code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def _snake_case ( snake_case__ : int ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('only integers accepted as input' ) else: A = str(abs(snake_case__ ) ) A = [list(snake_case__ ) for char in range(len(snake_case__ ) )] for index in range(len(snake_case__ ) ): num_transpositions[index].pop(snake_case__ ) return max( int(''.join(list(snake_case__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _lowercase = logging.getLogger(__name__) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> Tuple: A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : Any ,A_ : Dict ,A_ : Union[str, Any] ) -> Tuple: if not self.initialized: A = RagRetriever( A_ ,question_encoder_tokenizer=A_ ,generator_tokenizer=A_ ,index=A_ ,init_retrieval=A_ ,) A = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: self.retriever.index.init_index() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : int ) -> List[Any]: A , A = self.retriever._main_retrieve(A_ ,A_ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : int ,A_ : Any ,A_ : Optional[Any] ,A_ : Dict ,A_ : str=None ) -> List[str]: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ ,question_encoder_tokenizer=A_ ,generator_tokenizer=A_ ,index=A_ ,init_retrieval=A_ ,) A = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ ,A_ ,A_ ,A_ ) for worker in self.retrieval_workers ] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : int ) -> Optional[Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] A , A = ray.get(random_worker.retrieve.remote(A_ ,A_ ) ) else: A , A = self._main_retrieve(A_ ,A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ,A_ : Optional[int]=None ,**A_ : Any ) -> str: return super(A_ ,cls ).get_tokenizers(A_ ,A_ ,**A_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : int ,A_ : Union[str, Any] ,A_ : int=None ,**A_ : List[str] ) -> Union[str, Any]: A = kwargs.pop('config' ,A_ ) or RagConfig.from_pretrained(A_ ,**A_ ) A = RagTokenizer.from_pretrained(A_ ,config=A_ ) A = rag_tokenizer.question_encoder A = rag_tokenizer.generator if indexed_dataset is not None: A = 'custom' A = CustomHFIndex(config.retrieval_vector_size ,A_ ) else: A = cls._build_index(A_ ) return cls( A_ ,question_encoder_tokenizer=A_ ,generator_tokenizer=A_ ,retrieval_workers=A_ ,index=A_ ,)
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''albert''' def __init__( self : Any ,A_ : List[str]=3_0000 ,A_ : Tuple=128 ,A_ : Tuple=4096 ,A_ : Optional[int]=12 ,A_ : Dict=1 ,A_ : Optional[int]=64 ,A_ : str=1_6384 ,A_ : Union[str, Any]=1 ,A_ : List[Any]="gelu_new" ,A_ : Optional[Any]=0 ,A_ : Any=0 ,A_ : Dict=512 ,A_ : Dict=2 ,A_ : Optional[Any]=0.02 ,A_ : Optional[int]=1e-12 ,A_ : Dict=0.1 ,A_ : List[Any]="absolute" ,A_ : Optional[int]=0 ,A_ : Optional[Any]=2 ,A_ : List[str]=3 ,**A_ : List[Any] ,) -> Any: super().__init__(pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,**A_ ) A = vocab_size A = embedding_size A = hidden_size A = num_hidden_layers A = num_hidden_groups A = num_attention_heads A = inner_group_num A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = classifier_dropout_prob A = position_embedding_type class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _lowercase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = VOCAB_FILES_NAMES _lowerCamelCase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: List[str] = SqueezeBertTokenizer def __init__( self : Tuple ,A_ : List[Any]=None ,A_ : int=None ,A_ : Optional[Any]=True ,A_ : Optional[Any]="[UNK]" ,A_ : List[Any]="[SEP]" ,A_ : List[str]="[PAD]" ,A_ : Dict="[CLS]" ,A_ : int="[MASK]" ,A_ : str=True ,A_ : Any=None ,**A_ : int ,) -> str: super().__init__( A_ ,tokenizer_file=A_ ,do_lower_case=A_ ,unk_token=A_ ,sep_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,tokenize_chinese_chars=A_ ,strip_accents=A_ ,**A_ ,) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,A_ ) != do_lower_case or normalizer_state.get('strip_accents' ,A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,A_ ) != tokenize_chinese_chars ): A = getattr(A_ ,normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**A_ ) A = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Any ,A_ : Dict=None ) -> Any: A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: A = self._tokenizer.model.save(A_ ,name=A_ ) return tuple(A_ )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _lowercase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _lowercase = '''main''' # Default branch name _lowercase = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) _lowercase = '''aaaaaaa''' # This commit does not exist, so we should 404. _lowercase = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes _lowercase = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def _snake_case ( ): print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def _snake_case ( ): print('Bonjour!' ) yield print('Au revoir!' ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> Optional[int]: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ) -> Dict: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> Dict: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: self.assertEqual(find_labels(A_ ) ,['labels'] ) self.assertEqual(find_labels(A_ ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(A_ ) ,['start_positions', 'end_positions'] ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' pass self.assertEqual(find_labels(A_ ) ,['labels'] ) @require_tf def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.assertEqual(find_labels(A_ ) ,['labels'] ) self.assertEqual(find_labels(A_ ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(A_ ) ,['start_positions', 'end_positions'] ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' pass self.assertEqual(find_labels(A_ ) ,['labels'] ) @require_flax def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A_ ) ,[] ) self.assertEqual(find_labels(A_ ) ,[] ) self.assertEqual(find_labels(A_ ) ,[] ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' pass self.assertEqual(find_labels(A_ ) ,[] )
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowercase = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Dict ,**A_ : Tuple ) -> int: super().__init__(**A_ ) requires_backends(self ,'vision' ) requires_backends(self ,'torch' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,**A_ : List[Any] ) -> Union[str, Any]: A = {} A = {} A = {} # preprocess args if "points_per_batch" in kwargs: A = kwargs['points_per_batch'] if "points_per_crop" in kwargs: A = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: A = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: A = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: A = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: A = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: A = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: A = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: A = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: A = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: A = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: A = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Dict ,A_ : Tuple ,*A_ : Tuple ,A_ : Tuple=None ,A_ : Any=None ,**A_ : Union[str, Any] ) -> Any: return super().__call__(A_ ,*A_ ,num_workers=A_ ,batch_size=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Optional[int]=64 ,A_ : int = 0 ,A_ : float = 512 / 1500 ,A_ : Optional[int] = 32 ,A_ : Optional[int] = 1 ,) -> Dict: A = load_image(A_ ) A = self.image_processor.size['longest_edge'] A , A , A , A = self.image_processor.generate_crop_boxes( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) A = self.image_processor(images=A_ ,return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": A = self.get_inference_context() with inference_context(): A = self._ensure_tensor_on_device(A_ ,device=self.device ) A = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) A = image_embeddings A = grid_points.shape[1] A = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 ,A_ ,A_ ): A = grid_points[:, i : i + points_per_batch, :, :] A = input_labels[:, i : i + points_per_batch] A = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Optional[Any] ,A_ : Union[str, Any]=0.88 ,A_ : List[Any]=0.95 ,A_ : Union[str, Any]=0 ,A_ : str=1 ,) -> int: A = model_inputs.pop('input_boxes' ) A = model_inputs.pop('is_last' ) A = model_inputs.pop('original_sizes' ).tolist() A = model_inputs.pop('reshaped_input_sizes' ).tolist() A = self.model(**A_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A = model_outputs['pred_masks'] A = self.image_processor.post_process_masks( A_ ,A_ ,A_ ,A_ ,binarize=A_ ) A = model_outputs['iou_scores'] A , A , A = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,A_ ,A_ ,A_ ,A_ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Any=False ,A_ : str=0.7 ,) -> List[str]: A = [] A = [] A = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) A = torch.cat(A_ ) A = torch.cat(A_ ) A , A , A , A = self.image_processor.post_process_for_mask_generation( A_ ,A_ ,A_ ,A_ ) A = defaultdict(A_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(A_ ) A = {} if output_rle_mask: A = rle_mask if output_bboxes_mask: A = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" from __future__ import annotations _lowercase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ): A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": _lowercase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowercase = [0, 0] # all coordinates are given in format [y,x] _lowercase = [len(grid) - 1, len(grid[0]) - 1] _lowercase = 1 # the cost map which pushes the path closer to the goal _lowercase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowercase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowercase = 99 _lowercase , _lowercase = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A = flax_key_tuple[:-1] + ('weight',) A = torch.permute(snake_case__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ): # linear layer A = flax_key_tuple[:-1] + ('weight',) A = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _snake_case ( snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict ): if "metadata" in layer: A = layer.split('metadata' ) A = ''.join(split_layer[0] )[:-1] A = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: A = layer.split('kvstore' ) A = ''.join(split_layer[0] )[:-1] A = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: A = layer.split('/' ) A = '/'.join(split_layer[:-1] ) A = (split_layer[-1],) if "kvstore/path" in layer: A = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A = 'file' else: A = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[str] ): A = rename_keys(snake_case__ ) A = {} for k, v in current_block.items(): A = v A = new_current_block torch.save(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str = WEIGHTS_NAME ): A = convert_file_size_to_int(snake_case__ ) A = [] A = {} A = 0 A = 0 os.makedirs(snake_case__ , exist_ok=snake_case__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: A = serialization.msgpack_restore(fp.read() )['optimizer']['target'] A = flatten_dict(snake_case__ , sep='/' ) A = {} for layer in checkpoint_info.keys(): A , A , A = get_key_and_tensorstore_dict( snake_case__ , snake_case__ , snake_case__ ) if curr_real_layer_name in all_layers: A = content else: A = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A = torch.tensor(snake_case__ ) A = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A , A = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case__ ) A = '/'.join(snake_case__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A = os.path.join( snake_case__ , weights_name.replace('.bin' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) del current_block A = {} A = 0 A = raw_weights.to(getattr(snake_case__ , snake_case__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block A = os.path.join(snake_case__ , weights_name.replace('.bin' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(snake_case__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A = {} A = {} for idx, shard in enumerate(snake_case__ ): A = weights_name.replace( '.bin' , F'-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin' ) # len(sharded_state_dicts):05d} A = os.path.join(snake_case__ , weights_name.replace('.bin' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) A = shard for key in shard: A = shard_file # Add the metadata A = {'total_size': total_size} A = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' ) as f: A = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n' f.write(snake_case__ ) return metadata, index if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowercase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _snake_case ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) A = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) A = TaTokenizer.from_pretrained('t5-small' ) A = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' A = tokenizer(snake_case__ , return_tensors='pt' ).input_ids A = model.generate(snake_case__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import numpy as np def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict ): A = int(np.ceil((x_end - xa) / h ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(snake_case__ ): A = f(snake_case__ , y[k] ) A = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A = f(x + h , y[k] + h * ka ) A = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
1
"""simple docstring""" def _snake_case ( snake_case__ : str , snake_case__ : Any , snake_case__ : str=False ): if isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ): A = len(set_a.intersection(snake_case__ ) ) if alternative_union: A = len(snake_case__ ) + len(snake_case__ ) else: A = len(set_a.union(snake_case__ ) ) return intersection / union if isinstance(snake_case__ , (list, tuple) ) and isinstance(snake_case__ , (list, tuple) ): A = [element for element in set_a if element in set_b] if alternative_union: A = len(snake_case__ ) + len(snake_case__ ) return len(snake_case__ ) / union else: A = set_a + [element for element in set_b if element not in set_a] return len(snake_case__ ) / len(snake_case__ ) return len(snake_case__ ) / len(snake_case__ ) return None if __name__ == "__main__": _lowercase = {'''a''', '''b''', '''c''', '''d''', '''e'''} _lowercase = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
22
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = PegasusTokenizer _lowerCamelCase: Optional[int] = PegasusTokenizerFast _lowerCamelCase: str = True _lowerCamelCase: List[Any] = True def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A = PegasusTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def _SCREAMING_SNAKE_CASE ( self : int ,**A_ : List[Any] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ) -> str: return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = '</s>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) ,A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(A_ ) ,1103 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A = self.tokenizer_class.from_pretrained(self.tmpdirname ) A = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) A = rust_tokenizer([raw_input_str] ,return_tensors=A_ ,add_special_tokens=A_ ).input_ids[0] A = py_tokenizer([raw_input_str] ,return_tensors=A_ ,add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' A = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] A = tokenizer([raw_input_str] ,return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A = 'To ensure a smooth flow of bank resolutions.' A = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] A = tokenizer([raw_input_str] ,return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ ,A_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ['This is going to be way too long.' * 150, 'short example'] A = ['not super long but more than 5 tokens', 'tiny'] A = self._large_tokenizer(A_ ,padding=A_ ,truncation=A_ ,return_tensors='pt' ) A = self._large_tokenizer( text_target=A_ ,max_length=5 ,padding=A_ ,truncation=A_ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: # fmt: off A = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = PegasusTokenizer _lowerCamelCase: Dict = PegasusTokenizerFast _lowerCamelCase: Any = True _lowerCamelCase: Dict = True def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A = PegasusTokenizer(A_ ,offset=0 ,mask_token_sent=A_ ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def _SCREAMING_SNAKE_CASE ( self : str ,**A_ : Any ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Dict ) -> Dict: return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A = self.tokenizer_class.from_pretrained(self.tmpdirname ) A = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) A = rust_tokenizer([raw_input_str] ,return_tensors=A_ ,add_special_tokens=A_ ).input_ids[0] A = py_tokenizer([raw_input_str] ,return_tensors=A_ ,add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ ,A_ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = ['This is going to be way too long.' * 1000, 'short example'] A = ['not super long but more than 5 tokens', 'tiny'] A = self._large_tokenizer(A_ ,padding=A_ ,truncation=A_ ,return_tensors='pt' ) A = self._large_tokenizer( text_target=A_ ,max_length=5 ,padding=A_ ,truncation=A_ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) A = self._large_tokenizer(A_ ).input_ids self.assertListEqual( A_ ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] ,)
22
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : pyspark.sql.DataFrame ,A_ : Optional[NamedSplit] = None ,A_ : Optional[Features] = None ,A_ : bool = True ,A_ : str = None ,A_ : bool = False ,A_ : str = None ,A_ : bool = True ,A_ : str = "arrow" ,**A_ : int ,) -> int: super().__init__( split=A_ ,features=A_ ,cache_dir=A_ ,keep_in_memory=A_ ,streaming=A_ ,**A_ ,) A = load_from_cache_file A = file_format A = Spark( df=A_ ,features=A_ ,cache_dir=A_ ,working_dir=A_ ,**A_ ,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] ): A = sorted(zip(snake_case__ , snake_case__ ) , key=lambda snake_case__ : x[0] / x[1] , reverse=snake_case__ ) A , A = [i[0] for i in r], [i[1] for i in r] A = list(accumulate(snake_case__ ) ) A = bisect(snake_case__ , snake_case__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _lowercase = 4 _lowercase = 3 class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' pass def _snake_case ( snake_case__ : List[str] ): for shard in shards: for i in range(snake_case__ ): yield {"i": i, "shard": shard} def _snake_case ( ): A = int(os.environ['RANK'] ) A = int(os.environ['WORLD_SIZE'] ) A = ArgumentParser() parser.add_argument('--streaming' , type=snake_case__ ) parser.add_argument('--local_rank' , type=snake_case__ ) parser.add_argument('--num_workers' , type=snake_case__ , default=0 ) A = parser.parse_args() A = args.streaming A = args.num_workers A = {'shards': [F'shard_{shard_idx}' for shard_idx in range(snake_case__ )]} A = IterableDataset.from_generator(snake_case__ , gen_kwargs=snake_case__ ) if not streaming: A = Dataset.from_list(list(snake_case__ ) ) A = split_dataset_by_node(snake_case__ , rank=snake_case__ , world_size=snake_case__ ) A = torch.utils.data.DataLoader(snake_case__ , num_workers=snake_case__ ) A = NUM_SHARDS * NUM_ITEMS_PER_SHARD A = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) A = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
22
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Tuple ,A_ : str=13 ,A_ : List[Any]=7 ,A_ : Dict=True ,A_ : Optional[int]=True ,A_ : Optional[int]=True ,A_ : Any=True ,A_ : Any=99 ,A_ : Optional[int]=24 ,A_ : Tuple=2 ,A_ : int=6 ,A_ : Dict=37 ,A_ : List[str]="gelu" ,A_ : str=0.1 ,A_ : List[Any]=0.1 ,A_ : Any=512 ,A_ : Union[str, Any]=16 ,A_ : int=2 ,A_ : Optional[Any]=0.02 ,A_ : Any=3 ,A_ : Tuple=None ,A_ : Optional[int]=1000 ,) -> Union[str, Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = scope A = range_bbox def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A = bbox[i, j, 3] A = bbox[i, j, 1] A = t if bbox[i, j, 2] < bbox[i, j, 0]: A = bbox[i, j, 2] A = bbox[i, j, 0] A = t A = None if self.use_input_mask: A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ,A_ : Optional[int] ,A_ : str ,A_ : Union[str, Any] ,A_ : str ,A_ : Dict ,A_ : Tuple ,) -> List[str]: A = LiltModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ) A = model(A_ ,bbox=A_ ,token_type_ids=A_ ) A = model(A_ ,bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : Dict ,A_ : List[str] ,A_ : Dict ,A_ : int ,) -> Optional[Any]: A = self.num_labels A = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() A = model( A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[str] ,A_ : Dict ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : Dict ,A_ : Dict ,) -> List[Any]: A = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() A = model( A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase: str = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase: Optional[Any] = False _lowerCamelCase: List[str] = False def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : Dict ,A_ : Union[str, Any] ) -> int: return True def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = LiltModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ) -> int: A = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(A_ ) A = torch.tensor([[1, 2]] ,device=A_ ) A = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=A_ ) # forward pass with torch.no_grad(): A = model(input_ids=A_ ,bbox=A_ ) A = torch.Size([1, 2, 768] ) A = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] ,device=A_ ,) self.assertTrue(outputs.last_hidden_state.shape ,A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,A_ ,atol=1e-3 ) )
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
"""simple docstring""" def _snake_case ( snake_case__ : list ): if len(snake_case__ ) <= 1: return lst A = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: A , A = lst[i], lst[i - 1] i -= 1 if i == 0: A = 1 return lst if __name__ == "__main__": _lowercase = input('''Enter numbers separated by a comma:\n''').strip() _lowercase = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
22
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''gptsan-japanese''' _lowerCamelCase: Dict = [ '''past_key_values''', ] _lowerCamelCase: Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict ,A_ : Any=3_6000 ,A_ : Dict=1280 ,A_ : Any=1024 ,A_ : Optional[int]=8192 ,A_ : int=4096 ,A_ : Any=128 ,A_ : Union[str, Any]=10 ,A_ : str=0 ,A_ : Union[str, Any]=16 ,A_ : str=16 ,A_ : str=128 ,A_ : Any=0.0 ,A_ : Tuple=1e-5 ,A_ : int=False ,A_ : Optional[int]=0.0 ,A_ : int="float32" ,A_ : List[Any]=False ,A_ : Union[str, Any]=False ,A_ : Optional[Any]=False ,A_ : str=0.0_02 ,A_ : Optional[int]=False ,A_ : List[str]=True ,A_ : Optional[int]=3_5998 ,A_ : Dict=3_5995 ,A_ : str=3_5999 ,**A_ : List[Any] ,) -> Optional[int]: A = vocab_size A = max_position_embeddings A = d_model A = d_ff A = d_ext A = d_spout A = num_switch_layers A = num_ext_layers A = num_switch_layers + num_ext_layers A = num_heads A = num_experts A = expert_capacity A = dropout_rate A = layer_norm_epsilon A = router_bias A = router_jitter_noise A = router_dtype A = router_ignore_padding_tokens A = output_hidden_states A = output_attentions A = initializer_factor A = output_router_logits A = use_cache super().__init__( separator_token_id=A_ ,pad_token_id=A_ ,eos_token_id=A_ ,**A_ ,)
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''Wav2Vec2FeatureExtractor''' _lowerCamelCase: Union[str, Any] = '''AutoTokenizer''' def __init__( self : Union[str, Any] ,A_ : Optional[Any] ,A_ : Any ) -> Optional[Any]: super().__init__(A_ ,A_ ) A = self.feature_extractor A = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,A_ : Tuple ,**A_ : Union[str, Any] ) -> List[Any]: try: return super().from_pretrained(A_ ,**A_ ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' ,A_ ,) A = WavaVecaFeatureExtractor.from_pretrained(A_ ,**A_ ) A = WavaVecaCTCTokenizer.from_pretrained(A_ ,**A_ ) return cls(feature_extractor=A_ ,tokenizer=A_ ) def __call__( self : Optional[int] ,*A_ : str ,**A_ : List[str] ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ ,**A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,A_ ) A = kwargs.pop('sampling_rate' ,A_ ) A = kwargs.pop('text' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A_ ,*A_ ,sampling_rate=A_ ,**A_ ) if text is not None: A = self.tokenizer(A_ ,**A_ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : str ,*A_ : Tuple ,**A_ : Optional[Any] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ ,**A_ ) A = kwargs.pop('input_features' ,A_ ) A = kwargs.pop('labels' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(A_ ,*A_ ,**A_ ) if labels is not None: A = self.tokenizer.pad(A_ ,**A_ ) if labels is None: return input_features elif input_features is None: return labels else: A = labels['input_ids'] return input_features def _SCREAMING_SNAKE_CASE ( self : str ,*A_ : str ,**A_ : Optional[Any] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,*A_ : int ,**A_ : Optional[int] ) -> List[Any]: return self.tokenizer.decode(*A_ ,**A_ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
"""simple docstring""" from collections.abc import Sequence def _snake_case ( snake_case__ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) A = nums[0] for i in range(1 , len(snake_case__ ) ): A = nums[i] A = max(snake_case__ , ans + num , snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowercase = int(input('''Enter number of elements : ''').strip()) _lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
22
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: int _lowerCamelCase: Node | None = None _lowerCamelCase: Node | None = None def _snake_case ( ): A = Node(1 ) A = Node(2 ) A = Node(3 ) A = Node(4 ) A = Node(5 ) return tree def _snake_case ( snake_case__ : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _snake_case ( snake_case__ : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _snake_case ( snake_case__ : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _snake_case ( snake_case__ : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _snake_case ( snake_case__ : Node | None ): A = [] if root is None: return output A = deque([root] ) while process_queue: A = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _snake_case ( snake_case__ : Node | None , snake_case__ : int ): A = [] def populate_output(snake_case__ : Node | None , snake_case__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def _snake_case ( snake_case__ : Node | None , snake_case__ : int ): A = [] def populate_output(snake_case__ : Node | None , snake_case__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def _snake_case ( snake_case__ : Node | None ): if root is None: return [] A = [] A = 0 A = height(snake_case__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) ) A = 1 else: output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) ) A = 0 return output def _snake_case ( ): # Main function for testing. A = make_tree() print(F'In-order Traversal: {inorder(snake_case__ )}' ) print(F'Pre-order Traversal: {preorder(snake_case__ )}' ) print(F'Post-order Traversal: {postorder(snake_case__ )}' , '\n' ) print(F'Height of Tree: {height(snake_case__ )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(snake_case__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(snake_case__ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" _lowercase = 9.80_665 def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float = g ): if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Union[str, Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : bool = True ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Dict ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,default_to_square=A_ ,param_name='crop_size' ) A = do_resize A = do_rescale A = do_normalize A = do_center_crop A = crop_size A = size A = resample A = rescale_factor A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _SCREAMING_SNAKE_CASE ( self : str ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Tuple ,) -> np.ndarray: A = get_size_dict(A_ ) if "shortest_edge" in size: A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: A = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Dict ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : str ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : int = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : List[Any] ,) -> BatchFeature: A = do_resize if do_resize is not None else self.do_resize A = do_rescale if do_rescale is not None else self.do_rescale A = do_normalize if do_normalize is not None else self.do_normalize A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = rescale_factor if rescale_factor is not None else self.rescale_factor A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(A_ ) if not is_batched(A_ ): A = [images] if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ )
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" from collections.abc import Generator from math import sin def _snake_case ( snake_case__ : bytes ): if len(snake_case__ ) != 32: raise ValueError('Input must be of length 32' ) A = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _snake_case ( snake_case__ : int ): if i < 0: raise ValueError('Input must be non-negative' ) A = format(snake_case__ , '08x' )[-8:] A = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _snake_case ( snake_case__ : bytes ): A = B'' for char in message: bit_string += format(snake_case__ , '08b' ).encode('utf-8' ) A = format(len(snake_case__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _snake_case ( snake_case__ : bytes ): if len(snake_case__ ) % 512 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(snake_case__ ) , 512 ): A = bit_string[pos : pos + 512] A = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _snake_case ( snake_case__ : int ): if i < 0: raise ValueError('Input must be non-negative' ) A = format(snake_case__ , '032b' ) A = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case__ , 2 ) def _snake_case ( snake_case__ : int , snake_case__ : int ): return (a + b) % 2**32 def _snake_case ( snake_case__ : int , snake_case__ : int ): if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _snake_case ( snake_case__ : bytes ): A = preprocess(snake_case__ ) A = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A = 0x67_452_301 A = 0xef_cda_b89 A = 0x98_bad_cfe A = 0x10_325_476 A = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case__ ): A = aa A = ba A = ca A = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A = d ^ (b & (c ^ d)) A = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A = c ^ (d & (b ^ c)) A = (5 * i + 1) % 16 elif i <= 47: A = b ^ c ^ d A = (3 * i + 5) % 16 else: A = c ^ (b | not_aa(snake_case__ )) A = (7 * i) % 16 A = (f + a + added_consts[i] + block_words[g]) % 2**32 A = d A = c A = b A = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) ) # Add hashed chunk to running total A = sum_aa(snake_case__ , snake_case__ ) A = sum_aa(snake_case__ , snake_case__ ) A = sum_aa(snake_case__ , snake_case__ ) A = sum_aa(snake_case__ , snake_case__ ) A = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" import math def _snake_case ( snake_case__ : int = 100 ): A = sum(i * i for i in range(1 , n + 1 ) ) A = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''mra''' def __init__( self : List[Any] ,A_ : Tuple=5_0265 ,A_ : int=768 ,A_ : Dict=12 ,A_ : Union[str, Any]=12 ,A_ : Tuple=3072 ,A_ : Tuple="gelu" ,A_ : Optional[Any]=0.1 ,A_ : Optional[Any]=0.1 ,A_ : Dict=512 ,A_ : Any=1 ,A_ : str=0.02 ,A_ : List[Any]=1e-5 ,A_ : Optional[Any]="absolute" ,A_ : Union[str, Any]=4 ,A_ : Union[str, Any]="full" ,A_ : Union[str, Any]=0 ,A_ : str=0 ,A_ : Optional[Any]=1 ,A_ : str=0 ,A_ : Any=2 ,**A_ : Tuple ,) -> List[str]: super().__init__(pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,**A_ ) A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps A = position_embedding_type A = block_per_row A = approx_mode A = initial_prior_first_n_blocks A = initial_prior_diagonal_n_blocks
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = '''conditional_detr''' _lowerCamelCase: List[str] = ['''past_key_values'''] _lowerCamelCase: Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[int] ,A_ : List[Any]=True ,A_ : Optional[Any]=None ,A_ : List[str]=3 ,A_ : str=300 ,A_ : List[Any]=6 ,A_ : List[str]=2048 ,A_ : int=8 ,A_ : str=6 ,A_ : str=2048 ,A_ : Union[str, Any]=8 ,A_ : str=0.0 ,A_ : List[str]=0.0 ,A_ : Tuple=True ,A_ : int="relu" ,A_ : int=256 ,A_ : Any=0.1 ,A_ : List[str]=0.0 ,A_ : Optional[int]=0.0 ,A_ : int=0.02 ,A_ : str=1.0 ,A_ : List[Any]=False ,A_ : List[Any]="sine" ,A_ : Optional[Any]="resnet50" ,A_ : Any=True ,A_ : Union[str, Any]=False ,A_ : List[str]=2 ,A_ : Tuple=5 ,A_ : Tuple=2 ,A_ : int=1 ,A_ : Optional[int]=1 ,A_ : Optional[Any]=2 ,A_ : Union[str, Any]=5 ,A_ : Any=2 ,A_ : Any=0.25 ,**A_ : Any ,) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) A = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(A_ ,A_ ): A = backbone_config.get('model_type' ) A = CONFIG_MAPPING[backbone_model_type] A = config_class.from_dict(A_ ) A = use_timm_backbone A = backbone_config A = num_channels A = num_queries A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = init_xavier_std A = encoder_layerdrop A = decoder_layerdrop A = encoder_layers A = auxiliary_loss A = position_embedding_type A = backbone A = use_pretrained_backbone A = dilation # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = mask_loss_coefficient A = dice_loss_coefficient A = cls_loss_coefficient A = bbox_loss_coefficient A = giou_loss_coefficient A = focal_alpha super().__init__(is_encoder_decoder=A_ ,**A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.d_model def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 12
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( *A_ : List[str] ,**A_ : Union[str, Any] ) -> Tuple: pass def _snake_case ( snake_case__ : Image ): A = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Dict ) -> Optional[Any]: A = DepthEstimationPipeline(model=A_ ,image_processor=A_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : List[Any] ) -> Union[str, Any]: A = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} ,A_ ) import datasets A = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) A = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] ,A_ ,) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: pass @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: A = 'Intel/dpt-large' A = pipeline('depth-estimation' ,model=A_ ) A = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) A = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) ,29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) ,2.6_62 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : List[Any] ): A = checkpoint A = {} A = vae_state_dict['encoder.conv_in.weight'] A = vae_state_dict['encoder.conv_in.bias'] A = vae_state_dict['encoder.conv_out.weight'] A = vae_state_dict['encoder.conv_out.bias'] A = vae_state_dict['encoder.norm_out.weight'] A = vae_state_dict['encoder.norm_out.bias'] A = vae_state_dict['decoder.conv_in.weight'] A = vae_state_dict['decoder.conv_in.bias'] A = vae_state_dict['decoder.conv_out.weight'] A = vae_state_dict['decoder.conv_out.bias'] A = vae_state_dict['decoder.norm_out.weight'] A = vae_state_dict['decoder.norm_out.bias'] A = vae_state_dict['quant_conv.weight'] A = vae_state_dict['quant_conv.bias'] A = vae_state_dict['post_quant_conv.weight'] A = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only A = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) A = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the decoder up blocks only A = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) A = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(snake_case__ ) } for i in range(snake_case__ ): A = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: A = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) A = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) A = renew_vae_resnet_paths(snake_case__ ) A = {'old': F'down.{i}.block', 'new': F'down_blocks.{i}.resnets'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) A = [key for key in vae_state_dict if 'encoder.mid.block' in key] A = 2 for i in range(1 , num_mid_res_blocks + 1 ): A = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] A = renew_vae_resnet_paths(snake_case__ ) A = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) A = [key for key in vae_state_dict if 'encoder.mid.attn' in key] A = renew_vae_attention_paths(snake_case__ ) A = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) conv_attn_to_linear(snake_case__ ) for i in range(snake_case__ ): A = num_up_blocks - 1 - i A = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: A = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] A = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] A = renew_vae_resnet_paths(snake_case__ ) A = {'old': F'up.{block_id}.block', 'new': F'up_blocks.{i}.resnets'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) A = [key for key in vae_state_dict if 'decoder.mid.block' in key] A = 2 for i in range(1 , num_mid_res_blocks + 1 ): A = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] A = renew_vae_resnet_paths(snake_case__ ) A = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) A = [key for key in vae_state_dict if 'decoder.mid.attn' in key] A = renew_vae_attention_paths(snake_case__ ) A = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) conv_attn_to_linear(snake_case__ ) return new_checkpoint def _snake_case ( snake_case__ : str , snake_case__ : str , ): # Only support V1 A = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) A = io.BytesIO(r.content ) A = OmegaConf.load(snake_case__ ) A = 512 A = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open A = {} with safe_open(snake_case__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): A = f.get_tensor(snake_case__ ) else: A = torch.load(snake_case__ , map_location=snake_case__ )['state_dict'] # Convert the VAE model. A = create_vae_diffusers_config(snake_case__ , image_size=snake_case__ ) A = custom_convert_ldm_vae_checkpoint(snake_case__ , snake_case__ ) A = AutoencoderKL(**snake_case__ ) vae.load_state_dict(snake_case__ ) vae.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') _lowercase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Any = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : int ,**A_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Any ,**A_ : List[Any] ) -> int: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,*A_ : Optional[Any] ,**A_ : Union[str, Any] ) -> str: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = ['''flax'''] def __init__( self : Any ,*A_ : List[str] ,**A_ : Tuple ) -> Any: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Tuple ,**A_ : str ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,*A_ : List[Any] ,**A_ : List[str] ) -> int: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : int ,*A_ : List[Any] ,**A_ : int ) -> str: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ,*A_ : str ,**A_ : List[str] ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : List[str] ,**A_ : Any ) -> Optional[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Union[str, Any] ,*A_ : Tuple ,**A_ : List[Any] ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : str ,**A_ : Tuple ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,*A_ : Dict ,**A_ : Union[str, Any] ) -> List[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : int ,*A_ : Union[str, Any] ,**A_ : List[Any] ) -> List[Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,*A_ : int ,**A_ : List[str] ) -> List[str]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ,*A_ : List[Any] ,**A_ : Optional[Any] ) -> Tuple: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : int ,*A_ : Tuple ,**A_ : str ) -> Union[str, Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,*A_ : Optional[Any] ,**A_ : Optional[int] ) -> Tuple: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : int ) -> Optional[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''flax'''] def __init__( self : Any ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Optional[int] ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ,*A_ : Dict ,**A_ : Optional[Any] ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Optional[int] ,*A_ : Optional[int] ,**A_ : Dict ) -> List[str]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : str ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : List[str] ,**A_ : Dict ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''flax'''] def __init__( self : List[str] ,*A_ : Optional[Any] ,**A_ : Dict ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ,*A_ : List[str] ,**A_ : Tuple ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str ,*A_ : Union[str, Any] ,**A_ : Any ) -> Optional[int]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Any = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : List[Any] ,**A_ : Optional[int] ) -> Any: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : str ,**A_ : Union[str, Any] ) -> Dict: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Tuple ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : List[Any] ,**A_ : int ) -> List[Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : int ,**A_ : Union[str, Any] ) -> Tuple: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : int ,**A_ : Optional[Any] ) -> Optional[int]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : List[Any] ,*A_ : List[str] ,**A_ : List[str] ) -> str: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,*A_ : Any ,**A_ : List[str] ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = ['''flax'''] def __init__( self : List[str] ,*A_ : List[Any] ,**A_ : Dict ) -> Dict: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : Optional[Any] ,**A_ : List[str] ) -> Any: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] )
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase: Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase: List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowerCamelCase: Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) A = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) A = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=A_ ,set_alpha_to_one=A_ ,) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Any ,A_ : Union[str, Any]=0 ) -> int: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = 2 A = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A_ ,device=torch.device(A_ ) ,) A = floats_tensor(control_image.shape ,rng=random.Random(A_ ) ).to(A_ ) A = image.cpu().permute(0 ,2 ,3 ,1 )[0] A = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase: Optional[int] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(A_ : Tuple ): if isinstance(A_ ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) A = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) A = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(A_ ) torch.manual_seed(0 ) A = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=A_ ,set_alpha_to_one=A_ ,) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = MultiControlNetModel([controlneta, controlneta] ) A = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : Optional[int]=0 ) -> str: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = 2 A = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A_ ,device=torch.device(A_ ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A_ ,device=torch.device(A_ ) ,), ] A = floats_tensor(control_image[0].shape ,rng=random.Random(A_ ) ).to(A_ ) A = image.cpu().permute(0 ,2 ,3 ,1 )[0] A = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = self.get_dummy_components() A = self.pipeline_class(**A_ ) pipe.to(A_ ) A = 10.0 A = 4 A = self.get_dummy_inputs(A_ ) A = steps A = scale A = pipe(**A_ )[0] A = self.get_dummy_inputs(A_ ) A = steps A = scale A = pipe(**A_ ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] A = self.get_dummy_inputs(A_ ) A = steps A = scale A = pipe(**A_ ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] A = self.get_dummy_inputs(A_ ) A = steps A = scale A = pipe(**A_ ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.get_dummy_components() A = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) A = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,safety_checker=A_ ,controlnet=A_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A_ ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A = 'evil space-punk bird' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) A = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) A = pipe( A_ ,A_ ,control_image=A_ ,generator=A_ ,output_type='np' ,num_inference_steps=50 ,strength=0.6 ,) A = output.images[0] assert image.shape == (512, 512, 3) A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" from jiwer import compute_measures import datasets _lowercase = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' _lowercase = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' _lowercase = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/jitsi/jiwer/'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int]=None ,A_ : int=None ,A_ : str=False ) -> List[str]: if concatenate_texts: return compute_measures(A_ ,A_ )["wer"] else: A = 0 A = 0 for prediction, reference in zip(A_ ,A_ ): A = compute_measures(A_ ,A_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
22
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def _snake_case ( snake_case__ : Callable[[int | float], int | float] , snake_case__ : int | float , snake_case__ : int | float , snake_case__ : int = 100 , ): A = x_start A = fnc(snake_case__ ) A = 0.0 for _ in range(snake_case__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area A = (x_end - x_start) / steps + xa A = fnc(snake_case__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A = xa A = fxa return area if __name__ == "__main__": def _snake_case ( snake_case__ : Tuple ): return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') _lowercase = 10 while i <= 10_00_00: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
22
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
1
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
22
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str ,A_ : Optional[Any] ,) -> Union[str, Any]: A = parent A = 13 A = 7 A = True A = True A = False A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ,A_ : Tuple ,A_ : Optional[Any] ,A_ : str ,A_ : Union[str, Any] ,A_ : str ) -> List[str]: A = TFDistilBertModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : List[Any] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : str ) -> Any: A = TFDistilBertForMaskedLM(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Any ,A_ : Any ,A_ : Dict ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : str ) -> Tuple: A = TFDistilBertForQuestionAnswering(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, } A = model(A_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ) -> Tuple: A = self.num_labels A = TFDistilBertForSequenceClassification(A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Tuple ,A_ : List[str] ,A_ : str ,A_ : Tuple ,A_ : Tuple ,A_ : Tuple ) -> int: A = self.num_choices A = TFDistilBertForMultipleChoice(A_ ) A = tf.tile(tf.expand_dims(A_ ,1 ) ,(1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(A_ ,1 ) ,(1, self.num_choices, 1) ) A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[int] ,A_ : int ,A_ : int ,A_ : List[Any] ) -> str: A = self.num_labels A = TFDistilBertForTokenClassification(A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = self.prepare_config_and_inputs() ((A) , (A) , (A) , (A) , (A) , (A)) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase: str = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Optional[int] = False _lowerCamelCase: str = False def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = TFDistilBertModelTester(self ) A = ConfigTester(self ,config_class=A_ ,dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A = TFDistilBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 768] self.assertEqual(output.shape ,A_ ) A = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,A_ ,atol=1e-4 )
22
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
"""simple docstring""" import requests def _snake_case ( snake_case__ : str , snake_case__ : str ): A = {'Content-Type': 'application/json'} A = requests.post(snake_case__ , json={'text': message_body} , headers=snake_case__ ) if response.status_code != 200: A = ( 'Request to slack returned an error ' F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(snake_case__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
22
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
1
"""simple docstring""" _lowercase = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Dict ,A_ : Any ,A_ : Union[str, Any] ) -> List[Any]: A = name A = value A = weight def __repr__( self : Dict ) -> Union[str, Any]: return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return self.value def _SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.name def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return self.weight def _SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.value / self.weight def _snake_case ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Dict ): A = [] for i in range(len(snake_case__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Any ): A = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ ) A = [] A , A = 0.0, 0.0 for i in range(len(snake_case__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
1
"""simple docstring""" def _snake_case ( snake_case__ : int ): if not isinstance(snake_case__ , snake_case__ ): A = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case__ ) if number < 0: return False A = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" from __future__ import annotations import math def _snake_case ( snake_case__ : int ): if num <= 0: A = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(snake_case__ ) A = [True] * (num + 1) A = [] A = 2 A = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: A = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : Dict ,A_ : int = 13 ,A_ : int = 64 ,A_ : int = 2 ,A_ : int = 3 ,A_ : int = 3 ,A_ : bool = True ,A_ : bool = True ,A_ : int = 128 ,A_ : Dict=[16, 32, 64, 128] ,A_ : int = 7 ,A_ : int = 4 ,A_ : int = 37 ,A_ : str = "gelu" ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : int = 10 ,A_ : float = 0.02 ,A_ : int = 2 ,A_ : int = 1 ,A_ : int = 128 ,A_ : List[int] = [2, 2, 2, 2] ,A_ : int = 2 ,A_ : int = 2 ,) -> str: A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = encoder_stride A = num_attention_outputs A = embed_dim A = embed_dim + 1 A = resolution A = depths A = hidden_sizes A = dim A = mlp_expansion_ratio def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : List[Any] ,A_ : Union[str, Any] ) -> List[Any]: A = TFEfficientFormerModel(config=A_ ) A = model(A_ ,training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : int ,A_ : Union[str, Any] ) -> Union[str, Any]: A = self.type_sequence_label_size A = TFEfficientFormerForImageClassification(A_ ) A = model(A_ ,labels=A_ ,training=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = TFEfficientFormerForImageClassification(A_ ) A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase: Union[str, Any] = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase: int = False _lowerCamelCase: Tuple = False _lowerCamelCase: Dict = False _lowerCamelCase: Dict = False _lowerCamelCase: Any = False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = TFEfficientFormerModelTester(self ) A = ConfigTester( self ,config_class=A_ ,has_text_modality=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: def check_hidden_states_output(A_ : Tuple ,A_ : Tuple ,A_ : str ): A = model_class(A_ ) A = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) ,A_ ) if hasattr(self.model_tester ,'encoder_seq_length' ): A = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,'chunk_length' ) and self.model_tester.chunk_length > 1: A = seq_length * self.model_tester.chunk_length else: A = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: A = outputs.decoder_hidden_states self.asseretIsInstance(A_ ,(list, tuple) ) self.assertEqual(len(A_ ) ,A_ ) A = getattr(self.model_tester ,'seq_length' ,A_ ) A = getattr(self.model_tester ,'decoder_seq_length' ,A_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(A_ ,A_ ,A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Tuple ,A_ : List[str]=False ) -> List[Any]: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEfficientFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = getattr(self.model_tester ,'seq_length' ,A_ ) A = getattr(self.model_tester ,'encoder_seq_length' ,A_ ) A = getattr(self.model_tester ,'key_length' ,A_ ) A = getattr(self.model_tester ,'chunk_length' ,A_ ) if chunk_length is not None and hasattr(self.model_tester ,'num_hashes' ): A = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A = True A = False A = True A = model_class(A_ ) A = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A = True A = model_class(A_ ) A = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A = model_class(A_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=A_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } A = model(A_ ) self.assertTrue(outputs_dict is not None ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: A = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='tf' ) # forward pass A = model(**A_ ,training=A_ ) # verify the logits A = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,A_ ) A = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A_ ,atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='tf' ) # forward pass A = model(**A_ ,training=A_ ) # verify the logits A = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,A_ ) A = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A_ ,atol=1e-4 ) )
22
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
1
"""simple docstring""" def _snake_case ( snake_case__ : int = 200_0000 ): A = [0 for i in range(n + 1 )] A = 1 A = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case__ ): A = 1 A = 0 for i in range(snake_case__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''dpt''' def __init__( self : Union[str, Any] ,A_ : Union[str, Any]=768 ,A_ : Tuple=12 ,A_ : Tuple=12 ,A_ : str=3072 ,A_ : Optional[int]="gelu" ,A_ : List[Any]=0.0 ,A_ : Dict=0.0 ,A_ : Dict=0.02 ,A_ : Any=1e-12 ,A_ : Optional[int]=384 ,A_ : Optional[Any]=16 ,A_ : Dict=3 ,A_ : Optional[Any]=False ,A_ : Dict=True ,A_ : Any=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : List[Any]=[96, 192, 384, 768] ,A_ : Optional[Any]=256 ,A_ : Any=-1 ,A_ : Optional[int]=False ,A_ : Optional[Any]=True ,A_ : Dict=0.4 ,A_ : Dict=255 ,A_ : List[str]=0.1 ,A_ : Optional[Any]=[1, 1024, 24, 24] ,A_ : str=[0, 1] ,A_ : List[str]=None ,**A_ : Dict ,) -> Tuple: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def _snake_case ( snake_case__ : Dict[str, torch.Tensor] ): A = [] A = [] A = [] for rt in rc.restypes: A = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) A = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['aatype'].device , ) A = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein['aatype'].device , ) A = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein['aatype'].device , ) A = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A = restype_atomaa_to_atomaa[protein_aatype] A = restype_atomaa_mask[protein_aatype] A = residx_atomaa_mask A = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A = restype_atomaa_to_atomaa[protein_aatype] A = residx_atomaa_to_atomaa.long() # create the corresponding mask A = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): A = rc.restype_atoa[restype_letter] A = rc.residue_atoms[restype_name] for atom_name in atom_names: A = rc.atom_order[atom_name] A = 1 A = restype_atomaa_mask[protein_aatype] A = residx_atomaa_mask return protein def _snake_case ( snake_case__ : Dict[str, torch.Tensor] ): A = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch['aatype'].device ) , snake_case__ , np.ndarray ) A = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''roformer''' def __init__( self : Optional[Any] ,A_ : str=5_0000 ,A_ : str=None ,A_ : Optional[Any]=768 ,A_ : Optional[int]=12 ,A_ : List[str]=12 ,A_ : int=3072 ,A_ : str="gelu" ,A_ : List[str]=0.1 ,A_ : Dict=0.1 ,A_ : Union[str, Any]=1536 ,A_ : Dict=2 ,A_ : str=0.02 ,A_ : Union[str, Any]=1e-12 ,A_ : List[str]=0 ,A_ : List[str]=False ,A_ : Optional[Any]=True ,**A_ : Tuple ,) -> str: super().__init__(pad_token_id=A_ ,**A_ ) A = vocab_size A = hidden_size if embedding_size is None else embedding_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = rotary_value A = use_cache class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _lowercase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _snake_case ( snake_case__ : List[Any] ): A = {} with open(snake_case__ , 'r' ) as file: for line_number, line in enumerate(snake_case__ ): A = line.strip() if line: A = line.split() A = line_number A = words[0] A = value return result def _snake_case ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): for attribute in key.split('.' ): A = getattr(snake_case__ , snake_case__ ) A = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): A = PARAM_MAPPING[full_name.split('.' )[-1]] A = 'param' if weight_type is not None and weight_type != "param": A = getattr(snake_case__ , snake_case__ ).shape elif weight_type is not None and weight_type == "param": A = hf_pointer for attribute in hf_param_name.split('.' ): A = getattr(snake_case__ , snake_case__ ) A = shape_pointer.shape # let's reduce dimension A = value[0] else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): A = getattr(snake_case__ , snake_case__ ) A = value else: A = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] ): A = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): A = PARAM_MAPPING[full_name.split('.' )[-1]] A = 'param' if weight_type is not None and weight_type != "param": A = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A = '.'.join([key, hf_param_name] ) else: A = key A = value if 'lm_head' in full_key else value[0] _lowercase = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _snake_case ( snake_case__ : List[str] , snake_case__ : Any , snake_case__ : List[Any]=None , snake_case__ : int=None ): A = False for key, mapped_key in MAPPING.items(): A = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A = True if "*" in mapped_key: A = name.split(snake_case__ )[0].split('.' )[-2] A = mapped_key.replace('*' , snake_case__ ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None if hf_dict is not None: rename_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return is_used return is_used def _snake_case ( snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : int ): A = [] A = fairseq_model.state_dict() A = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == 'group' , ) A = True else: A = load_wavaveca_layer(snake_case__ , snake_case__ , snake_case__ ) if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] ): A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def _snake_case ( snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=None , snake_case__ : Tuple=None , snake_case__ : Tuple=True , snake_case__ : Optional[Any]=False ): if config_path is not None: A = WavaVecaConfig.from_pretrained(snake_case__ ) else: A = WavaVecaConfig() if is_seq_class: A = read_txt_into_dict(snake_case__ ) A = idalabel A = WavaVecaForSequenceClassification(snake_case__ ) A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) feature_extractor.save_pretrained(snake_case__ ) elif is_finetuned: if dict_path: A = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(snake_case__ , 'vocab.json' ) if not os.path.isdir(snake_case__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 0 A = 1 with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(snake_case__ , snake_case__ ) A = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=snake_case__ , ) A = True if config.feat_extract_norm == 'layer' else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) A = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) A = WavaVecaForCTC(snake_case__ ) else: A = WavaVecaForPreTraining(snake_case__ ) if is_finetuned or is_seq_class: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A = argparse.Namespace(task='audio_pretraining' ) A = fairseq.tasks.setup_task(snake_case__ ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case__ ) A = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''LayoutLMv3FeatureExtractor'''] _lowercase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float , ): A = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: A = 1 - (matter_density + radiation_density + dark_energy) A = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowercase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _snake_case ( snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int=1e-12 ): A = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T A = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(snake_case__ , axis=1 ) , a_min=snake_case__ ) ).T return jnp.matmul(snake_case__ , norm_emb_a.T ) class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' _lowerCamelCase: CLIPConfig _lowerCamelCase: jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: A = FlaxCLIPVisionModule(self.config.vision_config ) A = nn.Dense(self.config.projection_dim ,use_bias=A_ ,dtype=self.dtype ) A = self.param('concept_embeds' ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) A = self.param( 'special_care_embeds' ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) A = self.param('concept_embeds_weights' ,jax.nn.initializers.ones ,(17,) ) A = self.param('special_care_embeds_weights' ,jax.nn.initializers.ones ,(3,) ) def __call__( self : Optional[int] ,A_ : str ) -> Optional[Any]: A = self.vision_model(A_ )[1] A = self.visual_projection(A_ ) A = jax_cosine_distance(A_ ,self.special_care_embeds ) A = jax_cosine_distance(A_ ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs A = 0.0 A = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment A = jnp.round(A_ ,3 ) A = jnp.any(special_scores > 0 ,axis=1 ,keepdims=A_ ) # Use a lower threshold if an image has any special care concept A = is_special_care * 0.01 A = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment A = jnp.round(A_ ,3 ) A = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = CLIPConfig _lowerCamelCase: Dict = '''clip_input''' _lowerCamelCase: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] ,A_ : CLIPConfig ,A_ : Optional[Tuple] = None ,A_ : int = 0 ,A_ : jnp.dtype = jnp.floataa ,A_ : bool = True ,**A_ : str ,) -> int: if input_shape is None: A = (1, 224, 224, 3) A = self.module_class(config=A_ ,dtype=A_ ,**A_ ) super().__init__(A_ ,A_ ,input_shape=A_ ,seed=A_ ,dtype=A_ ,_do_init=_do_init ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : jax.random.KeyArray ,A_ : Tuple ,A_ : FrozenDict = None ) -> FrozenDict: # init input tensor A = jax.random.normal(A_ ,A_ ) A , A = jax.random.split(A_ ) A = {'params': params_rng, 'dropout': dropout_rng} A = self.module.init(A_ ,A_ )['params'] return random_params def __call__( self : str ,A_ : Optional[Any] ,A_ : dict = None ,) -> List[str]: A = jnp.transpose(A_ ,(0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} ,jnp.array(A_ ,dtype=jnp.floataa ) ,rngs={} ,)
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowercase = logging.getLogger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = '''sequence-classification''' def __init__( self : Any ,A_ : Union[str, Any] ) -> List[Any]: if type(A_ ) == dict: A = Namespace(**A_ ) A = glue_output_modes[hparams.task] A = glue_tasks_num_labels[hparams.task] super().__init__(A_ ,A_ ,self.mode ) def _SCREAMING_SNAKE_CASE ( self : Dict ,**A_ : Dict ) -> str: return self.model(**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[Any] ) -> List[Any]: A = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None A = self(**A_ ) A = outputs[0] A = self.trainer.lr_schedulers[0]['scheduler'] A = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = self.hparams A = processors[args.task]() A = processor.get_labels() for mode in ["train", "dev"]: A = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' ,A_ ) else: logger.info('Creating features from dataset file at %s' ,args.data_dir ) A = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) A = convert_examples_to_features( A_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('Saving features into cached file %s' ,A_ ) torch.save(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ,A_ : int ,A_ : bool = False ) -> DataLoader: A = 'dev' if mode == 'test' else mode A = self._feature_file(A_ ) logger.info('Loading features from cached file %s' ,A_ ) A = torch.load(A_ ) A = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) A = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) A = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(A_ ,A_ ,A_ ,A_ ) ,batch_size=A_ ,shuffle=A_ ,) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ,A_ : Optional[Any] ) -> Optional[int]: A = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None A = self(**A_ ) A , A = outputs[:2] A = logits.detach().cpu().numpy() A = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ) -> tuple: A = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() A = np.concatenate([x['pred'] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": A = np.argmax(A_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": A = np.squeeze(A_ ) A = np.concatenate([x['target'] for x in outputs] ,axis=0 ) A = [[] for _ in range(out_label_ids.shape[0] )] A = [[] for _ in range(out_label_ids.shape[0] )] A = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task ,A_ ,A_ )} A = dict(results.items() ) A = results return ret, preds_list, out_label_list def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : list ) -> dict: A , A , A = self._eval_end(A_ ) A = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ) -> dict: A , A , A = self._eval_end(A_ ) A = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : int ,A_ : Optional[int] ) -> int: BaseTransformer.add_model_specific_args(A_ ,A_ ) parser.add_argument( '--max_seq_length' ,default=128 ,type=A_ ,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) ,) parser.add_argument( '--task' ,default='' ,type=A_ ,required=A_ ,help='The GLUE task to run' ,) parser.add_argument( '--gpus' ,default=0 ,type=A_ ,help='The number of GPUs allocated for this, it is by default 0 meaning none' ,) parser.add_argument( '--overwrite_cache' ,action='store_true' ,help='Overwrite the cached training and evaluation sets' ) return parser def _snake_case ( ): A = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) A = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) A = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A = os.path.join( './results' , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) A = GLUETransformer(snake_case__ ) A = generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=snake_case__ ) ) A = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
22
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
1
"""simple docstring""" import numpy # List of input, output pairs _lowercase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _lowercase = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _lowercase = [2, 4, 1, 5] _lowercase = len(train_data) _lowercase = 0.009 def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : str="train" ): return calculate_hypothesis_value(snake_case__ , snake_case__ ) - output( snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Optional[int] ): A = 0 for i in range(len(snake_case__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( snake_case__ : Optional[int] , snake_case__ : List[str] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( snake_case__ : Any , snake_case__ : List[str] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( snake_case__ : Tuple , snake_case__ : Any=m ): A = 0 for i in range(snake_case__ ): if index == -1: summation_value += _error(snake_case__ ) else: summation_value += _error(snake_case__ ) * train_data[i][0][index] return summation_value def _snake_case ( snake_case__ : Optional[int] ): A = summation_of_cost_derivative(snake_case__ , snake_case__ ) / m return cost_derivative_value def _snake_case ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output A = 0.000002 A = 0 A = 0 while True: j += 1 A = [0, 0, 0, 0] for i in range(0 , len(snake_case__ ) ): A = get_cost_derivative(i - 1 ) A = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case__ , snake_case__ , atol=snake_case__ , rtol=snake_case__ , ): break A = temp_parameter_vector print(('Number of iterations:', j) ) def _snake_case ( ): for i in range(len(snake_case__ ) ): print(('Actual output value:', output(snake_case__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(snake_case__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
22
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
1
"""simple docstring""" import baseaa def _snake_case ( snake_case__ : str ): return baseaa.baaencode(string.encode('utf-8' ) ) def _snake_case ( snake_case__ : bytes ): return baseaa.baadecode(snake_case__ ).decode('utf-8' ) if __name__ == "__main__": _lowercase = '''Hello World!''' _lowercase = baseaa_encode(test) print(encoded) _lowercase = baseaa_decode(encoded) print(decoded)
22
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''dpr''' def __init__( self : Tuple ,A_ : int=3_0522 ,A_ : int=768 ,A_ : Any=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Optional[Any]="gelu" ,A_ : List[Any]=0.1 ,A_ : List[Any]=0.1 ,A_ : int=512 ,A_ : Union[str, Any]=2 ,A_ : Optional[int]=0.02 ,A_ : List[Any]=1e-12 ,A_ : str=0 ,A_ : str="absolute" ,A_ : int = 0 ,**A_ : Union[str, Any] ,) -> Optional[Any]: super().__init__(pad_token_id=A_ ,**A_ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = projection_dim A = position_embedding_type
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowercase = threading.Lock() _lowercase = None _lowercase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowercase = logging.WARNING _lowercase = True def _snake_case ( ): A = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def _snake_case ( ): return __name__.split('.' )[0] def _snake_case ( ): return logging.getLogger(_get_library_name() ) def _snake_case ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return A = logging.StreamHandler() # Set sys.stderr as stream. A = sys.stderr.flush # Apply our default configuration to the library root logger. A = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) A = False def _snake_case ( ): global _default_handler with _lock: if not _default_handler: return A = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) A = None def _snake_case ( ): return log_levels def _snake_case ( snake_case__ : Optional[str] = None ): if name is None: A = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case__ ) def _snake_case ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _snake_case ( snake_case__ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case__ ) def _snake_case ( ): return set_verbosity(snake_case__ ) def _snake_case ( ): return set_verbosity(snake_case__ ) def _snake_case ( ): return set_verbosity(snake_case__ ) def _snake_case ( ): return set_verbosity(snake_case__ ) def _snake_case ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _snake_case ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _snake_case ( snake_case__ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case__ ) def _snake_case ( snake_case__ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case__ ) def _snake_case ( ): _configure_library_root_logger() A = False def _snake_case ( ): _configure_library_root_logger() A = True def _snake_case ( ): A = _get_library_root_logger().handlers for handler in handlers: A = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(snake_case__ ) def _snake_case ( ): A = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case__ ) def _snake_case ( self : str , *snake_case__ : int , **snake_case__ : Tuple ): A = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , snake_case__ ) if no_advisory_warnings: return self.warning(*snake_case__ , **snake_case__ ) _lowercase = warning_advice @functools.lru_cache(snake_case__ ) def _snake_case ( self : Optional[Any] , *snake_case__ : List[Any] , **snake_case__ : Union[str, Any] ): self.warning(*snake_case__ , **snake_case__ ) _lowercase = warning_once class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> Dict: # pylint: disable=unused-argument A = args[0] if args else None def __iter__( self : List[Any] ) -> Union[str, Any]: return iter(self._iterator ) def __getattr__( self : Dict ,A_ : Dict ) -> str: def empty_fn(*A_ : Dict ,**A_ : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ) -> Union[str, Any]: return self def __exit__( self : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : Dict ) -> Tuple: return class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Optional[int] ,*A_ : Any ,**A_ : Dict ) -> List[str]: if _tqdm_active: return tqdm_lib.tqdm(*A_ ,**A_ ) else: return EmptyTqdm(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,*A_ : Optional[int] ,**A_ : Tuple ) -> Any: A = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowercase = _tqdm_cls() def _snake_case ( ): global _tqdm_active return bool(_tqdm_active ) def _snake_case ( ): global _tqdm_active A = True hf_hub_utils.enable_progress_bars() def _snake_case ( ): global _tqdm_active A = False hf_hub_utils.disable_progress_bars()
22
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''AutoTokenizer''' _lowerCamelCase: Any = ['''tokenizer'''] _lowerCamelCase: Any = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : str ,A_ : List[Any] ,A_ : List[str]=None ) -> int: super().__init__(A_ ) A = speaker_embeddings @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] ,A_ : int ,A_ : Any="speaker_embeddings_path.json" ,**A_ : Dict ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: A = get_file_from_repo( A_ ,A_ ,subfolder=kwargs.pop('subfolder' ,A_ ) ,cache_dir=kwargs.pop('cache_dir' ,A_ ) ,force_download=kwargs.pop('force_download' ,A_ ) ,proxies=kwargs.pop('proxies' ,A_ ) ,resume_download=kwargs.pop('resume_download' ,A_ ) ,local_files_only=kwargs.pop('local_files_only' ,A_ ) ,use_auth_token=kwargs.pop('use_auth_token' ,A_ ) ,revision=kwargs.pop('revision' ,A_ ) ,) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(A_ ,A_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) A = None else: with open(A_ ) as speaker_embeddings_json: A = json.load(A_ ) else: A = None A = AutoTokenizer.from_pretrained(A_ ,**A_ ) return cls(tokenizer=A_ ,speaker_embeddings=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ,A_ : Dict="speaker_embeddings_path.json" ,A_ : Optional[int]="speaker_embeddings" ,A_ : bool = False ,**A_ : Optional[int] ,) -> int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A_ ,A_ ,'v2' ) ,exist_ok=A_ ) A = {} A = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A = self._load_voice_preset(A_ ) A = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,A_ ,F'{prompt_key}_{key}' ) ,voice_preset[key] ,allow_pickle=A_ ,) A = os.path.join(A_ ,F'{prompt_key}_{key}.npy' ) A = tmp_dict with open(os.path.join(A_ ,A_ ) ,'w' ) as fp: json.dump(A_ ,A_ ) super().save_pretrained(A_ ,A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : str = None ,**A_ : List[str] ) -> List[Any]: A = self.speaker_embeddings[voice_preset] A = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) A = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,A_ ) ,cache_dir=kwargs.pop('cache_dir' ,A_ ) ,force_download=kwargs.pop('force_download' ,A_ ) ,proxies=kwargs.pop('proxies' ,A_ ) ,resume_download=kwargs.pop('resume_download' ,A_ ) ,local_files_only=kwargs.pop('local_files_only' ,A_ ) ,use_auth_token=kwargs.pop('use_auth_token' ,A_ ) ,revision=kwargs.pop('revision' ,A_ ) ,) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) A = np.load(A_ ) return voice_preset_dict def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[dict] = None ) -> Optional[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Any ,A_ : Union[str, Any]=None ,A_ : Optional[Any]=None ,A_ : Optional[int]="pt" ,A_ : Optional[int]=256 ,A_ : str=False ,A_ : List[Any]=True ,A_ : Tuple=False ,**A_ : Union[str, Any] ,) -> Tuple: if voice_preset is not None and not isinstance(A_ ,A_ ): if ( isinstance(A_ ,A_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A = self._load_voice_preset(A_ ) else: if isinstance(A_ ,A_ ) and not voice_preset.endswith('.npz' ): A = voice_preset + '.npz' A = np.load(A_ ) if voice_preset is not None: self._validate_voice_preset_dict(A_ ,**A_ ) A = BatchFeature(data=A_ ,tensor_type=A_ ) A = self.tokenizer( A_ ,return_tensors=A_ ,padding='max_length' ,max_length=A_ ,return_attention_mask=A_ ,return_token_type_ids=A_ ,add_special_tokens=A_ ,**A_ ,) if voice_preset is not None: A = voice_preset return encoded_text
22
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
1
"""simple docstring""" import argparse from collections import defaultdict import yaml _lowercase = '''docs/source/en/_toctree.yml''' def _snake_case ( snake_case__ : List[Any] ): A = defaultdict(snake_case__ ) for doc in model_doc: counts[doc["local"]] += 1 A = [key for key, value in counts.items() if value > 1] A = [] for duplicate_key in duplicates: A = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(snake_case__ ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() ) def _snake_case ( snake_case__ : List[str]=False ): with open(snake_case__ , encoding='utf-8' ) as f: A = yaml.safe_load(f.read() ) # Get to the API doc A = 0 while content[api_idx]["title"] != "API": api_idx += 1 A = content[api_idx]['sections'] # Then to the model doc A = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A = api_doc[model_idx]['sections'] A = [(idx, section) for idx, section in enumerate(snake_case__ ) if 'sections' in section] A = False for idx, modality_doc in modalities_docs: A = modality_doc['sections'] A = clean_model_doc_toc(snake_case__ ) if old_modality_doc != new_modality_doc: A = True if overwrite: A = new_modality_doc if diff: if overwrite: A = model_doc A = api_doc with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): try: with open(snake_case__ , 'rb' ) as flax_state_f: A = from_bytes(snake_case__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(snake_case__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Union[str, Any] ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights A = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) A = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A = '' A = flatten_dict(snake_case__ , sep='.' ) A = pt_model.state_dict() # keep track of unexpected & missing keys A = [] A = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A = flax_key_tuple_array[:-1] + ['weight'] A = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A = flax_key_tuple_array[:-1] + ['weight'] A = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(snake_case__ ): A = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) A = '.'.join(snake_case__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
22
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _snake_case ( snake_case__ : str = "AAPL" ): A = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' A = BeautifulSoup(requests.get(snake_case__ ).text , 'html.parser' ) A = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[str] ,A_ : Union[str, Any] ,A_ : Any=None ,A_ : Optional[Any]=True ,A_ : List[str]=None ,**A_ : str ) -> str: A = parent A = config_class A = has_text_modality A = kwargs A = common_properties def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: A = self.config_class(**self.inputs_dict ) A = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(A_ ,A_ ) ,msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(A_ ): try: setattr(A_ ,A_ ,A_ ) self.parent.assertEqual( getattr(A_ ,A_ ) ,A_ ,msg=F'`{name} value {idx} expected, but was {getattr(A_ ,A_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(A_ ): try: A = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(A_ ,A_ ) ,A_ ,msg=F'`{name} value {idx} expected, but was {getattr(A_ ,A_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = self.config_class(**self.inputs_dict ) A = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'config.json' ) config_first.to_json_file(A_ ) A = self.config_class.from_json_file(A_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(A_ ) A = self.config_class.from_pretrained(A_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = self.config_class(**self.inputs_dict ) A = 'test' with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,A_ ) config_first.save_pretrained(A_ ) A = self.config_class.from_pretrained(A_ ,subfolder=A_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = self.config_class(**self.inputs_dict ,num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) ,5 ) self.parent.assertEqual(len(config.labelaid ) ,5 ) A = 3 self.parent.assertEqual(len(config.idalabel ) ,3 ) self.parent.assertEqual(len(config.labelaid ) ,3 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: if self.config_class.is_composition: return A = self.config_class() self.parent.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = copy.deepcopy(A_ ) A = self.config_class(**A_ ) A = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(A_ ,A_ ) != value: wrong_values.append((key, getattr(A_ ,A_ ), value) ) if len(A_ ) > 0: A = '\n'.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
"""simple docstring""" def _snake_case ( snake_case__ : Any , snake_case__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) A = (boundary[1] - boundary[0]) / steps A = boundary[0] A = boundary[1] A = make_points(snake_case__ , snake_case__ , snake_case__ ) A = 0.0 y += (h / 2.0) * f(snake_case__ ) for i in x_i: # print(i) y += h * f(snake_case__ ) y += (h / 2.0) * f(snake_case__ ) return y def _snake_case ( snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): A = a + h while x < (b - h): yield x A = x + h def _snake_case ( snake_case__ : str ): # enter your function here A = (x - 0) * (x - 0) return y def _snake_case ( ): A = 0.0 # Lower bound of integration A = 1.0 # Upper bound of integration A = 10.0 # define number of steps or resolution A = [a, b] # define boundary of integration A = method_a(snake_case__ , snake_case__ ) print(F'y = {y}' ) if __name__ == "__main__": main()
22
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: A = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) A = 'A painting of a squirrel eating a burger' A = torch.manual_seed(0 ) A = sd_pipe([prompt] ,generator=A_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_euler' ) A = 'A painting of a squirrel eating a burger' A = torch.manual_seed(0 ) A = sd_pipe([prompt] ,generator=A_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) A = 'A painting of a squirrel eating a burger' A = torch.manual_seed(0 ) A = sd_pipe( [prompt] ,generator=A_ ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type='np' ,use_karras_sigmas=A_ ,) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" def _snake_case ( snake_case__ : list[int] , snake_case__ : int ): A = len(snake_case__ ) A = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A = subset[i - 1][j] if arr[i - 1] <= j: A = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" import requests _lowercase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def _snake_case ( snake_case__ : str ): # fetching a list of articles in json format A = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _snake_case ( snake_case__ : List[str] , snake_case__ : List[Any]=False ): try: A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A = default else: # KEY is set, convert it to True or False. try: A = strtobool(snake_case__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value _lowercase = parse_flag_from_env('''RUN_SLOW''', default=False) _lowercase = parse_flag_from_env('''RUN_REMOTE''', default=False) _lowercase = parse_flag_from_env('''RUN_LOCAL''', default=True) _lowercase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression _lowercase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') _lowercase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') _lowercase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio _lowercase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam _lowercase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility _lowercase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows _lowercase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _snake_case ( snake_case__ : int ): try: import faiss # noqa except ImportError: A = unittest.skip('test requires faiss' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Dict ): try: import regex # noqa except ImportError: A = unittest.skip('test requires regex' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : List[str] ): try: import elasticsearch # noqa except ImportError: A = unittest.skip('test requires elasticsearch' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : int ): try: import sqlalchemy # noqa except ImportError: A = unittest.skip('test requires sqlalchemy' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : List[Any] ): if not config.TORCH_AVAILABLE: A = unittest.skip('test requires PyTorch' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Optional[Any] ): if not config.TF_AVAILABLE: A = unittest.skip('test requires TensorFlow' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Tuple ): if not config.JAX_AVAILABLE: A = unittest.skip('test requires JAX' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : List[Any] ): if not config.PIL_AVAILABLE: A = unittest.skip('test requires Pillow' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Any ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(snake_case__ ) else: return test_case def _snake_case ( snake_case__ : Any ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(snake_case__ ) else: return test_case def _snake_case ( snake_case__ : Union[str, Any] ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(snake_case__ ) else: return test_case def _snake_case ( snake_case__ : Tuple ): def _require_spacy_model(snake_case__ : Union[str, Any] ): try: import spacy # noqa F401 spacy.load(snake_case__ ) except ImportError: return unittest.skip('test requires spacy' )(snake_case__ ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(snake_case__ ) )(snake_case__ ) else: return test_case return _require_spacy_model def _snake_case ( snake_case__ : Optional[int] ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(snake_case__ ) else: return test_case def _snake_case ( snake_case__ : str ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(snake_case__ ) else: return test_case def _snake_case ( snake_case__ : Tuple ): if not _run_slow_tests or _run_slow_tests == 0: A = unittest.skip('test is slow' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Optional[int] ): if not _run_local_tests or _run_local_tests == 0: A = unittest.skip('test is local' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : Union[str, Any] ): if not _run_packaged_tests or _run_packaged_tests == 0: A = unittest.skip('test is packaged' )(snake_case__ ) return test_case def _snake_case ( snake_case__ : str ): if not _run_remote_tests or _run_remote_tests == 0: A = unittest.skip('test requires remote' )(snake_case__ ) return test_case def _snake_case ( *snake_case__ : Union[str, Any] ): def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(snake_case__ ) and name.startswith('test' ): for decorator in decorators: A = decorator(snake_case__ ) setattr(cls , snake_case__ , snake_case__ ) return cls return decorate class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' pass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = 0 _lowerCamelCase: Dict = 1 _lowerCamelCase: Any = 2 @contextmanager def _snake_case ( snake_case__ : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS , snake_case__ : Optional[Any]=1e-16 ): A = requests.Session().request def timeout_request(snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Dict , **snake_case__ : Tuple ): # Change the url to an invalid url so that the connection hangs A = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) A = timeout try: return online_request(snake_case__ , snake_case__ , **snake_case__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier A = url A = e.args[0] A = (max_retry_error.args[0].replace('10.255.255.1' , F'OfflineMock[{url}]' ),) A = (max_retry_error,) raise def raise_connection_error(snake_case__ : Optional[Any] , snake_case__ : Dict , **snake_case__ : int ): raise requests.ConnectionError('Offline mode is enabled.' , request=snake_case__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , snake_case__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , snake_case__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , snake_case__ ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def _snake_case ( *snake_case__ : str , **snake_case__ : Tuple ): A = str(Path().resolve() ) with tempfile.TemporaryDirectory(*snake_case__ , **snake_case__ ) as tmp_dir: try: os.chdir(snake_case__ ) yield finally: os.chdir(snake_case__ ) @contextmanager def _snake_case ( ): import gc gc.collect() A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _snake_case ( ): import gc gc.collect() A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Any ): return deepcopy(snake_case__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(snake_case__ ).integers(0 , 100 , 10 ).tolist() def _snake_case ( snake_case__ : Dict ): import decorator from requests.exceptions import HTTPError def _wrapper(snake_case__ : Optional[Any] , *snake_case__ : List[Any] , **snake_case__ : List[Any] ): try: return func(*snake_case__ , **snake_case__ ) except HTTPError as err: if str(snake_case__ ).startswith('500' ) or str(snake_case__ ).startswith('502' ): pytest.xfail(str(snake_case__ ) ) raise err return decorator.decorator(_wrapper , snake_case__ ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : Union[str, Any] ,A_ : int ,A_ : List[Any] ) -> Any: A = returncode A = stdout A = stderr async def _snake_case ( snake_case__ : int , snake_case__ : List[str] ): while True: A = await stream.readline() if line: callback(snake_case__ ) else: break async def _snake_case ( snake_case__ : List[Any] , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : List[Any]=False , snake_case__ : str=False ): if echo: print('\nRunning: ' , ' '.join(snake_case__ ) ) A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=snake_case__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=snake_case__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A = [] A = [] def tee(snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any]="" ): A = line.decode('utf-8' ).rstrip() sink.append(snake_case__ ) if not quiet: print(snake_case__ , snake_case__ , file=snake_case__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda snake_case__ : tee(snake_case__ , snake_case__ , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda snake_case__ : tee(snake_case__ , snake_case__ , sys.stderr , label='stderr:' ) ), ] , timeout=snake_case__ , ) return _RunOutput(await p.wait() , snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=180 , snake_case__ : Dict=False , snake_case__ : List[str]=True ): A = asyncio.get_event_loop() A = loop.run_until_complete( _stream_subprocess(snake_case__ , env=snake_case__ , stdin=snake_case__ , timeout=snake_case__ , quiet=snake_case__ , echo=snake_case__ ) ) A = ' '.join(snake_case__ ) if result.returncode > 0: A = '\n'.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def _snake_case ( ): A = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) A = re.sub(r'^gw' , '' , snake_case__ , 0 , re.M ) return int(snake_case__ ) def _snake_case ( ): A = 2_9500 A = pytest_xdist_worker_id() return port + uniq_delta
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = 0 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: A = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: A = Path(A_ ) / 'preprocessor_config.json' A = Path(A_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(A_ ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(A_ ,'w' ) ) A = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A = Path(A_ ) / 'preprocessor_config.json' A = Path(A_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} ,open(A_ ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(A_ ,'w' ) ) A = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A = CLIPConfig() # Create a dummy config file with image_proceesor_type A = Path(A_ ) / 'preprocessor_config.json' A = Path(A_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(A_ ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(A_ ,'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A = AutoImageProcessor.from_pretrained(A_ ).to_dict() config_dict.pop('image_processor_type' ) A = CLIPImageProcessor(**A_ ) # save in new folder model_config.save_pretrained(A_ ) config.save_pretrained(A_ ) A = AutoImageProcessor.from_pretrained(A_ ) # make sure private variable is not incorrectly saved A = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: A = Path(A_ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} ,open(A_ ,'w' ) ,) A = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: with self.assertRaisesRegex( A_ ,'clip-base is not a local folder and is not a valid model identifier' ): A = AutoImageProcessor.from_pretrained('clip-base' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: with self.assertRaisesRegex( A_ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A = AutoImageProcessor.from_pretrained(A_ ,revision='aaaaaa' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: with self.assertRaisesRegex( A_ ,'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' ,): A = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A_ ): A = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=A_ ) A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) A = AutoImageProcessor.from_pretrained(A_ ,trust_remote_code=A_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,'NewImageProcessor' ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: try: AutoConfig.register('custom' ,A_ ) AutoImageProcessor.register(A_ ,A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoImageProcessor.register(A_ ,A_ ) with tempfile.TemporaryDirectory() as tmpdirname: A = Path(A_ ) / 'preprocessor_config.json' A = Path(A_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} ,open(A_ ,'w' ) ,) json.dump({'model_type': 'clip'} ,open(A_ ,'w' ) ) A = CustomImageProcessor.from_pretrained(A_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A_ ) A = AutoImageProcessor.from_pretrained(A_ ) self.assertIsInstance(A_ ,A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = True try: AutoConfig.register('custom' ,A_ ) AutoImageProcessor.register(A_ ,A_ ) # If remote code is not set, the default is to use local A = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' ,trust_remote_code=A_ ) self.assertEqual(image_processor.__class__.__name__ ,'NewImageProcessor' ) self.assertTrue(not hasattr(A_ ,'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''sentencepiece.model'''} _lowercase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } _lowercase = { '''google/rembert''': 2_56, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict ,A_ : List[Any] ,A_ : Any=False ,A_ : List[str]=True ,A_ : Tuple=True ,A_ : Optional[Any]="[CLS]" ,A_ : Any="[SEP]" ,A_ : Any="[UNK]" ,A_ : str="[SEP]" ,A_ : int="[PAD]" ,A_ : Optional[Any]="[CLS]" ,A_ : Dict="[MASK]" ,**A_ : Any ,) -> Any: super().__init__( do_lower_case=A_ ,remove_space=A_ ,keep_accents=A_ ,bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,pad_token=A_ ,cls_token=A_ ,mask_token=A_ ,**A_ ,) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[Any] ,A_ : str ) -> Dict: A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ,A_ : Optional[Any]=False ) -> Optional[int]: A = self.sp_model.EncodeAsPieces(A_ ) return pieces def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ) -> Dict: return self.sp_model.PieceToId(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Any ) -> Optional[Any]: return self.sp_model.IdToPiece(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ) -> Optional[Any]: A = self.sp_model.decode_pieces(A_ ) return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file ,A_ ) return (out_vocab_file,)
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] ): # initialize config if "resnet-50" in model_name: A = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: A = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) A = DetrConfig(use_timm_backbone=snake_case__ , backbone_config=snake_case__ ) # set label attributes A = 'panoptic' in model_name if is_panoptic: A = 250 else: A = 91 A = 'huggingface/label-files' A = 'coco-detection-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case ( snake_case__ : List[str] ): # here we list all keys to be renamed (original name on the left, our name on the right) A = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def _snake_case ( snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : str ): A = state_dict.pop(snake_case__ ) A = val def _snake_case ( snake_case__ : int , snake_case__ : Tuple=False ): A = '' if is_panoptic: A = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:256, :] A = in_proj_bias[:256] A = in_proj_weight[256:512, :] A = in_proj_bias[256:512] A = in_proj_weight[-256:, :] A = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A = in_proj_weight_cross_attn[:256, :] A = in_proj_bias_cross_attn[:256] A = in_proj_weight_cross_attn[256:512, :] A = in_proj_bias_cross_attn[256:512] A = in_proj_weight_cross_attn[-256:, :] A = in_proj_bias_cross_attn[-256:] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _snake_case ( snake_case__ : Tuple , snake_case__ : List[Any]=None , snake_case__ : str=False ): A , A = get_detr_config(snake_case__ ) # load original model from torch hub A = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'Converting model {model_name}...' ) A = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=snake_case__ ).eval() A = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: A = 'detr.' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): A = state_dict.pop(snake_case__ ) A = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A = state_dict.pop(snake_case__ ) A = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: A = state_dict.pop(snake_case__ ) A = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): A = state_dict.pop(snake_case__ ) A = val # finally, create HuggingFace model and load state dict A = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image A = 'coco_panoptic' if is_panoptic else 'coco_detection' A = DetrImageProcessor(format=snake_case__ ) A = processor(images=prepare_img() , return_tensors='pt' ) A = encoding['pixel_values'] A = detr(snake_case__ ) A = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _lowercase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = KandinskyImgaImgPipeline _lowerCamelCase: Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCamelCase: Any = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCamelCase: Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCamelCase: Tuple = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: return 32 @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return 32 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> str: return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: torch.manual_seed(0 ) A = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1005 ,) A = MultilingualCLIP(A_ ) A = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**A_ ) return model @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_unet A = self.dummy_movq A = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } A = DDIMScheduler(**A_ ) A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Any ,A_ : Tuple=0 ) -> int: A = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(A_ ) ).to(A_ ) A = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image A = floats_tensor((1, 3, 64, 64) ,rng=random.Random(A_ ) ).to(A_ ) A = image.cpu().permute(0 ,2 ,3 ,1 )[0] A = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) ) if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = pipe(**self.get_dummy_inputs(A_ ) ) A = output.images A = pipe( **self.get_dummy_inputs(A_ ) ,return_dict=A_ ,)[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A = 'A red cartoon frog, 4k' A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(A_ ) A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' ,torch_dtype=torch.floataa ) A = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A , A = pipe_prior( A_ ,generator=A_ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() A = pipeline( A_ ,image=A_ ,image_embeds=A_ ,negative_image_embeds=A_ ,generator=A_ ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type='np' ,) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ ,A_ )
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _lowercase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : int = 101 ) -> Tuple: A = length def __len__( self : int ) -> Any: return self.length def __getitem__( self : Optional[int] ,A_ : List[Any] ) -> int: return i class lowerCAmelCase_ : '''simple docstring''' def __call__( self : str ,A_ : List[Any] ) -> Any: return {"input_ids": torch.tensor(A_ ), "labels": torch.tensor(A_ )} class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. A = nn.Linear(120 ,80 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tuple ,A_ : Tuple=None ) -> Optional[Any]: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @require_torch_neuroncore def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() A = self.get_auto_remove_tmp_dir() A = F'--output_dir {output_dir}'.split() A = ['torchrun'] + distributed_args + args execute_subprocess_async(A_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() A = self.get_auto_remove_tmp_dir() A = F'--output_dir {output_dir}'.split() A = ['torchrun'] + distributed_args + args execute_subprocess_async(A_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _lowercase = HfArgumentParser((TrainingArguments,)) _lowercase = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: _lowercase = DummyDataset(dataset_length) def _snake_case ( snake_case__ : EvalPrediction ): A = list(range(len(snake_case__ ) ) ) A = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} _lowercase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _lowercase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowercase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowercase = 2 _lowercase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowercase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowercase = None
22
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
1
"""simple docstring""" import re def _snake_case ( snake_case__ : str ): return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def _snake_case ( snake_case__ : str ): A = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _snake_case ( snake_case__ : str , snake_case__ : bool , snake_case__ : str ): try: A = split_input(snake_case__ ) if upper: A = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _snake_case ( snake_case__ : str ): return to_simple_case(snake_case__ ) def _snake_case ( snake_case__ : str ): try: A = to_simple_case(snake_case__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _snake_case ( snake_case__ : str , snake_case__ : bool ): return to_complex_case(snake_case__ , snake_case__ , '_' ) def _snake_case ( snake_case__ : str , snake_case__ : bool ): return to_complex_case(snake_case__ , snake_case__ , '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
22
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Any=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 A = torch.tensor(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ).unsqueeze(0 ) # Batch size 1 A = model(snake_case__ )[0] # The last hidden-state is the first element of the output tuple A = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A = logits[0, masked_index, :] A = logits.softmax(dim=0 ) A , A = prob.topk(k=snake_case__ , dim=0 ) A = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(snake_case__ ) )] ) A = tokenizer.mask_token A = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): A = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(snake_case__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(snake_case__ ) , snake_case__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(snake_case__ , snake_case__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') _lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() _lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
22
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : int , snake_case__ : Optional[int] = None , ): A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv' , data_files=snake_case__ ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(snake_case__ ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(snake_case__ )} A = tokenizer.model_input_names A = {} if len(snake_case__ ) == 1: for k in files.keys(): A = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=snake_case__ , max_length=snake_case__ , padding='max_length' ) , batched=snake_case__ , ) elif len(snake_case__ ) == 2: for k in files.keys(): A = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=snake_case__ , max_length=snake_case__ , padding='max_length' , ) , batched=snake_case__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: int = field(metadata={'''help''': '''Which column contains the label'''} ) _lowerCamelCase: str = field(default=_lowercase , metadata={'''help''': '''The path of the training file'''} ) _lowerCamelCase: Optional[str] = field(default=_lowercase , metadata={'''help''': '''The path of the development file'''} ) _lowerCamelCase: Optional[str] = field(default=_lowercase , metadata={'''help''': '''The path of the test file'''} ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase: bool = field( default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A , A , A , A = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=snake_case__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(snake_case__ ) , labelaid=snake_case__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case__ : EvalPrediction ) -> Dict: A = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(snake_case__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(snake_case__ ) return results if __name__ == "__main__": main()
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _snake_case ( snake_case__ : SplitDict ): A = split_dict._to_yaml_list() assert len(snake_case__ ) == len(snake_case__ ) A = SplitDict._from_yaml_list(snake_case__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump A = None # the split name of split_dict takes over the name of the split info object A = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='my_dataset' )] ) def _snake_case ( snake_case__ : Dict ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files A = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
22
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
1
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ): if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( snake_case__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
1
"""simple docstring""" def _snake_case ( snake_case__ : int = 10**9 ): A = 1 A = 2 A = 0 A = 0 A = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
22
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: A = inspect.getfile(accelerate.test_utils ) A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: print(F'Found {torch.cuda.device_count()} devices.' ) A = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ ,env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: print(F'Found {torch.cuda.device_count()} devices.' ) A = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ ,env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: A = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A_ ,env=os.environ.copy() ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str ) -> str: print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) A = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(A_ ,env=os.environ.copy() ) if __name__ == "__main__": _lowercase = Accelerator() _lowercase = (accelerator.state.process_index + 2, 10) _lowercase = torch.randint(0, 10, shape).to(accelerator.device) _lowercase = '''''' _lowercase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowercase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowercase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : np.ndarray , snake_case__ : Union[int, Iterable[int]] , snake_case__ : bool , snake_case__ : int ): def constraint_to_multiple_of(snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=None ): A = round(val / multiple ) * multiple if max_val is not None and x > max_val: A = math.floor(val / multiple ) * multiple if x < min_val: A = math.ceil(val / multiple ) * multiple return x A = (output_size, output_size) if isinstance(snake_case__ , snake_case__ ) else output_size A , A = get_image_size(snake_case__ ) A , A = output_size # determine new height and width A = output_height / input_height A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A = scale_width else: # fit height A = scale_height A = constraint_to_multiple_of(scale_height * input_height , multiple=snake_case__ ) A = constraint_to_multiple_of(scale_width * input_width , multiple=snake_case__ ) return (new_height, new_width) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = False ,A_ : int = 1 ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Any ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'height': 384, 'width': 384} A = get_size_dict(A_ ) A = do_resize A = size A = keep_aspect_ratio A = ensure_multiple_of A = resample A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : bool = False ,A_ : int = 1 ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) A = get_resize_output_image_size( A_ ,output_size=(size['height'], size['width']) ,keep_aspect_ratio=A_ ,multiple=A_ ,) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : np.ndarray ,A_ : Union[int, float] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ,) -> Tuple: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Tuple ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : ImageInput ,A_ : bool = None ,A_ : int = None ,A_ : bool = None ,A_ : int = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : float = None ,A_ : bool = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : ChannelDimension = ChannelDimension.FIRST ,**A_ : Optional[Any] ,) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ) A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A = resample if resample is not None else self.resample A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : List[Tuple] = None ) -> Tuple: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
1
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list ): _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def _snake_case ( snake_case__ : list[float] ): if point: if isinstance(snake_case__ , snake_case__ ): for item in point: if not isinstance(snake_case__ , (int, float) ): A = ( 'Expected a list of numbers as input, found ' F'{type(snake_case__ ).__name__}' ) raise TypeError(snake_case__ ) else: A = F'Expected a list of numbers as input, found {type(snake_case__ ).__name__}' raise TypeError(snake_case__ ) else: raise ValueError('Missing an input' ) def _snake_case ( snake_case__ : list , snake_case__ : list ): _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(snake_case__ , snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
1
"""simple docstring""" from math import factorial _lowercase = {str(d): factorial(d) for d in range(10)} def _snake_case ( snake_case__ : int ): return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def _snake_case ( ): A = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
22
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __get__( self : Optional[int] ,A_ : int ,A_ : Tuple=None ) -> Dict: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) A = '__cached_' + self.fget.__name__ A = getattr(A_ ,A_ ,A_ ) if cached is None: A = self.fget(A_ ) setattr(A_ ,A_ ,A_ ) return cached def _snake_case ( snake_case__ : Union[str, Any] ): A = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def _snake_case ( snake_case__ : str ): if is_torch_fx_proxy(snake_case__ ): return True if is_torch_available(): import torch if isinstance(snake_case__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(snake_case__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(snake_case__ , (jnp.ndarray, Tracer) ): return True return isinstance(snake_case__ , np.ndarray ) def _snake_case ( snake_case__ : Optional[Any] ): return isinstance(snake_case__ , np.ndarray ) def _snake_case ( snake_case__ : List[Any] ): return _is_numpy(snake_case__ ) def _snake_case ( snake_case__ : List[Any] ): import torch return isinstance(snake_case__ , torch.Tensor ) def _snake_case ( snake_case__ : List[str] ): return False if not is_torch_available() else _is_torch(snake_case__ ) def _snake_case ( snake_case__ : List[Any] ): import torch return isinstance(snake_case__ , torch.device ) def _snake_case ( snake_case__ : Optional[int] ): return False if not is_torch_available() else _is_torch_device(snake_case__ ) def _snake_case ( snake_case__ : Optional[int] ): import torch if isinstance(snake_case__ , snake_case__ ): if hasattr(snake_case__ , snake_case__ ): A = getattr(snake_case__ , snake_case__ ) else: return False return isinstance(snake_case__ , torch.dtype ) def _snake_case ( snake_case__ : List[Any] ): return False if not is_torch_available() else _is_torch_dtype(snake_case__ ) def _snake_case ( snake_case__ : Dict ): import tensorflow as tf return isinstance(snake_case__ , tf.Tensor ) def _snake_case ( snake_case__ : str ): return False if not is_tf_available() else _is_tensorflow(snake_case__ ) def _snake_case ( snake_case__ : List[Any] ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(snake_case__ , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(snake_case__ ) return type(snake_case__ ) == tf.Tensor def _snake_case ( snake_case__ : str ): return False if not is_tf_available() else _is_tf_symbolic_tensor(snake_case__ ) def _snake_case ( snake_case__ : List[str] ): import jax.numpy as jnp # noqa: F811 return isinstance(snake_case__ , jnp.ndarray ) def _snake_case ( snake_case__ : int ): return False if not is_flax_available() else _is_jax(snake_case__ ) def _snake_case ( snake_case__ : List[Any] ): if isinstance(snake_case__ , (dict, UserDict) ): return {k: to_py_obj(snake_case__ ) for k, v in obj.items()} elif isinstance(snake_case__ , (list, tuple) ): return [to_py_obj(snake_case__ ) for o in obj] elif is_tf_tensor(snake_case__ ): return obj.numpy().tolist() elif is_torch_tensor(snake_case__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(snake_case__ ): return np.asarray(snake_case__ ).tolist() elif isinstance(snake_case__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _snake_case ( snake_case__ : int ): if isinstance(snake_case__ , (dict, UserDict) ): return {k: to_numpy(snake_case__ ) for k, v in obj.items()} elif isinstance(snake_case__ , (list, tuple) ): return np.array(snake_case__ ) elif is_tf_tensor(snake_case__ ): return obj.numpy() elif is_torch_tensor(snake_case__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(snake_case__ ): return np.asarray(snake_case__ ) else: return obj class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = fields(self ) # Safety and consistency checks if not len(A_ ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) A = getattr(self ,class_fields[0].name ) A = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A_ ): if isinstance(A_ ,A_ ): A = first_field.items() A = True else: try: A = iter(A_ ) A = True except TypeError: A = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A_ ): if ( not isinstance(A_ ,(list, tuple) ) or not len(A_ ) == 2 or not isinstance(element[0] ,A_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: A = element[1] elif first_field is not None: A = first_field else: for field in class_fields: A = getattr(self ,field.name ) if v is not None: A = v def __delitem__( self : Optional[int] ,*A_ : Optional[int] ,**A_ : Dict ) -> Tuple: raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def _SCREAMING_SNAKE_CASE ( self : int ,*A_ : Optional[int] ,**A_ : List[Any] ) -> Dict: raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,*A_ : Optional[Any] ,**A_ : Dict ) -> Dict: raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : Union[str, Any] ,**A_ : Dict ) -> Dict: raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : int ,A_ : Any ) -> str: if isinstance(A_ ,A_ ): A = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any] ,A_ : int ,A_ : Dict ) -> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A_ ,A_ ) super().__setattr__(A_ ,A_ ) def __setitem__( self : int ,A_ : Dict ,A_ : Tuple ) -> int: # Will raise a KeyException if needed super().__setitem__(A_ ,A_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,A_ : int ) -> Tuple: raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''longest''' _lowerCamelCase: Optional[int] = '''max_length''' _lowerCamelCase: Any = '''do_not_pad''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = '''pt''' _lowerCamelCase: Union[str, Any] = '''tf''' _lowerCamelCase: Tuple = '''np''' _lowerCamelCase: Dict = '''jax''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : List[ContextManager] ) -> Any: A = context_managers A = ExitStack() def __enter__( self : Tuple ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(A_ ) def __exit__( self : int ,*A_ : str ,**A_ : str ) -> Any: self.stack.__exit__(*A_ ,**A_ ) def _snake_case ( snake_case__ : Union[str, Any] ): A = infer_framework(snake_case__ ) if framework == "tf": A = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A = inspect.signature(model_class.forward ) # PyTorch models else: A = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _snake_case ( snake_case__ : List[str] ): A = model_class.__name__ A = infer_framework(snake_case__ ) if framework == "tf": A = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A = inspect.signature(model_class.forward ) # PyTorch models else: A = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _snake_case ( snake_case__ : MutableMapping , snake_case__ : str = "" , snake_case__ : str = "." ): def _flatten_dict(snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]="" , snake_case__ : str="." ): for k, v in d.items(): A = str(snake_case__ ) + delimiter + str(snake_case__ ) if parent_key else k if v and isinstance(snake_case__ , snake_case__ ): yield from flatten_dict(snake_case__ , snake_case__ , delimiter=snake_case__ ).items() else: yield key, v return dict(_flatten_dict(snake_case__ , snake_case__ , snake_case__ ) ) @contextmanager def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _snake_case ( snake_case__ : int , snake_case__ : Union[str, Any]=None ): if is_numpy_array(snake_case__ ): return np.transpose(snake_case__ , axes=snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.T if axes is None else array.permute(*snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.transpose(snake_case__ , perm=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.transpose(snake_case__ , axes=snake_case__ ) else: raise ValueError(F'Type not supported for transpose: {type(snake_case__ )}.' ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): if is_numpy_array(snake_case__ ): return np.reshape(snake_case__ , snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.reshape(*snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.reshape(snake_case__ , snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.reshape(snake_case__ , snake_case__ ) else: raise ValueError(F'Type not supported for reshape: {type(snake_case__ )}.' ) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Any=None ): if is_numpy_array(snake_case__ ): return np.squeeze(snake_case__ , axis=snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.squeeze() if axis is None else array.squeeze(dim=snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.squeeze(snake_case__ , axis=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.squeeze(snake_case__ , axis=snake_case__ ) else: raise ValueError(F'Type not supported for squeeze: {type(snake_case__ )}.' ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : int ): if is_numpy_array(snake_case__ ): return np.expand_dims(snake_case__ , snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.unsqueeze(dim=snake_case__ ) elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.expand_dims(snake_case__ , axis=snake_case__ ) elif is_jax_tensor(snake_case__ ): return jnp.expand_dims(snake_case__ , axis=snake_case__ ) else: raise ValueError(F'Type not supported for expand_dims: {type(snake_case__ )}.' ) def _snake_case ( snake_case__ : Optional[int] ): if is_numpy_array(snake_case__ ): return np.size(snake_case__ ) elif is_torch_tensor(snake_case__ ): return array.numel() elif is_tf_tensor(snake_case__ ): import tensorflow as tf return tf.size(snake_case__ ) elif is_jax_tensor(snake_case__ ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(snake_case__ )}.' ) def _snake_case ( snake_case__ : int , snake_case__ : Optional[Any] ): for key, value in auto_map.items(): if isinstance(snake_case__ , (tuple, list) ): A = [F'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: A = F'{repo_id}--{value}' return auto_map def _snake_case ( snake_case__ : int ): for base_class in inspect.getmro(snake_case__ ): A = base_class.__module__ A = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''WhisperFeatureExtractor''' _lowerCamelCase: str = '''WhisperTokenizer''' def __init__( self : Optional[Any] ,A_ : Tuple ,A_ : Any ) -> List[Any]: super().__init__(A_ ,A_ ) A = self.feature_extractor A = False def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any]=None ,A_ : Optional[Any]=None ,A_ : List[Any]=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=A_ ,language=A_ ,no_timestamps=A_ ) def __call__( self : Any ,*A_ : List[Any] ,**A_ : List[str] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ ,**A_ ) A = kwargs.pop('audio' ,A_ ) A = kwargs.pop('sampling_rate' ,A_ ) A = kwargs.pop('text' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A_ ,*A_ ,sampling_rate=A_ ,**A_ ) if text is not None: A = self.tokenizer(A_ ,**A_ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,*A_ : int ,**A_ : str ) -> Optional[int]: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : str ,**A_ : List[Any] ) -> int: return self.tokenizer.decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : List[str]="np" ) -> List[Any]: return self.tokenizer.get_prompt_ids(A_ ,return_tensors=A_ )
22
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : int=2 ,A_ : int=3 ,A_ : int=4 ,A_ : Optional[int]=2 ,A_ : Dict=7 ,A_ : Any=True ,A_ : Dict=True ,A_ : Tuple=True ,A_ : List[Any]=True ,A_ : Dict=99 ,A_ : List[str]=36 ,A_ : str=2 ,A_ : Union[str, Any]=4 ,A_ : Any=37 ,A_ : int="gelu" ,A_ : Tuple=0.1 ,A_ : Tuple=0.1 ,A_ : Union[str, Any]=512 ,A_ : List[Any]=16 ,A_ : int=2 ,A_ : Union[str, Any]=0.02 ,A_ : Dict=6 ,A_ : str=6 ,A_ : List[str]=3 ,A_ : Optional[Any]=4 ,A_ : Optional[Any]=None ,A_ : Any=1000 ,) -> List[Any]: A = parent A = batch_size A = num_channels A = image_size A = patch_size A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = coordinate_size A = shape_size A = num_labels A = num_choices A = scope A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A = text_seq_length A = (image_size // patch_size) ** 2 + 1 A = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) A = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A = bbox[i, j, 3] A = bbox[i, j, 1] A = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A = bbox[i, j, 2] A = bbox[i, j, 0] A = tmp_coordinate A = tf.constant(A_ ) A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.text_seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : str ,A_ : Optional[int] ) -> Dict: A = TFLayoutLMvaModel(config=A_ ) # text + image A = model(A_ ,pixel_values=A_ ,training=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,training=A_ ,) A = model(A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only A = model(A_ ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A = model({'pixel_values': pixel_values} ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : int ,A_ : str ,A_ : List[str] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ) -> Dict: A = self.num_labels A = TFLayoutLMvaForSequenceClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Any ,A_ : Any ,A_ : List[Any] ,A_ : List[str] ,A_ : Tuple ) -> Tuple: A = self.num_labels A = TFLayoutLMvaForTokenClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : int ,A_ : Any ,A_ : int ,A_ : Union[str, Any] ,A_ : Any ) -> str: A = 2 A = TFLayoutLMvaForQuestionAnswering(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,training=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.prepare_config_and_inputs() ((A) , (A) , (A) , (A) , (A) , (A) , (A) , (A)) = config_and_inputs A = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: Optional[int] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowerCamelCase: List[str] = False _lowerCamelCase: str = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Any ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : str ) -> Dict: return True def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ,A_ : List[str] ,A_ : Optional[int]=False ) -> dict: A = copy.deepcopy(A_ ) if model_class in get_values(A_ ): A = { k: tf.tile(tf.expand_dims(A_ ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): A = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = TFLayoutLMvaModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) if getattr(A_ ,'hf_compute_loss' ,A_ ): # The number of elements in the loss should be the same as the number of elements in the label A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=A_ )[0] ] A = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: A = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A = -100 A = tf.convert_to_tensor(A_ ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) # Get keys that were added with the _prepare_for_class function A = prepared_for_class.keys() - inputs_dict.keys() A = inspect.signature(model.call ).parameters A = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A = {0: 'input_ids'} for label_key in label_keys: A = signature_names.index(A_ ) A = label_key A = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A = prepared_for_class[value] A = tuple(A_ ) # Send to model A = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='tf' ).pixel_values A = tf.constant([[1, 2]] ) A = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass A = model(input_ids=A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) # verify the logits A = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,A_ ) A = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,A_ ,atol=1e-4 ) )
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _snake_case ( ): A = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) A = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(snake_case__ ) # Let's go A = parser.parse_args() if not hasattr(snake_case__ , 'func' ): parser.print_help() exit(1 ) # Run A = args.func(snake_case__ ) service.run() if __name__ == "__main__": main()
22
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ): A = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=snake_case__ ) A = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=snake_case__ ) env_command_parser(subparsers=snake_case__ ) launch_command_parser(subparsers=snake_case__ ) tpu_command_parser(subparsers=snake_case__ ) test_command_parser(subparsers=snake_case__ ) # Let's go A = parser.parse_args() if not hasattr(snake_case__ , 'func' ): parser.print_help() exit(1 ) # Run args.func(snake_case__ ) if __name__ == "__main__": main()
22
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( snake_case__ : Optional[int] ): A = 384 if "tiny" in model_name: A = [3, 3, 9, 3] A = [96, 192, 384, 768] if "small" in model_name: A = [3, 3, 27, 3] A = [96, 192, 384, 768] if "base" in model_name: A = [3, 3, 27, 3] A = [128, 256, 512, 1024] A = 512 if "large" in model_name: A = [3, 3, 27, 3] A = [192, 384, 768, 1536] A = 768 if "xlarge" in model_name: A = [3, 3, 27, 3] A = [256, 512, 1024, 2048] A = 1024 # set label information A = 150 A = 'huggingface/label-files' A = 'ade20k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = ConvNextConfig( depths=snake_case__ , hidden_sizes=snake_case__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def _snake_case ( snake_case__ : Any ): A = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Any ): A = dct.pop(snake_case__ ) A = val def _snake_case ( snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple ): A = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } A = model_name_to_url[model_name] A = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['state_dict'] A = get_upernet_config(snake_case__ ) A = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A = state_dict.pop(snake_case__ ) if "bn" in key: A = key.replace('bn' , 'batch_norm' ) A = val # rename keys A = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image A = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) A = SegformerImageProcessor() A = processor(snake_case__ , return_tensors='pt' ).pixel_values with torch.no_grad(): A = model(snake_case__ ) if model_name == "upernet-convnext-tiny": A = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) A = AutoTokenizer.from_pretrained('xlm-roberta-base' ) A = 'The dog is cute and lives in the garden house' A = jnp.array([tokenizer.encode(A_ )] ) A = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim A = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) A = model(A_ )['last_hidden_state'] self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) )
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCAmelCase_ ( _lowerCamelCase ): '''simple docstring''' def __init__( self : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ) -> Any: A = params A = np.array(A__ ) A = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : int ,A_ : Dict ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> Tuple: return len(self.lengths ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = self.params.max_model_input_size A = self.lengths > max_len logger.info(F'Splitting {sum(A__ )} too long sequences.' ) def divide_chunks(A_ : List[str] ,A_ : List[str] ): return [l[i : i + n] for i in range(0 ,len(A__ ) ,A__ )] A = [] A = [] if self.params.mlm: A , A = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: A , A = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: A = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: A = np.insert(A__ ,0 ,A__ ) if sub_s[-1] != sep_id: A = np.insert(A__ ,len(A__ ) ,A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) A = np.array(A__ ) A = np.array(A__ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = len(self ) A = self.lengths > 11 A = self.token_ids[indices] A = self.lengths[indices] A = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: A = self.params.special_tok_ids['unk_token'] A = len(self ) A = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) A = (unk_occs / self.lengths) < 0.5 A = self.token_ids[indices] A = self.lengths[indices] A = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str] ) -> Any: A = [t[0] for t in batch] A = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings A = max(A__ ) # Pad token ids if self.params.mlm: A = self.params.special_tok_ids['pad_token'] else: A = self.params.special_tok_ids['unk_token'] A = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) A = torch.tensor(tk_ ) # (bs, max_seq_len_) A = torch.tensor(A__ ) # (bs) return tk_t, lg_t
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0