[Any] = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
21
0
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __lowerCAmelCase ( *__UpperCamelCase : Optional[Any] ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ : List[Any] = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __lowerCAmelCase ( __UpperCamelCase : Exception ): '''simple docstring''' snake_case_ : List[str] = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __lowerCAmelCase ( __UpperCamelCase : callable = None , __UpperCamelCase : int = 1_2_8 ): '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) snake_case_ : List[str] = starting_batch_size def decorator(*__UpperCamelCase : Dict , **__UpperCamelCase : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ : Tuple = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): snake_case_ : str = """, """.join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
702
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __lowerCAmelCase : Optional[Any] = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 1_2 @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowercase ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = 1_2 snake_case_ : Tuple = 1_2 snake_case_ : Tuple = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ : Optional[Any] = TransformeraDModel(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = """cpu""" snake_case_ : List[str] = self.dummy_vqvae snake_case_ : Any = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : int = self.dummy_transformer snake_case_ : int = VQDiffusionScheduler(self.num_embed ) snake_case_ : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case_ : Optional[Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : int = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = """teddy bear playing in the pool""" snake_case_ : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Optional[int] = output.images snake_case_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Dict = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : List[Any] = image[0, -3:, -3:, -1] snake_case_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : Dict = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.dummy_vqvae snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : List[Any] = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_transformer snake_case_ : str = VQDiffusionScheduler(self.num_embed ) snake_case_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ : Union[str, Any] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = """teddy bear playing in the pool""" snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="""np""" ) snake_case_ : Dict = output.images snake_case_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Any = pipe( [prompt] , generator=_lowercase , output_type="""np""" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case_ : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ : str = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ : Optional[Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ : Any = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
21
0
"""simple docstring""" import operator def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : bool = False , __UpperCamelCase : list | None = None ): '''simple docstring''' snake_case_ : int = operator.lt if reverse else operator.gt snake_case_ : Tuple = solution or [] if not arr: return solution snake_case_ : Optional[Any] = [arr.pop(0 )] for i, item in enumerate(__UpperCamelCase ): if _operator(__UpperCamelCase , sublist[-1] ): sublist.append(__UpperCamelCase ) arr.pop(__UpperCamelCase ) # merging sublist into solution list if not solution: solution.extend(__UpperCamelCase ) else: while sublist: snake_case_ : Tuple = sublist.pop(0 ) for i, xx in enumerate(__UpperCamelCase ): if not _operator(__UpperCamelCase , __UpperCamelCase ): solution.insert(__UpperCamelCase , __UpperCamelCase ) break else: solution.append(__UpperCamelCase ) strand_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
703
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
0
from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ): '''simple docstring''' if start is None: snake_case_ : int = 0 if end is None: snake_case_ : int = len(__UpperCamelCase ) - 1 if start >= end: return snake_case_ : str = (start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: snake_case_ : str = sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" import math import tensorflow as tf from packaging import version def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : int = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : List[Any] = tf.cast(math.pi , x.dtype ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__UpperCamelCase , 3 )) )) return x * cdf def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) return x * tf.tanh(tf.math.softplus(__UpperCamelCase ) ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : int = tf.cast(0.044_715 , x.dtype ) snake_case_ : Optional[int] = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Tuple = tf.convert_to_tensor(__UpperCamelCase ) snake_case_ : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return tf.clip_by_value(_gelu(__UpperCamelCase ) , -1_0 , 1_0 ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=-1 ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = tf.split(__UpperCamelCase , 2 , axis=__UpperCamelCase ) return a * tf.math.sigmoid(__UpperCamelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' return tf.keras.activations.gelu(__UpperCamelCase , approximate=__UpperCamelCase ) __lowerCAmelCase : int = tf.keras.activations.gelu __lowerCAmelCase : Optional[Any] = approximate_gelu_wrap else: __lowerCAmelCase : List[Any] = _gelu __lowerCAmelCase : Any = _gelu_new __lowerCAmelCase : Dict = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
21
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase : Tuple = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=None , _lowercase=True , _lowercase=True , _lowercase=None , ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = size if size is not None else {"""height""": 2_0, """width""": 2_0} snake_case_ : List[str] = parent snake_case_ : Dict = batch_size snake_case_ : Any = num_channels snake_case_ : Dict = image_size snake_case_ : List[str] = min_resolution snake_case_ : str = max_resolution snake_case_ : List[Any] = size snake_case_ : Optional[int] = do_normalize snake_case_ : Optional[Any] = do_convert_rgb snake_case_ : Optional[int] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case_ : List[str] = patch_size if patch_size is not None else {"""height""": 1_6, """width""": 1_6} def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case_ : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = PixaStructImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.image_processor_tester.prepare_dummy_image() snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) snake_case_ : Dict = 2_0_4_8 snake_case_ : Any = image_processor(_lowercase , return_tensors="""pt""" , max_patches=_lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : Union[str, Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Any = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Optional[int] = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case_ : Dict = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowercase ): snake_case_ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches snake_case_ : Dict = """Hello""" snake_case_ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Tuple = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase , header_text=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) snake_case_ : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Tuple = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Tuple = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input snake_case_ : List[str] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Optional[Any] = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case_ : Tuple = 3 @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_convert_rgb""" ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : int = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Dict = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Any = image_processor( _lowercase , return_tensors="""pt""" , max_patches=_lowercase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
705
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = [0] * len(__UpperCamelCase ) snake_case_ : List[str] = [] snake_case_ : Any = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: snake_case_ : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case_ : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph __lowerCAmelCase : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
21
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''upernet''' def __init__( self , _lowercase=None , _lowercase=5_1_2 , _lowercase=0.02 , _lowercase=[1, 2, 3, 6] , _lowercase=True , _lowercase=0.4 , _lowercase=3_8_4 , _lowercase=2_5_6 , _lowercase=1 , _lowercase=False , _lowercase=2_5_5 , **_lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowercase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_lowercase , _lowercase ): snake_case_ : List[Any] = backbone_config.get("""model_type""" ) snake_case_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] snake_case_ : Any = config_class.from_dict(_lowercase ) snake_case_ : str = backbone_config snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = initializer_range snake_case_ : Union[str, Any] = pool_scales snake_case_ : Optional[Any] = use_auxiliary_head snake_case_ : Any = auxiliary_loss_weight snake_case_ : List[Any] = auxiliary_in_channels snake_case_ : str = auxiliary_channels snake_case_ : Dict = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : int = loss_ignore_index def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Optional[int] = self.backbone_config.to_dict() snake_case_ : Dict = self.__class__.model_type return output
706
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ : Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ : Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
21
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if b == 0: return (1, 0) (snake_case_) : Union[str, Any] = extended_euclid(__UpperCamelCase , a % b ) snake_case_ : Optional[int] = a // b return (y, x - k * y) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' (snake_case_) : List[str] = extended_euclid(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Union[str, Any] = na * na snake_case_ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' (snake_case_) : List[str] = extended_euclid(__UpperCamelCase , __UpperCamelCase ) if b < 0: snake_case_ : Dict = (b % n + n) % n return b def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Optional[int] = invert_modulo(__UpperCamelCase , __UpperCamelCase ), invert_modulo(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Union[str, Any] = na * na snake_case_ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
707
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ , snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
21
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase : Tuple = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __lowerCAmelCase : Optional[int] = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __lowerCAmelCase : Optional[int] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = NllbTokenizer _lowerCamelCase = [] _lowerCamelCase = [] def __init__( self , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token snake_case_ : int = legacy_behaviour super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , legacy_behaviour=_lowercase , **_lowercase , ) snake_case_ : Tuple = vocab_file snake_case_ : Dict = False if not self.vocab_file else True snake_case_ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(_lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Any = src_lang if src_lang is not None else """eng_Latn""" snake_case_ : int = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> List[int]: '''simple docstring''' snake_case_ : List[str] = [self.sep_token_id] snake_case_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) -> Dict: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : Optional[int] = src_lang snake_case_ : int = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) snake_case_ : List[Any] = self.convert_tokens_to_ids(_lowercase ) snake_case_ : str = tgt_lang_id return inputs def UpperCAmelCase__ ( self , _lowercase , _lowercase = "eng_Latn" , _lowercase = None , _lowercase = "fra_Latn" , **_lowercase , ) -> BatchEncoding: '''simple docstring''' snake_case_ : Any = src_lang snake_case_ : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Optional[Any] = self.convert_tokens_to_ids(_lowercase ) if self.legacy_behaviour: snake_case_ : List[str] = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : List[str] = [self.cur_lang_code] snake_case_ : Union[str, Any] = [self.eos_token_id] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Dict = self.convert_tokens_to_ids(_lowercase ) if self.legacy_behaviour: snake_case_ : Tuple = [] snake_case_ : Tuple = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : List[str] = [self.cur_lang_code] snake_case_ : int = [self.eos_token_id] snake_case_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : Any = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
708
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) snake_case_ : Any = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids snake_case_ : str = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids snake_case_ : int = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss snake_case_ : Union[str, Any] = -(labels.shape[-1] * loss.item()) snake_case_ : List[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
709
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __lowerCAmelCase : Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Dict = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: snake_case_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Union[str, Any] = value elif weight_type == "bias": snake_case_ : Optional[int] = value else: snake_case_ : List[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : List[Any] = [] snake_case_ : Dict = fairseq_model.state_dict() snake_case_ : Any = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Tuple = None for name, value in fairseq_dict.items(): snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : List[Any] = fairseq_model.proj snake_case_ : Tuple = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Union[str, Any] = True if "*" in mapped_key: snake_case_ : Union[str, Any] = name.split(__UpperCamelCase )[0].split(""".""" )[-2] snake_case_ : Tuple = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: snake_case_ : Dict = """weight_g""" elif "weight_v" in name: snake_case_ : List[str] = """weight_v""" elif "bias" in name: snake_case_ : List[str] = """bias""" elif "weight" in name: snake_case_ : List[str] = """weight""" else: snake_case_ : Tuple = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = full_name.split("""conv_layers.""" )[-1] snake_case_ : str = name.split(""".""" ) snake_case_ : Any = int(items[0] ) snake_case_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Dict = emb.weight.shape snake_case_ : List[Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) snake_case_ : Dict = emb.weight.data return lin_layer def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.readlines() snake_case_ : Optional[Any] = [line.split(""" """ )[0] for line in lines] snake_case_ : Optional[int] = len(__UpperCamelCase ) snake_case_ : Union[str, Any] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(__UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple , ): '''simple docstring''' snake_case_ : List[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[Any] = SpeechaTextaConfig.from_pretrained( __UpperCamelCase , vocab_size=__UpperCamelCase , decoder_layers=__UpperCamelCase , do_stable_layer_norm=__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) snake_case_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Any = WavaVecaModel(__UpperCamelCase ) snake_case_ : List[str] = recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) snake_case_ : List[str] = SpeechaTextaForCausalLM(__UpperCamelCase ) snake_case_ : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : int = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Any = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) snake_case_ : Tuple = False # add projection layer snake_case_ : int = nn.Parameter(projection_layer.weight ) snake_case_ : Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case_ : Dict = create_vocab_dict(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = SpeechaTextaTokenizer(os.path.join(__UpperCamelCase , """vocab.json""" ) ) tokenizer.save_pretrained(__UpperCamelCase ) snake_case_ : Dict = hf_wavavec.config.to_dict() snake_case_ : List[str] = tokenizer.pad_token_id snake_case_ : Union[str, Any] = tokenizer.bos_token_id snake_case_ : str = tokenizer.eos_token_id snake_case_ : str = """speech_to_text_2""" snake_case_ : Any = """wav2vec2""" snake_case_ : Dict = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __lowerCAmelCase : Any = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
710
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __lowerCAmelCase : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __lowerCAmelCase : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ): '''simple docstring''' return float((preds == labels).mean() ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ): '''simple docstring''' snake_case_ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Optional[int] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' snake_case_ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case_ : str = [(pred, label)] snake_case_ , snake_case_ : List[str] = [], [] for question, preds_labels in question_map.items(): snake_case_ , snake_case_ : Optional[Any] = zip(*__UpperCamelCase ) snake_case_ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average="""macro""" ) fas.append(__UpperCamelCase ) snake_case_ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) snake_case_ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) snake_case_ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) snake_case_ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": snake_case_ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] snake_case_ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
21
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ShapEPipeline _lowerCamelCase = ['''prompt'''] _lowerCamelCase = ['''prompt'''] _lowerCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 8 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_lowercase ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : int = { """num_attention_heads""": 2, """attention_head_dim""": 1_6, """embedding_dim""": self.time_input_dim, """num_embeddings""": 3_2, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } snake_case_ : Any = PriorTransformer(**_lowercase ) return model @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = { """param_shapes""": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 1_2, """background""": ( 0.1, 0.1, 0.1, ), } snake_case_ : str = ShapERenderer(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.dummy_prior snake_case_ : List[str] = self.dummy_text_encoder snake_case_ : Optional[Any] = self.dummy_tokenizer snake_case_ : Optional[Any] = self.dummy_renderer snake_case_ : Any = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_0_2_4 , prediction_type="""sample""" , use_karras_sigmas=_lowercase , clip_sample=_lowercase , clip_sample_range=1.0 , ) snake_case_ : Union[str, Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> int: '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_lowercase ) else: snake_case_ : Tuple = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : Optional[Any] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 3_2, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = """cpu""" snake_case_ : List[str] = self.get_dummy_components() snake_case_ : int = self.pipeline_class(**_lowercase ) snake_case_ : List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : List[Any] = pipe(**self.get_dummy_inputs(_lowercase ) ) snake_case_ : List[Any] = output.images[0] snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case_ : Any = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = torch_device == """cpu""" snake_case_ : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowercase , relax_max_difference=_lowercase , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Any = self.get_dummy_components() snake_case_ : str = self.pipeline_class(**_lowercase ) snake_case_ : List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Dict = 1 snake_case_ : Optional[int] = 2 snake_case_ : Tuple = self.get_dummy_inputs(_lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case_ : Dict = batch_size * [inputs[key]] snake_case_ : Tuple = pipe(**_lowercase , num_images_per_prompt=_lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) snake_case_ : Any = ShapEPipeline.from_pretrained("""openai/shap-e""" ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : int = pipe( """a shark""" , generator=_lowercase , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="""np""" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = 1.5 snake_case_ : Any = int(factor * num_class_images ) snake_case_ : Any = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=__UpperCamelCase ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: snake_case_ : Dict = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: snake_case_ : Union[str, Any] = int(factor * num_images ) snake_case_ : str = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) snake_case_ : Optional[Any] = 0 snake_case_ : int = 0 snake_case_ : str = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F'{class_data_dir}/caption.txt' , """w""" ) as fa, open(F'{class_data_dir}/urls.txt' , """w""" ) as fa, open( F'{class_data_dir}/images.txt' , """w""" ) as fa: while total < num_class_images: snake_case_ : int = class_images[count] count += 1 try: snake_case_ : List[Any] = requests.get(images["""url"""] ) if img.status_code == 2_0_0: snake_case_ : List[str] = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'{class_data_dir}/images/{total}.jpg' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=2_0_0 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
712
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''sentencepiece'''] def __init__( self , *_lowercase , **_lowercase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
713
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = RoFormerTokenizer _lowerCamelCase = RoFormerTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **_lowercase ) -> str: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" snake_case_ : int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[str] = self.get_tokenizer() snake_case_ , snake_case_ : Optional[Any] = self.get_chinese_input_output_texts() snake_case_ : List[str] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : str = tokens + [tokenizer.unk_token] snake_case_ : Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : int = self.get_rust_tokenizer() snake_case_ , snake_case_ : List[Any] = self.get_chinese_input_output_texts() snake_case_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , output_text.split() ) snake_case_ : Optional[int] = tokens + [tokenizer.unk_token] snake_case_ : Union[str, Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass
21
0
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : Any = size snake_case_ : Tuple = [0] * size snake_case_ : Dict = [0] * size @staticmethod def UpperCAmelCase__ ( _lowercase ) -> int: '''simple docstring''' return index | (index + 1) @staticmethod def UpperCAmelCase__ ( _lowercase ) -> int: '''simple docstring''' return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> None: '''simple docstring''' snake_case_ : List[str] = value while index < self.size: snake_case_ : Any = self.get_prev(_lowercase ) + 1 if current_left_border == index: snake_case_ : Tuple = value else: snake_case_ : Dict = max(_lowercase , _lowercase , _lowercase ) snake_case_ : str = self.get_next(_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> int: '''simple docstring''' right -= 1 # Because of right is exclusive snake_case_ : Tuple = 0 while left <= right: snake_case_ : str = self.get_prev(_lowercase ) if left <= current_left: snake_case_ : int = max(_lowercase , self.tree[right] ) snake_case_ : Dict = current_left else: snake_case_ : List[Any] = max(_lowercase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : bool = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis snake_case_ : List[Any] = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] snake_case_ : Dict = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Optional[int] = primes[:idx] break snake_case_ , snake_case_ : Tuple = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : List[str] = False for r in range(__UpperCamelCase ): snake_case_ : int = pow(__UpperCamelCase , d * 2**r , __UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCAmelCase ( ): '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
21
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ['''input_features''', '''is_longer'''] def __init__( self , _lowercase=6_4 , _lowercase=4_8_0_0_0 , _lowercase=4_8_0 , _lowercase=1_0 , _lowercase=1_0_2_4 , _lowercase=0.0 , _lowercase=False , _lowercase = 0 , _lowercase = 1_4_0_0_0 , _lowercase = None , _lowercase = "fusion" , _lowercase = "repeatpad" , **_lowercase , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) snake_case_ : Optional[Any] = top_db snake_case_ : int = truncation snake_case_ : Tuple = padding snake_case_ : Any = fft_window_size snake_case_ : Optional[int] = (fft_window_size >> 1) + 1 snake_case_ : Dict = hop_length snake_case_ : List[str] = max_length_s snake_case_ : str = max_length_s * sampling_rate snake_case_ : str = sampling_rate snake_case_ : Dict = frequency_min snake_case_ : Optional[Any] = frequency_max snake_case_ : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm=_lowercase , mel_scale="""htk""" , ) snake_case_ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCAmelCase__ ( self ) -> Dict[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ) -> np.ndarray: '''simple docstring''' snake_case_ : str = spectrogram( _lowercase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowercase , log_mel="""dB""" , ) return log_mel_spectrogram.T def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : Any = [0] # randomly choose index for each part snake_case_ : List[str] = np.random.choice(ranges[0] ) snake_case_ : List[str] = np.random.choice(ranges[1] ) snake_case_ : Union[str, Any] = np.random.choice(ranges[2] ) snake_case_ : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] snake_case_ : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] snake_case_ : Optional[Any] = torch.tensor(mel[None, None, :] ) snake_case_ : Tuple = torch.nn.functional.interpolate( _lowercase , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=_lowercase ) snake_case_ : Optional[Any] = mel_shrink[0][0].numpy() snake_case_ : Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ : List[str] = len(_lowercase ) - max_length snake_case_ : Union[str, Any] = np.random.randint(0 , overflow + 1 ) snake_case_ : Tuple = waveform[idx : idx + max_length] snake_case_ : Optional[Any] = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ : Optional[Any] = self._np_extract_fbank_features(_lowercase , self.mel_filters ) snake_case_ : Optional[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ : List[str] = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ : int = False else: snake_case_ : List[str] = self._random_mel_fusion(_lowercase , _lowercase , _lowercase ) snake_case_ : List[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: snake_case_ : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ : str = int(max_length / len(_lowercase ) ) snake_case_ : Union[str, Any] = np.stack(np.tile(_lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ : List[str] = int(max_length / len(_lowercase ) ) snake_case_ : Tuple = np.stack(np.tile(_lowercase , _lowercase ) ) snake_case_ : int = np.pad(_lowercase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": snake_case_ : Dict = self._np_extract_fbank_features(_lowercase , self.mel_filters ) snake_case_ : Union[str, Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ : int = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ) -> BatchFeature: '''simple docstring''' snake_case_ : Union[str, Any] = truncation if truncation is not None else self.truncation snake_case_ : Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ : Optional[Any] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) snake_case_ : Optional[int] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : List[str] = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): snake_case_ : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[int] = [np.asarray(_lowercase )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ : Dict = [ self._get_input_mel(_lowercase , max_length if max_length else self.nb_max_samples , _lowercase , _lowercase ) for waveform in raw_speech ] snake_case_ : int = [] snake_case_ : str = [] for mel, longer in padded_inputs: input_mel.append(_lowercase ) is_longer.append(_lowercase ) if truncation == "fusion" and sum(_lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ : Dict = np.random.randint(0 , len(_lowercase ) ) snake_case_ : List[str] = True if isinstance(input_mel[0] , _lowercase ): snake_case_ : int = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ : Dict = [[longer] for longer in is_longer] snake_case_ : str = {"""input_features""": input_mel, """is_longer""": is_longer} snake_case_ : Tuple = BatchFeature(_lowercase ) if return_tensors is not None: snake_case_ : Any = input_features.convert_to_tensors(_lowercase ) return input_features
715
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase = "" , _lowercase = False ) -> None: '''simple docstring''' snake_case_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case_ : int = is_leaf snake_case_ : Union[str, Any] = prefix def UpperCAmelCase__ ( self , _lowercase ) -> tuple[str, str, str]: '''simple docstring''' snake_case_ : Optional[int] = 0 for q, w in zip(self.prefix , _lowercase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' for word in words: self.insert(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> None: '''simple docstring''' if self.prefix == word: snake_case_ : Dict = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case_ : Optional[int] = RadixNode(prefix=_lowercase , is_leaf=_lowercase ) else: snake_case_ : List[Any] = self.nodes[word[0]] snake_case_ : Any = incoming_node.match( _lowercase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_lowercase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case_ : Any = remaining_prefix snake_case_ : int = self.nodes[matching_string[0]] snake_case_ : int = RadixNode(_lowercase , _lowercase ) snake_case_ : List[Any] = aux_node if remaining_word == "": snake_case_ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> bool: '''simple docstring''' snake_case_ : List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: snake_case_ : Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> bool: '''simple docstring''' snake_case_ : List[str] = self.nodes.get(word[0] , _lowercase ) if not incoming_node: return False else: snake_case_ : Optional[int] = incoming_node.match( _lowercase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_lowercase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case_ : List[str] = list(self.nodes.values() )[0] snake_case_ : Dict = merging_node.is_leaf self.prefix += merging_node.prefix snake_case_ : List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case_ : int = False # If there is 1 edge, we merge it with its child else: snake_case_ : Tuple = list(incoming_node.nodes.values() )[0] snake_case_ : Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case_ : Union[str, Any] = merging_node.nodes return True def UpperCAmelCase__ ( self , _lowercase = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = """banana bananas bandana band apple all beast""".split() snake_case_ : List[str] = RadixNode() root.insert_many(__UpperCamelCase ) assert all(root.find(__UpperCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCAmelCase ( ): '''simple docstring''' assert test_trie() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = RadixNode() snake_case_ : Any = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__UpperCamelCase ) print("""Words:""" , __UpperCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
716
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
0
"""simple docstring""" from functools import reduce __lowerCAmelCase : Optional[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCAmelCase ( __UpperCamelCase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCamelCase , __UpperCamelCase : str(int(__UpperCamelCase ) * int(__UpperCamelCase ) ) , n[i : i + 1_3] ) ) for i in range(len(__UpperCamelCase ) - 1_2 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
717
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : List[str] = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : int = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = """imagenet-1k-id2label.json""" snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Any = """huggingface/label-files""" snake_case_ : Tuple = num_labels snake_case_ : Dict = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case_ : str = {int(__UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} snake_case_ : Dict = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case_ : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case_ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case_ : Optional[int] = [2, 2, 2_0] snake_case_ : str = [3, 1_2, 1_6] snake_case_ : Any = [1_9_2, 7_6_8, 1_0_2_4] snake_case_ : Union[str, Any] = CvtForImageClassification(__UpperCamelCase ) snake_case_ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case_ : List[Any] = image_size snake_case_ : str = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) snake_case_ : Any = OrderedDict() snake_case_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case_ : Optional[Any] = list_of_state_dict + cls_token(__UpperCamelCase ) snake_case_ : str = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): snake_case_ : List[str] = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) snake_case_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): snake_case_ : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
21
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Any ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[Any] = features.copy() if features else default_expected_features snake_case_ : Union[str, Any] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Dict = tmp_path / """cache""" snake_case_ : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple ): '''simple docstring''' if issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Union[str, Any] = parquet_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Any = [parquet_path] snake_case_ : int = tmp_path / """cache""" snake_case_ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Union[str, Any] = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=("train",) ): '''simple docstring''' assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: snake_case_ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[int] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = tmp_path / """cache""" snake_case_ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : Optional[int] = features.copy() if features else default_expected_features snake_case_ : Optional[int] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Optional[Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): '''simple docstring''' if split: snake_case_ : Optional[int] = {split: parquet_path} else: snake_case_ : Tuple = """train""" snake_case_ : List[Any] = {"""train""": parquet_path, """test""": parquet_path} snake_case_ : Any = tmp_path / """cache""" snake_case_ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case_ : str = ParquetDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) snake_case_ : Optional[int] = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Tuple = str(shared_datadir / """test_image_rgb.jpg""" ) snake_case_ : Union[str, Any] = {"""image""": [image_path]} snake_case_ : Optional[int] = Features({"""image""": Image()} ) snake_case_ : str = Dataset.from_dict(__UpperCamelCase , features=__UpperCamelCase ) snake_case_ : Optional[int] = ParquetDatasetWriter(__UpperCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case_ : Optional[int] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features snake_case_ : int = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' assert get_writer_batch_size(__UpperCamelCase ) == expected
718
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : str = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) def UpperCAmelCase__ ( self , **_lowercase ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = """tester""" snake_case_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Dict = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) snake_case_ : List[Any] = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ , snake_case_ : Union[str, Any] = self.get_input_output_texts(_lowercase ) snake_case_ : List[Any] = tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case_ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertNotEqual(len(_lowercase ) , 0 ) snake_case_ : str = tokenizer.decode(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _lowercase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass
21
0
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm __lowerCAmelCase : Optional[int] = 2048 __lowerCAmelCase : int = 4096 __lowerCAmelCase : Union[str, Any] = 42 __lowerCAmelCase : List[Any] = os.environ.pop('''PROCESS_TRAIN''', '''false''') __lowerCAmelCase : Union[str, Any] = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' def choose_first(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=False ): assert isinstance(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: snake_case_ : Optional[int] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case_ : Optional[int] = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a snake_case_ : str = {"""id""": example["""id"""]} snake_case_ : Tuple = example["""annotations"""] snake_case_ : Dict = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case_ : Union[str, Any] = ["""yes"""] if 1 in yes_no_answer else ["""no"""] snake_case_ : List[Any] = [] snake_case_ : Tuple = [] snake_case_ : Optional[Any] = ["""<cls>"""] else: snake_case_ : Dict = ["""short"""] snake_case_ : Any = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available snake_case_ : Optional[int] = ["""long"""] snake_case_ : List[str] = choose_first(annotation["""long_answer"""] , is_long_answer=__UpperCamelCase ) snake_case_ : Tuple = [] answer.update(__UpperCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case_ : Optional[Any] = True else: snake_case_ : List[str] = False snake_case_ : List[Any] = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , __UpperCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' snake_case_ : Dict = _get_single_answer(__UpperCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case_ : Any = example["""document"""]["""tokens"""] snake_case_ : Optional[int] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(__UpperCamelCase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case_ : Tuple = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case_ : Union[str, Any] = example["""document"""]["""tokens"""] snake_case_ : Dict = answer["""start_token"""] snake_case_ : Union[str, Any] = answer["""end_token"""] snake_case_ : Tuple = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case_ : int = """ """.join(context[start_token:end_token] ) # checking above code if assertion: snake_case_ : List[Any] = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] snake_case_ : Dict = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] snake_case_ : Optional[Any] = """ """.join([old[i] for i in range(len(__UpperCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , __UpperCamelCase , end="""\n""" ) print("""Old:""" , __UpperCamelCase , end="""\n\n""" ) return { "context": " ".join(__UpperCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict=2_0_4_8 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Optional[int]=True ): '''simple docstring''' snake_case_ : Tuple = get_context_and_ans(__UpperCamelCase , assertion=__UpperCamelCase ) snake_case_ : Optional[int] = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case_ : str = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids snake_case_ : Dict = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case_ : Tuple = [] snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = input_ids[:q_len] snake_case_ : List[Any] = range(__UpperCamelCase , len(__UpperCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case_ : Any = i + max_length - q_len snake_case_ : List[str] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__UpperCamelCase ), "end_token": [-1_0_0] * len(__UpperCamelCase ), "category": category, }, } snake_case_ : List[Any] = out["""context"""].split() snake_case_ : Union[str, Any] = splitted_context[answer["""end_token"""]] snake_case_ : str = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=__UpperCamelCase , ).input_ids ) snake_case_ : Tuple = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=__UpperCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case_ : str = len(tokenizer(__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case_ : List[str] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive snake_case_ : Optional[int] = answer["""start_token"""] snake_case_ : List[str] = answer["""end_token"""] if assertion: snake_case_ : str = tokenizer.decode(__UpperCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , __UpperCamelCase , end="""\n\n""" ) if len(__UpperCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case_ : int = input_ids[:q_len] snake_case_ : Tuple = range(__UpperCamelCase , len(__UpperCamelCase ) , max_length - doc_stride ) snake_case_ : Dict = [] snake_case_ : Optional[Any] = [] snake_case_ : Dict = [] snake_case_ : Dict = [] # null, yes, no, long, short for i in doc_start_indices: snake_case_ : List[Any] = i + max_length - q_len snake_case_ : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case_ : Any = start_token - i + q_len snake_case_ : Tuple = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: snake_case_ : Union[str, Any] = -1_0_0 snake_case_ : Union[str, Any] = -1_0_0 answers_category.append("""null""" ) snake_case_ : List[str] = inputs[-1][start_token : end_token + 1] answers_start_token.append(__UpperCamelCase ) answers_end_token.append(__UpperCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(__UpperCamelCase ) ) print("""Old:""" , tokenizer.decode(__UpperCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int=2_0_4_8 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' snake_case_ : int = get_strided_contexts_and_ans( __UpperCamelCase , __UpperCamelCase , doc_stride=__UpperCamelCase , max_length=__UpperCamelCase , assertion=__UpperCamelCase , ) return example def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' with jsonlines.open(__UpperCamelCase , """a""" ) as writer: for example in tqdm(__UpperCamelCase , total=len(__UpperCamelCase ) , desc="""Saving samples ... """ ): snake_case_ : int = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowerCAmelCase : Tuple = load_dataset('''natural_questions''') __lowerCAmelCase : Optional[Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') __lowerCAmelCase : Any = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] __lowerCAmelCase : Tuple = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } __lowerCAmelCase : Optional[int] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowerCAmelCase : int = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) __lowerCAmelCase : str = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [] snake_case_ : Optional[Any] = 1_1 snake_case_ : Any = int("""1""" + """0""" * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 snake_case_ : Optional[Any] = 1_0 return solutions def __lowerCAmelCase ( __UpperCamelCase : int = 2 ): '''simple docstring''' snake_case_ : Dict = 1.0 for fraction in fraction_list(__UpperCamelCase ): snake_case_ : Dict = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
720
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : int = 1_0 snake_case_ : Any = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case_ : Tuple = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files __lowerCAmelCase : List[Any] = '''\ Text data. Second line of data.''' @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case_ : Optional[Any] = FILE_CONTENT with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' import bza snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case_ : Any = bytes(__UpperCamelCase , """utf-8""" ) with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' import gzip snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case_ : List[Any] = bytes(__UpperCamelCase , """utf-8""" ) with gzip.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case_ : Optional[Any] = bytes(__UpperCamelCase , """utf-8""" ) with lza.frame.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__UpperCamelCase , """w""" ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ): '''simple docstring''' import tarfile snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' import lzma snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case_ : str = bytes(__UpperCamelCase , """utf-8""" ) with lzma.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): '''simple docstring''' import zipfile snake_case_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case_ : Tuple = bytes(__UpperCamelCase , """utf-8""" ) with zstd.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case_ : List[str] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase ) return filename __lowerCAmelCase : List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __lowerCAmelCase : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __lowerCAmelCase : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : int = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __lowerCAmelCase : Any = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[int] = datasets.Dataset.from_dict(__UpperCamelCase ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: snake_case_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : Optional[Any] = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__UpperCamelCase , """w""" , newline="""""" ) as f: snake_case_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : int ): '''simple docstring''' import bza snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__UpperCamelCase , """rb""" ) as f: snake_case_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , """wb""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case_ : Any = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__UpperCamelCase , """wb""" ) as f: snake_case_ : Optional[int] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) snake_case_ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : Any = {"""data""": DATA} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case_ : List[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__UpperCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' import gzip snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' import gzip snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__UpperCamelCase , """rb""" ) as orig_file: with gzip.open(__UpperCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__UpperCamelCase , """w""" ) as f: f.add(__UpperCamelCase , arcname=os.path.join("""nested""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : str = ["""0""", """1""", """2""", """3"""] snake_case_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : int = ["""0""", """1""", """2""", """3"""] snake_case_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' snake_case_ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case_ : str = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__UpperCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__UpperCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__UpperCamelCase , """w""" ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : str = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
21
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # TODO Update this __lowerCAmelCase : List[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''esm''' def __init__( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_0_2_6 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase="absolute" , _lowercase=True , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowercase , mask_token_id=_lowercase , **_lowercase ) snake_case_ : List[str] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Any = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Optional[Any] = position_embedding_type snake_case_ : str = use_cache snake_case_ : Any = emb_layer_norm_before snake_case_ : Optional[int] = token_dropout snake_case_ : Union[str, Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) snake_case_ : Tuple = EsmFoldConfig() elif isinstance(_lowercase , _lowercase ): snake_case_ : List[Any] = EsmFoldConfig(**_lowercase ) snake_case_ : Tuple = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) snake_case_ : Union[str, Any] = get_default_vocab_list() else: snake_case_ : List[str] = vocab_list else: snake_case_ : Any = None snake_case_ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , _lowercase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , _lowercase ): snake_case_ : Any = self.esmfold_config.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = None _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 0 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = 128 _lowerCamelCase = None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if self.trunk is None: snake_case_ : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , _lowercase ): snake_case_ : Optional[Any] = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = asdict(self ) snake_case_ : List[Any] = self.trunk.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 48 _lowerCamelCase = 1_024 _lowerCamelCase = 128 _lowerCamelCase = 32 _lowerCamelCase = 32 _lowerCamelCase = 32 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = False _lowerCamelCase = 4 _lowerCamelCase = 128 _lowerCamelCase = None def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if self.structure_module is None: snake_case_ : List[str] = StructureModuleConfig() elif isinstance(self.structure_module , _lowercase ): snake_case_ : Union[str, Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) snake_case_ : List[Any] = self.sequence_state_dim // self.sequence_head_width snake_case_ : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = asdict(self ) snake_case_ : int = self.structure_module.to_dict() return output @dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 384 _lowerCamelCase = 128 _lowerCamelCase = 16 _lowerCamelCase = 128 _lowerCamelCase = 12 _lowerCamelCase = 4 _lowerCamelCase = 8 _lowerCamelCase = 0.1 _lowerCamelCase = 8 _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 7 _lowerCamelCase = 10 _lowerCamelCase = 1E-8 _lowerCamelCase = 1E5 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return asdict(self ) def __lowerCAmelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
721
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''efficientnet''' def __init__( self : Optional[int] ,A_ : int = 3 ,A_ : int = 600 ,A_ : float = 2.0 ,A_ : float = 3.1 ,A_ : int = 8 ,A_ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,A_ : List[int] = [32, 16, 24, 40, 80, 112, 192] ,A_ : List[int] = [16, 24, 40, 80, 112, 192, 320] ,A_ : List[int] = [] ,A_ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,A_ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,A_ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,A_ : float = 0.25 ,A_ : str = "swish" ,A_ : int = 2560 ,A_ : str = "mean" ,A_ : float = 0.02 ,A_ : float = 0.0_01 ,A_ : float = 0.99 ,A_ : float = 0.5 ,A_ : float = 0.2 ,**A_ : List[Any] ,) -> Optional[Any]: super().__init__(**A_ ) A = num_channels A = image_size A = width_coefficient A = depth_coefficient A = depth_divisor A = kernel_sizes A = in_channels A = out_channels A = depthwise_padding A = strides A = num_block_repeats A = expand_ratios A = squeeze_expansion_ratio A = hidden_act A = hidden_dim A = pooling_type A = initializer_range A = batch_norm_eps A = batch_norm_momentum A = dropout_rate A = drop_connect_rate A = sum(A_ ) * 4 class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: return 1e-5
22
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = XLMProphetNetTokenizer _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[str] = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A = XLMProphetNetTokenizer(A_ ,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: A = '[PAD]' A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) ,A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'[PAD]' ) self.assertEqual(vocab_keys[1] ,'[CLS]' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(A_ ) ,1012 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size ,1012 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = XLMProphetNetTokenizer(A_ ,keep_accents=A_ ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) A = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] ,) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = 'Hello World!' A = [3_5389, 6672, 49, 2] self.assertListEqual(A_ ,self.big_tokenizer.encode(A_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: # fmt: off A = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ ,model_name='microsoft/xprophetnet-large-wiki100-cased' ,revision='1acad1643ddd54a44df6a1b797ada8373685d90e' ,)
22
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
1
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowercase = logging.get_logger(__name__) _lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def _snake_case ( snake_case__ : List[DatasetType] , snake_case__ : Optional[List[float]] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[DatasetInfo] = None , snake_case__ : Optional[NamedSplit] = None , snake_case__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' ) if i == 0: A , A = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) else: return _interleave_iterable_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) def _snake_case ( snake_case__ : List[DatasetType] , snake_case__ : Optional[DatasetInfo] = None , snake_case__ : Optional[NamedSplit] = None , snake_case__ : int = 0 , ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' ) if i == 0: A , A = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ ) else: return _concatenate_iterable_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
22
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
1
"""simple docstring""" import numpy as np def _snake_case ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float = 1e-12 , snake_case__ : int = 100 , ): assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) A = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. A = False A = 0 A = 0 A = 1e12 while not convergence: # Multiple matrix by the vector. A = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. A = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) A = vector.conj().T if is_complex else vector.T A = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: A = True A = lambda_ if is_complex: A = np.real(lambda_ ) return lambda_, vector def _snake_case ( ): A = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) A = np.array([41, 4, 20] ) A = real_input_matrix.astype(np.complexaaa ) A = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T A = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": A = real_input_matrix A = real_vector elif problem_type == "complex": A = complex_input_matrix A = complex_vector # Our implementation. A , A = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). A , A = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _snake_case ( snake_case__ : Dict ): A = os.path.join(args.tf_model_dir , 'parameters.json' ) A = json.loads(open(snake_case__ ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('.pt' ): A = args.output + '.pt' A = OrderedDict() with tf.device('/CPU:0' ): A = tf.train.load_checkpoint(args.tf_model_dir ) A = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A = reader.get_tensor(snake_case__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): A = int(key_name[9] ) elif key_name.startswith('pasts/out' ): A = 8 A = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.startswith('model/moe' ): A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): A = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.endswith('/softmlp/kernel' ): A = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): A = key_name[-9:-7] for i in range(16 ): A = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) A = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A = torch.tensor(snake_case__ ) elif key_name.startswith('model/mlp' ): A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): A = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.endswith('/p1/bias' ): A = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif key_name.endswith('/p2/kernel' ): A = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.endswith('/p2/bias' ): A = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif key_name.startswith('model/ln' ): A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): A = 'model.blocks.%d.feed_forward.norm.bias' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif key_name.endswith('/g' ): A = 'model.blocks.%d.feed_forward.norm.weight' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif key_name.startswith('model/att' ): A = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): A = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A = state[:, 0, :, :] A = state[:, 1, :, :] A = state[:, 2, :, :] A = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player A = torch.tensor(snake_case__ ) A = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player A = torch.tensor(snake_case__ ) A = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player A = torch.tensor(snake_case__ ) elif key_name.endswith('/o/kernel' ): A = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player A = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name.startswith('model/an' ): A = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): A = 'model.blocks.%d.self_attn.norm.bias' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif key_name.endswith('/g' ): A = 'model.blocks.%d.self_attn.norm.weight' % player A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): A = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] A = 'model.%s.weight' % nlayer A = vnp.copy() # same in embedded A = torch.tensor(snake_case__ ) if key_name.startswith('model/wte' ): A = 'lm_head.weight' A = vnp.copy() # same in embedded A = torch.tensor(snake_case__ ) elif key_name.startswith('model/wob' ): A = 'final_logits_bias' A = vnp.copy() # same in embedded A = state.reshape((1, -1) ) A = torch.tensor(snake_case__ ) elif key_name == "model/dense/kernel": A = 'model.last_project.weight' A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A = torch.tensor(snake_case__ ) elif key_name == "model/dense_1/bias": A = 'model.last_project.bias' A = vnp.copy() # same because it is one dimensional A = torch.tensor(snake_case__ ) torch.save(snake_case__ , args.output ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') _lowercase = parser.parse_args() convert_tf_gptsan_to_pt(args)
22
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowercase = ['''small''', '''medium''', '''large'''] _lowercase = '''lm_head.decoder.weight''' _lowercase = '''lm_head.weight''' def _snake_case ( snake_case__ : str , snake_case__ : str ): A = torch.load(snake_case__ ) A = d.pop(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _lowercase = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowercase = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") _lowercase = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
22
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''MCTCTFeatureExtractor''' _lowerCamelCase: Optional[int] = '''AutoTokenizer''' def __init__( self : str ,A_ : Tuple ,A_ : int ) -> List[str]: super().__init__(A_ ,A_ ) A = self.feature_extractor A = False def __call__( self : Any ,*A_ : int ,**A_ : str ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ ,**A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,A_ ) A = kwargs.pop('sampling_rate' ,A_ ) A = kwargs.pop('text' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A_ ,*A_ ,sampling_rate=A_ ,**A_ ) if text is not None: A = self.tokenizer(A_ ,**A_ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> int: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,*A_ : Union[str, Any] ,**A_ : List[Any] ) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ ,**A_ ) A = kwargs.pop('input_features' ,A_ ) A = kwargs.pop('labels' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(A_ ,*A_ ,**A_ ) if labels is not None: A = self.tokenizer.pad(A_ ,**A_ ) if labels is None: return input_features elif input_features is None: return labels else: A = labels['input_ids'] return input_features def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : Dict ,**A_ : List[str] ) -> List[str]: return self.tokenizer.decode(*A_ ,**A_ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
"""simple docstring""" def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : int , snake_case__ : int , snake_case__ : set ): A , A = len(snake_case__ ), len(grid[0] ) if ( min(snake_case__ , snake_case__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A = 0 count += depth_first_search(snake_case__ , row + 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , row - 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col + 1 , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col - 1 , snake_case__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''megatron-bert''' def __init__( self : Dict ,A_ : Optional[int]=2_9056 ,A_ : Tuple=1024 ,A_ : Optional[Any]=24 ,A_ : List[str]=16 ,A_ : Optional[Any]=4096 ,A_ : str="gelu" ,A_ : List[str]=0.1 ,A_ : Tuple=0.1 ,A_ : int=512 ,A_ : Optional[Any]=2 ,A_ : str=0.02 ,A_ : Optional[Any]=1e-12 ,A_ : Tuple=0 ,A_ : Tuple="absolute" ,A_ : str=True ,**A_ : int ,) -> Optional[Any]: super().__init__(pad_token_id=A_ ,**A_ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , snake_case__ ) A = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A = dataset_size < in_memory_max_size else: A = False A = is_small_dataset(snake_case__ ) assert result == expected
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
"""simple docstring""" import qiskit def _snake_case ( snake_case__ : int , snake_case__ : int ): A = qiskit.Aer.get_backend('aer_simulator' ) A = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A = qiskit.execute(snake_case__ , snake_case__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case__ ) if __name__ == "__main__": _lowercase = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
22
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
1
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''altclip_text_model''' def __init__( self : Tuple ,A_ : Optional[Any]=25_0002 ,A_ : str=1024 ,A_ : int=24 ,A_ : str=16 ,A_ : Dict=4096 ,A_ : Optional[Any]="gelu" ,A_ : Optional[Any]=0.1 ,A_ : Any=0.1 ,A_ : Any=514 ,A_ : str=1 ,A_ : Union[str, Any]=0.02 ,A_ : Tuple=0.02 ,A_ : Optional[int]=1e-05 ,A_ : Optional[Any]=1 ,A_ : Tuple=0 ,A_ : List[str]=2 ,A_ : str="absolute" ,A_ : Optional[int]=True ,A_ : Union[str, Any]=768 ,**A_ : Optional[Any] ,) -> Dict: super().__init__(pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,**A_ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = initializer_factor A = layer_norm_eps A = position_embedding_type A = use_cache A = project_dim class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''altclip_vision_model''' def __init__( self : Tuple ,A_ : str=768 ,A_ : List[Any]=3072 ,A_ : List[Any]=512 ,A_ : str=12 ,A_ : Optional[Any]=12 ,A_ : Any=3 ,A_ : Tuple=224 ,A_ : Tuple=32 ,A_ : int="quick_gelu" ,A_ : Optional[int]=1e-5 ,A_ : Tuple=0.0 ,A_ : Dict=0.02 ,A_ : List[str]=1.0 ,**A_ : List[str] ,) -> List[str]: super().__init__(**A_ ) A = hidden_size A = intermediate_size A = projection_dim A = num_hidden_layers A = num_attention_heads A = num_channels A = patch_size A = image_size A = initializer_range A = initializer_factor A = attention_dropout A = layer_norm_eps A = hidden_act @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,A_ : Union[str, os.PathLike] ,**A_ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) A , A = cls.get_config_dict(A_ ,**A_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ ,**A_ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = '''altclip''' _lowerCamelCase: Union[str, Any] = True def __init__( self : List[str] ,A_ : Optional[Any]=None ,A_ : List[Any]=None ,A_ : Optional[int]=768 ,A_ : Optional[Any]=2.65_92 ,**A_ : str ) -> Optional[Any]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). A = kwargs.pop('text_config_dict' ,A_ ) A = kwargs.pop('vision_config_dict' ,A_ ) super().__init__(**A_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A = {} # This is the complete result when using `text_config_dict`. A = AltCLIPTextConfig(**A_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(A_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A = {} # This is the complete result when using `vision_config_dict`. A = AltCLIPVisionConfig(**A_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A = { str(A_ ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(A_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: A = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) A = AltCLIPTextConfig(**A_ ) A = AltCLIPVisionConfig(**A_ ) A = projection_dim A = logit_scale_init_value A = 1.0 @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,A_ : AltCLIPTextConfig ,A_ : AltCLIPVisionConfig ,**A_ : List[Any] ) -> Any: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = copy.deepcopy(self.__dict__ ) A = self.text_config.to_dict() A = self.vision_config.to_dict() A = self.__class__.model_type return output
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _snake_case ( snake_case__ : List[Any] ): A = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] A = True if 'large' in model_name or 'huge' in model_name else False A = True if 'large' in model_name or 'huge' in model_name else False A = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: A = [3, 3, 3, 3] A = [5, 5, 5, 5] elif "fl4" in model_name: A = [4, 4, 4, 4] A = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: A = [3, 3, 3, 3] if "lrf" in model_name: A = [3, 3, 3, 3] else: A = [2, 2, 2, 2] if "tiny" in model_name: A = 96 elif "small" in model_name: A = 96 elif "base" in model_name: A = 128 elif "large" in model_name: A = 192 elif "xlarge" in model_name: A = 256 elif "huge" in model_name: A = 352 # set label information A = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: A = 'imagenet-22k-id2label.json' else: A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = FocalNetConfig( embed_dim=snake_case__ , depths=snake_case__ , focal_levels=snake_case__ , focal_windows=snake_case__ , use_conv_embed=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , use_post_layernorm=snake_case__ , use_layerscale=snake_case__ , ) return config def _snake_case ( snake_case__ : int ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "encoder.layers" in name: A = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: A = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: A = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: A = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: A = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: A = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'focalnet.' + name return name def _snake_case ( snake_case__ : str , snake_case__ : Any , snake_case__ : Dict=False ): # fmt: off A = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on A = model_name_to_url[model_name] print('Checkpoint URL: ' , snake_case__ ) A = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): A = state_dict.pop(snake_case__ ) A = val A = get_focalnet_config(snake_case__ ) A = FocalNetForImageClassification(snake_case__ ) model.eval() # load state dict model.load_state_dict(snake_case__ ) # verify conversion A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = BitImageProcessor( do_resize=snake_case__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case__ , crop_size=224 , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = processor(images=snake_case__ , return_tensors='pt' ) A = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) A = image_transforms(snake_case__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , snake_case__ , atol=1e-4 ) A = model(**snake_case__ ) A = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": A = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": A = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": A = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": A = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": A = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": A = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _lowercase = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod @abstractmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Optional[int]: raise NotImplementedError() @abstractmethod def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: raise NotImplementedError()
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): _lowercase = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: _lowercase = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _snake_case ( snake_case__ : Tuple ): A = (images / 2 + 0.5).clamp(0 , 1 ) A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = numpy_to_pil(snake_case__ ) return images def _snake_case ( snake_case__ : Any ): if images.ndim == 3: A = images[None, ...] A = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images A = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: A = [Image.fromarray(snake_case__ ) for image in images] return pil_images
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _snake_case ( snake_case__ : Optional[int] ): A = model.config A = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) A = MBartConfig( is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , add_cross_attention=snake_case__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=snake_case__ , add_final_layer_norm=snake_case__ , ) return encoder_config, decoder_config def _snake_case ( snake_case__ : str ): if "encoder.model" in name: A = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: A = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": A = 'encoder.layernorm.weight' if name == "encoder.norm.bias": A = 'encoder.layernorm.bias' return name def _snake_case ( snake_case__ : Optional[int] , snake_case__ : str ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "qkv" in key: A = key.split('.' ) A = int(key_split[3] ) A = int(key_split[5] ) A = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[dim : dim * 2] A = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A = val return orig_state_dict def _snake_case ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : List[Any]=False ): # load original model A = DonutModel.from_pretrained(snake_case__ ).eval() # load HuggingFace model A , A = get_configs(snake_case__ ) A = DonutSwinModel(snake_case__ ) A = MBartForCausalLM(snake_case__ ) A = VisionEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) model.eval() A = original_model.state_dict() A = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify results on scanned document A = load_dataset('hf-internal-testing/example-documents' ) A = dataset['test'][0]['image'].convert('RGB' ) A = XLMRobertaTokenizerFast.from_pretrained(snake_case__ , from_slow=snake_case__ ) A = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A = DonutProcessor(snake_case__ , snake_case__ ) A = processor(snake_case__ , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' A = 'When is the coffee break?' A = task_prompt.replace('{user_input}' , snake_case__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A = 'hello world' else: raise ValueError('Model name not supported' ) A = original_model.decoder.tokenizer(snake_case__ , add_special_tokens=snake_case__ , return_tensors='pt' )[ 'input_ids' ] A = original_model.encoder.model.patch_embed(snake_case__ ) A , A = model.encoder.embeddings(snake_case__ ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) # verify encoder hidden states A = original_model.encoder(snake_case__ ) A = model.encoder(snake_case__ ).last_hidden_state assert torch.allclose(snake_case__ , snake_case__ , atol=1e-2 ) # verify decoder hidden states A = original_model(snake_case__ , snake_case__ , snake_case__ ).logits A = model(snake_case__ , decoder_input_ids=snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) _lowercase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" def _snake_case ( snake_case__ : Dict ): A = [] A = [] A = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator A = len(snake_case__ ) if (len(snake_case__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(snake_case__ ) , 'Postfix'.center(snake_case__ ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case__ ) == 0: stack.append(snake_case__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case__ ) # push x to stack print( x.center(8 ) , (''.join(snake_case__ )).ljust(snake_case__ ) , (''.join(snake_case__ )).ljust(snake_case__ ) , sep=' | ' , ) # Output in tabular format while len(snake_case__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(snake_case__ )).ljust(snake_case__ ) , (''.join(snake_case__ )).ljust(snake_case__ ) , sep=' | ' , ) # Output in tabular format return "".join(snake_case__ ) # return Postfix as str def _snake_case ( snake_case__ : Tuple ): A = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case__ ) ): if infix[i] == "(": A = ')' # change "(" to ")" elif infix[i] == ")": A = '(' # change ")" to "(" return (infix_2_postfix(''.join(snake_case__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _lowercase = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1