code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = 10 def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: A = [1, 2, 3, 4] A = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' A , A = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,[] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: A = '' A , A = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,[] ) self.assertEqual(lowerCAmelCase__ ,[] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) A , A = process_story(lowerCAmelCase__ ) A = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) A = ['It was the best of times.'] self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = torch.tensor([1, 2, 3, 4] ) A = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,0 ).numpy() ,expected.numpy() ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,23 ).numpy() ,expected.numpy() ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,1 ).numpy() ,expected.numpy() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = 101 A = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A = compute_token_type_ids(lowerCAmelCase__ ,lowerCAmelCase__ ) np.testing.assert_array_equal(lowerCAmelCase__ ,lowerCAmelCase__ )
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _lowercase = logging.get_logger(__name__) _lowercase = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } _lowercase = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } _lowercase = { 'jukebox': 5_12, } class lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' _lowerCamelCase: int = VOCAB_FILES_NAMES _lowerCamelCase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: int = PRETRAINED_LYRIC_TOKENS_SIZES _lowerCamelCase: str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] ,A_ : Dict ,A_ : Optional[Any] ,A_ : str ,A_ : Optional[Any]=["v3", "v2", "v2"] ,A_ : Union[str, Any]=512 ,A_ : Dict=5 ,A_ : List[str]="<|endoftext|>" ,**A_ : List[str] ,) -> Any: A = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ ,n_genres=UpperCAmelCase_ ,version=UpperCAmelCase_ ,max_n_lyric_tokens=UpperCAmelCase_ ,**UpperCAmelCase_ ,) A = version A = max_n_lyric_tokens A = n_genres with open(UpperCAmelCase_ ,encoding='utf-8' ) as vocab_handle: A = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ ,encoding='utf-8' ) as vocab_handle: A = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ ,encoding='utf-8' ) as vocab_handle: A = json.load(UpperCAmelCase_ ) A = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: A = oov.replace(R'\-\'' ,R'\-+\'' ) A = regex.compile(UpperCAmelCase_ ) A = {v: k for k, v in self.artists_encoder.items()} A = {v: k for k, v in self.genres_encoder.items()} A = {v: k for k, v in self.lyrics_encoder.items()} @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple ,A_ : str ,A_ : List[str] ) -> int: A = [self.artists_encoder.get(UpperCAmelCase_ ,0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): A = [self.genres_encoder.get(UpperCAmelCase_ ,0 ) for genre in list_genres[genres]] A = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) A = [[self.lyrics_encoder.get(UpperCAmelCase_ ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[str] ) -> Any: return list(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ,A_ : int ,A_ : List[Any] ,**A_ : Optional[Any] ) -> List[str]: A , A , A = self.prepare_for_tokenization(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) A = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ,A_ : str ,A_ : str ,A_ : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": A = artists[idx].lower() A = [genres[idx].lower()] else: A = self._normalize(artists[idx] ) + '.v2' A = [ self._normalize(UpperCAmelCase_ ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": A = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) A = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' A = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} A = 0 A = len(UpperCAmelCase_ ) + 1 A = self.vocab A = {v: k for k, v in self.vocab.items()} A = '' else: A = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) A = self._run_strip_accents(UpperCAmelCase_ ) A = lyrics.replace('\\' ,'\n' ) A = self.out_of_vocab.sub('' ,UpperCAmelCase_ ), [], [] return artists, genres, lyrics def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[str] ) -> Tuple: A = unicodedata.normalize('NFD' ,UpperCAmelCase_ ) A = [] for char in text: A = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ) -> str: A = ( [chr(UpperCAmelCase_ ) for i in range(ord('a' ) ,ord('z' ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord('A' ) ,ord('Z' ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord('0' ) ,ord('9' ) + 1 )] + ['.'] ) A = frozenset(UpperCAmelCase_ ) A = re.compile(R'_+' ) A = ''.join([c if c in accepted else '_' for c in text.lower()] ) A = pattern.sub('_' ,UpperCAmelCase_ ).strip('_' ) return text def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str] ) -> str: return " ".join(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : Optional[Union[str, TensorType]] = None ,A_ : bool = False ) -> Union[str, Any]: if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): A = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf A = tf.constant A = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch A = torch.tensor A = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 A = jnp.array A = _is_jax else: A = np.asarray A = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: A = [inputs] if not is_tensor(UpperCAmelCase_ ): A = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Any ,A_ : List[str] ,A_ : List[str] ,A_ : List[Any]="" ,A_ : List[Any]="pt" ) -> BatchEncoding: A = [0, 0, 0] A = [artist] * len(self.version ) A = [genres] * len(self.version ) A , A , A = self.tokenize(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) A , A , A = self._convert_token_to_id(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) A = [-INFINITY] * len(full_tokens[-1] ) A = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( UpperCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(UpperCAmelCase_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=UpperCAmelCase_ ) ) A = os.path.join( UpperCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(UpperCAmelCase_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=UpperCAmelCase_ ) ) A = os.path.join( UpperCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(UpperCAmelCase_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[str] ,A_ : Dict ,A_ : List[Any] ) -> Union[str, Any]: A = self.artists_decoder.get(UpperCAmelCase_ ) A = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] A = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Dict ,A_ : Union[str, Any]=7 ,A_ : List[Any]=3 ,A_ : Any=30 ,A_ : Tuple=400 ,A_ : int=True ,A_ : str=None ,A_ : Any=True ,A_ : int=[0.5, 0.5, 0.5] ,A_ : Any=[0.5, 0.5, 0.5] ,A_ : int=True ,A_ : Any=1 / 255 ,A_ : List[str]=True ,) -> int: A = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} A = parent A = batch_size A = num_channels A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize A = image_mean A = image_std A = do_rescale A = rescale_factor A = do_pad def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Tuple ,A_ : Tuple=False ) -> str: if not batched: A = image_inputs[0] if isinstance(A_ ,Image.Image ): A , A = image.size else: A , A = image.shape[1], image.shape[2] if w < h: A = int(self.size['shortest_edge'] * h / w ) A = self.size['shortest_edge'] elif w > h: A = self.size['shortest_edge'] A = int(self.size['shortest_edge'] * w / h ) else: A = self.size['shortest_edge'] A = self.size['shortest_edge'] else: A = [] for image in image_inputs: A , A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A = max(A_ ,key=lambda A_ : item[0] )[0] A = max(A_ ,key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = DeformableDetrImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'image_mean' ) ) self.assertTrue(hasattr(A_ ,'image_std' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'do_rescale' ) ) self.assertTrue(hasattr(A_ ,'do_pad' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,A_ ) A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size ,{'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,Image.Image ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched A , A = self.image_processor_tester.get_expected_values(A_ ,batched=A_ ) A = image_processing(A_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A_ ,numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(A_ ,batched=A_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A_ ,torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ ,torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched A = image_processing(A_ ,return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(A_ ,batched=A_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: A = json.loads(f.read() ) A = {'image_id': 3_9769, 'annotations': target} # encode them A = DeformableDetrImageProcessor() A = image_processing(images=A_ ,annotations=A_ ,return_tensors='pt' ) # verify pixel values A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,A_ ) A = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,A_ ,atol=1e-4 ) ) # verify area A = torch.tensor([58_87.96_00, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,A_ ) ) # verify boxes A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,A_ ) A = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,A_ ,atol=1e-3 ) ) # verify image_id A = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,A_ ) ) # verify is_crowd A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,A_ ) ) # verify class_labels A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,A_ ) ) # verify orig_size A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,A_ ) ) # verify size A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,A_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: A = json.loads(f.read() ) A = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} A = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A = DeformableDetrImageProcessor(format='coco_panoptic' ) A = image_processing(images=A_ ,annotations=A_ ,masks_path=A_ ,return_tensors='pt' ) # verify pixel values A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,A_ ) A = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,A_ ,atol=1e-4 ) ) # verify area A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,A_ ) ) # verify boxes A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,A_ ) A = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,A_ ,atol=1e-3 ) ) # verify image_id A = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,A_ ) ) # verify is_crowd A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,A_ ) ) # verify class_labels A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,A_ ) ) # verify masks A = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,A_ ) # verify orig_size A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,A_ ) ) # verify size A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,A_ ) )
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowercase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = '''ssube/stable-diffusion-x4-upscaler-onnx''' def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Dict=0 ) -> Tuple: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(__lowerCamelCase ) ) A = torch.manual_seed(__lowerCamelCase ) A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = self.get_dummy_inputs() A = pipe(**__lowerCamelCase ).images A = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) A = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = self.get_dummy_inputs() A = pipe(**__lowerCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = self.get_dummy_inputs() A = pipe(**__lowerCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = self.get_dummy_inputs() A = pipe(**__lowerCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = self.get_dummy_inputs() A = pipe(**__lowerCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((128, 128) ) # using the PNDM scheduler by default A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = "A fantasy landscape, trending on artstation" A = torch.manual_seed(0 ) A = pipe( prompt=__lowerCamelCase ,image=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=__lowerCamelCase ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((128, 128) ) A = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' ,subfolder='scheduler' ) A = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' ,scheduler=__lowerCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A = "A fantasy landscape, trending on artstation" A = torch.manual_seed(0 ) A = pipe( prompt=__lowerCamelCase ,image=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=__lowerCamelCase ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : int ) -> List[str]: A = question_encoder A = generator A = self.question_encoder def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Any ) -> Optional[Any]: if os.path.isfile(UpperCAmelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) A = os.path.join(UpperCAmelCase_ ,'question_encoder_tokenizer' ) A = os.path.join(UpperCAmelCase_ ,'generator_tokenizer' ) self.question_encoder.save_pretrained(UpperCAmelCase_ ) self.generator.save_pretrained(UpperCAmelCase_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str ,A_ : Any ,**A_ : List[Any] ) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer A = kwargs.pop('config' ,UpperCAmelCase_ ) if config is None: A = RagConfig.from_pretrained(UpperCAmelCase_ ) A = AutoTokenizer.from_pretrained( UpperCAmelCase_ ,config=config.question_encoder ,subfolder='question_encoder_tokenizer' ) A = AutoTokenizer.from_pretrained( UpperCAmelCase_ ,config=config.generator ,subfolder='generator_tokenizer' ) return cls(question_encoder=UpperCAmelCase_ ,generator=UpperCAmelCase_ ) def __call__( self : str ,*A_ : Optional[Any] ,**A_ : Any ) -> Tuple: return self.current_tokenizer(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ,*A_ : List[Any] ,**A_ : str ) -> List[str]: return self.generator.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : Optional[Any] ,**A_ : Dict ) -> Union[str, Any]: return self.generator.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.question_encoder def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = self.generator def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[str] ,A_ : Optional[List[str]] = None ,A_ : Optional[int] = None ,A_ : Optional[int] = None ,A_ : str = "longest" ,A_ : str = None ,A_ : bool = True ,**A_ : Tuple ,) -> Any: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' ,UpperCAmelCase_ ,) if max_length is None: A = self.current_tokenizer.model_max_length A = self( UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,**UpperCAmelCase_ ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: A = self.current_tokenizer.model_max_length A = self( text_target=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,**UpperCAmelCase_ ,) A = labels['input_ids'] return model_inputs
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[float] , snake_case__ : list[float] ): A = sorted(numsa + numsa ) A = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase = [float(x) for x in input('''Enter the elements of first array: ''').split()] _lowercase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _snake_case ( snake_case__ : str , snake_case__ : str ): A = list(__A ) A = list(__A ) A = 0 for i in range(len(__A ) ): if lista[i] != lista[i]: count += 1 A = '''_''' if count > 1: return False else: return "".join(__A ) def _snake_case ( snake_case__ : list[str] ): A = [] while True: A = ['''$'''] * len(__A ) A = [] for i in range(len(__A ) ): for j in range(i + 1 , len(__A ) ): A = compare_string(binary[i] , binary[j] ) if k is False: A = '''*''' A = '''*''' temp.append('X' ) for i in range(len(__A ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__A ) == 0: return pi A = list(set(__A ) ) def _snake_case ( snake_case__ : int , snake_case__ : Sequence[float] ): A = [] for minterm in minterms: A = '''''' for _ in range(__A ): A = str(minterm % 2 ) + string minterm //= 2 temp.append(__A ) return temp def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : int ): A = list(__A ) A = list(__A ) A = 0 for i in range(len(__A ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : list[str] ): A = [] A = [0] * len(__A ) for i in range(len(chart[0] ) ): A = 0 A = -1 for j in range(len(__A ) ): if chart[j][i] == 1: count += 1 A = j if count == 1: A = 1 for i in range(len(__A ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__A ) ): A = 0 temp.append(prime_implicants[i] ) while True: A = 0 A = -1 A = 0 for i in range(len(__A ) ): A = chart[i].count(1 ) if count_n > max_n: A = count_n A = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__A ) ): A = 0 def _snake_case ( snake_case__ : list[str] , snake_case__ : list[str] ): A = [[0 for x in range(len(__A ) )] for x in range(len(__A ) )] for i in range(len(__A ) ): A = prime_implicants[i].count('_' ) for j in range(len(__A ) ): if is_for_table(prime_implicants[i] , binary[j] , __A ): A = 1 return chart def _snake_case ( ): A = int(input('Enter the no. of variables\n' ) ) A = [ float(__A ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] A = decimal_to_binary(__A , __A ) A = check(__A ) print('Prime Implicants are:' ) print(__A ) A = prime_implicant_chart(__A , __A ) A = selection(__A , __A ) print('Essential Prime Implicants are:' ) print(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Union[str, Any] ,A_ : str = True ,A_ : int = None ,A_ : Optional[int] = PILImageResampling.BILINEAR ,A_ : Optional[Any] = True ,A_ : Any = None ,A_ : str = True ,A_ : Tuple = 1 / 255 ,A_ : Any = True ,A_ : Optional[Any] = True ,A_ : Union[str, Any] = None ,A_ : Union[str, Any] = None ,**A_ : str ,) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowerCAmelCase ,param_name='crop_size' ) A = do_resize A = size A = do_center_crop A = crop_size A = resample A = do_rescale A = rescale_factor A = offset A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ,A_ : Dict ,A_ : int = PILImageResampling.BILINEAR ,A_ : int = None ,**A_ : int ,) -> Tuple: A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: A = get_resize_output_image_size(_lowerCAmelCase ,size['shortest_edge'] ,default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: A = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : Optional[Any] ,A_ : Dict = None ,**A_ : List[str] ,) -> str: A = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(_lowerCAmelCase ,size=(size['height'], size['width']) ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : Union[str, Any] ,A_ : Optional[Any] = True ,A_ : str = None ,**A_ : Tuple ,) -> str: A = image.astype(np.floataa ) if offset: A = image - (scale / 2) return rescale(_lowerCAmelCase ,scale=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Dict ,A_ : Tuple ,A_ : str = None ,**A_ : Tuple ,) -> Dict: return normalize(_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any ,A_ : Tuple = None ,A_ : Union[str, Any] = None ,A_ : str = None ,A_ : List[str] = None ,A_ : str = None ,A_ : Union[str, Any] = None ,A_ : str = None ,A_ : List[Any] = None ,A_ : Optional[int] = None ,A_ : Union[str, Any] = None ,A_ : List[Any] = None ,A_ : Tuple = ChannelDimension.FIRST ,) -> str: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A = to_numpy_array(_lowerCAmelCase ) if do_resize: A = self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) if do_center_crop: A = self.center_crop(_lowerCAmelCase ,size=_lowerCAmelCase ) if do_rescale: A = self.rescale(image=_lowerCAmelCase ,scale=_lowerCAmelCase ,offset=_lowerCAmelCase ) if do_normalize: A = self.normalize(image=_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ) A = to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) return image def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : List[str] = None ,A_ : Optional[Any] = None ,A_ : List[str] = None ,A_ : Dict = None ,A_ : Union[str, Any] = None ,A_ : Optional[Any] = None ,A_ : Optional[Any] = None ,A_ : Dict = None ,A_ : List[str] = None ,A_ : Dict = None ,A_ : Union[str, Any] = None ,A_ : Dict = None ,A_ : str = ChannelDimension.FIRST ,**A_ : Any ,) -> Dict: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = offset if offset is not None else self.offset A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowerCAmelCase ,param_name='crop_size' ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A = make_batched(_lowerCAmelCase ) A = [ [ self._preprocess_image( image=_lowerCAmelCase ,do_resize=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,do_center_crop=_lowerCAmelCase ,crop_size=_lowerCAmelCase ,do_rescale=_lowerCAmelCase ,rescale_factor=_lowerCAmelCase ,offset=_lowerCAmelCase ,do_normalize=_lowerCAmelCase ,image_mean=_lowerCAmelCase ,image_std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,) for img in video ] for video in videos ] A = {'pixel_values': videos} return BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : str ,A_ : Optional[int]=13 ,A_ : Optional[int]=7 ,A_ : List[str]=True ,A_ : Dict=True ,A_ : Dict=True ,A_ : Any=True ,A_ : Union[str, Any]=True ,A_ : Tuple=False ,A_ : List[str]=False ,A_ : List[str]=False ,A_ : int=2 ,A_ : Dict=99 ,A_ : Any=0 ,A_ : Tuple=32 ,A_ : int=5 ,A_ : Optional[int]=4 ,A_ : Tuple=0.1 ,A_ : Optional[Any]=0.1 ,A_ : Any=512 ,A_ : Union[str, Any]=12 ,A_ : str=2 ,A_ : str=0.02 ,A_ : str=3 ,A_ : str=4 ,A_ : Optional[int]="last" ,A_ : Dict=None ,A_ : Optional[int]=None ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: return FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[Any] ,A_ : Tuple ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Optional[int] ,) -> List[str]: A = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ,lengths=UpperCamelCase_ ,langs=UpperCamelCase_ ) A = model(UpperCamelCase_ ,langs=UpperCamelCase_ ) A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Tuple ,A_ : List[Any] ,A_ : Any ,A_ : str ,) -> Optional[int]: A = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ,token_type_ids=UpperCamelCase_ ,labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Optional[int] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Tuple ,A_ : int ,A_ : int ,) -> List[str]: A = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ) A = model(UpperCamelCase_ ,start_positions=UpperCamelCase_ ,end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : Dict ,A_ : Tuple ,A_ : Dict ,A_ : Dict ,A_ : Tuple ,A_ : Union[str, Any] ,) -> Tuple: A = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ) A = model( UpperCamelCase_ ,start_positions=UpperCamelCase_ ,end_positions=UpperCamelCase_ ,cls_index=UpperCamelCase_ ,is_impossible=UpperCamelCase_ ,p_mask=UpperCamelCase_ ,) A = model( UpperCamelCase_ ,start_positions=UpperCamelCase_ ,end_positions=UpperCamelCase_ ,cls_index=UpperCamelCase_ ,is_impossible=UpperCamelCase_ ,) (A ) = result_with_labels.to_tuple() A = model(UpperCamelCase_ ,start_positions=UpperCamelCase_ ,end_positions=UpperCamelCase_ ) (A ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Dict ,A_ : str ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Optional[int] ,A_ : Union[str, Any] ,) -> Any: A = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ) A = model(UpperCamelCase_ ,labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ,A_ : Any ,A_ : Optional[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : List[str] ,A_ : Dict ,) -> List[str]: A = self.num_labels A = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,) -> int: A = self.num_choices A = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,token_type_ids=UpperCamelCase_ ,labels=UpperCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.prepare_config_and_inputs() ( A ) = config_and_inputs A = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Optional[Any] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : str ,A_ : Optional[int] ,A_ : Any ,A_ : Dict ) -> List[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ,A_ : int ,A_ : Union[str, Any]=False ) -> Dict: A = super()._prepare_for_class(UpperCamelCase_ ,UpperCamelCase_ ,return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=UpperCamelCase_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=UpperCamelCase_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = FlaubertModelTester(self ) A = ConfigTester(self ,config_class=UpperCamelCase_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return A = True A = model_class(config=UpperCamelCase_ ) A = self._prepare_for_class(UpperCamelCase_ ,UpperCamelCase_ ) A = torch.jit.trace( UpperCamelCase_ ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ ,os.path.join(UpperCamelCase_ ,'traced_model.pt' ) ) A = torch.jit.load(os.path.join(UpperCamelCase_ ,'traced_model.pt' ) ,map_location=UpperCamelCase_ ) loaded(inputs_dict['input_ids'].to(UpperCamelCase_ ) ,inputs_dict['attention_mask'].to(UpperCamelCase_ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) A = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): A = model(UpperCamelCase_ )[0] A = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,UpperCamelCase_ ) A = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,UpperCamelCase_ ,atol=1e-4 ) )
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'Hello, World!' _lowercase = 'en_XX' def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ): A = Path('data_bin' ) A = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCAmelCase ).parent ) , checkpoint_file=Path(_lowerCAmelCase ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(_lowerCAmelCase ) , bpe='sentencepiece' , sentencepiece_model=str(Path(_lowerCAmelCase ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(_lowerCAmelCase ) A = xmod.model.encoder.sentence_encoder A = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print('Our X-MOD config:' , _lowerCAmelCase ) A = XmodForSequenceClassification(_lowerCAmelCase ) if classification_head else XmodForMaskedLM(_lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings A = xmod_sent_encoder.embed_tokens.weight A = xmod_sent_encoder.embed_positions.weight A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A = xmod_sent_encoder.layernorm_embedding.weight A = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A = model.roberta.encoder.layer[i] A = xmod_sent_encoder.layers[i] # self attention A = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) A = xmod_layer.self_attn.q_proj.weight A = xmod_layer.self_attn.q_proj.bias A = xmod_layer.self_attn.k_proj.weight A = xmod_layer.self_attn.k_proj.bias A = xmod_layer.self_attn.v_proj.weight A = xmod_layer.self_attn.v_proj.bias # self-attention output A = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) A = xmod_layer.self_attn.out_proj.weight A = xmod_layer.self_attn.out_proj.bias A = xmod_layer.self_attn_layer_norm.weight A = xmod_layer.self_attn_layer_norm.bias # intermediate A = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias # output A = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) A = xmod_layer.fca.weight A = xmod_layer.fca.bias A = xmod_layer.final_layer_norm.weight A = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A = xmod_layer.adapter_layer_norm.weight A = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A = bert_output.adapter_modules[lang_code] A = xmod_layer.adapter_modules[lang_code] A = from_adapter.fca.weight A = from_adapter.fca.bias A = from_adapter.fca.weight A = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A = xmod_sent_encoder.layer_norm.weight A = xmod_sent_encoder.layer_norm.bias if classification_head: A = xmod.model.classification_heads["mnli"].dense.weight A = xmod.model.classification_heads["mnli"].dense.bias A = xmod.model.classification_heads["mnli"].out_proj.weight A = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head A = xmod.model.encoder.lm_head.dense.weight A = xmod.model.encoder.lm_head.dense.bias A = xmod.model.encoder.lm_head.layer_norm.weight A = xmod.model.encoder.lm_head.layer_norm.bias A = xmod.model.encoder.lm_head.weight A = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A = xmod.encode(_lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowerCAmelCase ) A = model(_lowerCAmelCase )[0] if classification_head: A = xmod.model.classification_heads["mnli"](xmod.extract_features(_lowerCAmelCase ) ) else: A = xmod.model(_lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 A = torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(_lowerCAmelCase ).mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowercase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } _lowercase = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } _lowercase = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase: str = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase: List[str] = ["""input_ids""", """attention_mask"""] _lowerCamelCase: List[Any] = DistilBertTokenizer def __init__( self : str ,A_ : List[Any]=None ,A_ : Dict=None ,A_ : str=True ,A_ : int="[UNK]" ,A_ : Union[str, Any]="[SEP]" ,A_ : Tuple="[PAD]" ,A_ : Any="[CLS]" ,A_ : Dict="[MASK]" ,A_ : str=True ,A_ : int=None ,**A_ : Tuple ,) -> Optional[int]: super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): A = getattr(_a ,normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_a ) A = do_lower_case def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : Tuple=None ) -> Union[str, Any]: A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Any ,A_ : Optional[int] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Optional[Any] = None ) -> Tuple[str]: A = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
713
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
0
def _snake_case ( snake_case__ : int = 1000 ): A , A = 1, 1 A = [] for i in range(1 , n + 1 ): A = prev_numerator + 2 * prev_denominator A = prev_numerator + prev_denominator if len(str(lowerCAmelCase__ ) ) > len(str(lowerCAmelCase__ ) ): result.append(lowerCAmelCase__ ) A = numerator A = denominator return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowercase = ["gpt2"] _lowercase = "gpt2" if is_tf_available(): class lowerCAmelCase_ ( tf.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : List[str] ) -> Optional[Any]: super().__init__() A = tokenizer A = AutoConfig.from_pretrained(_UpperCamelCase ) A = TFGPTaLMHeadModel.from_config(_UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) ,tf.string ,name='text' ),) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ) -> List[Any]: A = self.tokenizer(_UpperCamelCase ) A = tokenized["""input_ids"""].to_tensor() A = tf.cast(input_ids_dense > 0 ,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A = self.model(input_ids=_UpperCamelCase ,attention_mask=_UpperCamelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: super().setUp() A = [GPTaTokenizer.from_pretrained(_UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A = [TFGPTaTokenizer.from_pretrained(_UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] A = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in self.test_sentences: A = tokenizer([test_inputs] ,return_tensors='tf' ) A = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A = python_outputs[key].numpy() A = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(_UpperCamelCase ,tf.intaa ) == tf_outputs_values ) ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: A = tf.function(_UpperCamelCase ) for test_inputs in self.test_sentences: A = tf.constant(_UpperCamelCase ) A = compiled_tokenizer(_UpperCamelCase ) A = tf_tokenizer(_UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: A = ModelToSave(tokenizer=_UpperCamelCase ) A = tf.convert_to_tensor([self.test_sentences[0]] ) A = model.serving(_UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A = Path(_UpperCamelCase ) / """saved.model""" tf.saved_model.save(_UpperCamelCase ,_UpperCamelCase ,signatures={'serving_default': model.serving} ) A = tf.saved_model.load(_UpperCamelCase ) A = loaded_model.signatures["""serving_default"""](_UpperCamelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: for tf_tokenizer in self.tf_tokenizers: A = tf.convert_to_tensor([self.test_sentences[0]] ) A = tf_tokenizer(_UpperCamelCase ) # Build model with some sample inputs A = tf_tokenizer.get_config() A = TFGPTaTokenizer.from_config(_UpperCamelCase ) A = model_from_config(_UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run A = 12_3123 for max_length in [3, 5, 1024]: A = tf.convert_to_tensor([self.test_sentences[0]] ) A = tf_tokenizer(_UpperCamelCase ,max_length=_UpperCamelCase ) A = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
"""simple docstring""" def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCamelCase ) ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : List[str] ): if index == len(_lowerCamelCase ): return True # Recursive Step for i in range(_lowerCamelCase ): if valid_coloring(graph[index] , _lowerCamelCase , _lowerCamelCase ): # Color current vertex A = i # Validate coloring if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ): return True # Backtrack A = -1 return False def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): A = [-1] * len(_lowerCamelCase ) if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 0 ): return colored_vertices return []
716
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def _snake_case ( snake_case__ : str , snake_case__ : List[str] = 16 , snake_case__ : Optional[Any] = "bert-base-cased" ): A = AutoTokenizer.from_pretrained(_lowerCamelCase ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : Dict ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCamelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_lowerCamelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A = DataLoader( tokenized_datasets['validation'] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader def _snake_case ( snake_case__ : Dict , snake_case__ : int ): # Initialize accelerator A = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config["lr"] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = args.model_name_or_path set_seed(_lowerCamelCase ) A = get_dataloaders(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained(_lowerCamelCase , return_dict=_lowerCamelCase ) # Instantiate optimizer A = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A = optimizer_cls(params=model.parameters() , lr=_lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: A = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: A = 1 A = (len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=0 , num_training_steps=_lowerCamelCase , ) else: A = DummyScheduler(_lowerCamelCase , total_num_steps=_lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # We need to keep track of how many total steps we have iterated over A = 0 # We also need to keep track of the stating epoch so files are named properly A = 0 # Now we train the model A = evaluate.load('glue' , 'mrpc' ) A = 0 A = {} for epoch in range(_lowerCamelCase , _lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): A = model(**_lowerCamelCase ) A = outputs.loss A = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**_lowerCamelCase ) A = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowerCamelCase ) - 1: A = predictions[: len(eval_dataloader.dataset ) - samples_seen] A = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _lowerCamelCase ) A = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: A = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( ): A = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=_lowerCamelCase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowerCamelCase , ) parser.add_argument( '--output_dir' , type=_lowerCamelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=_lowerCamelCase , default=_lowerCamelCase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=_lowerCamelCase , default=3 , help='Number of train epochs.' , ) A = parser.parse_args() A = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
"""simple docstring""" def _snake_case ( snake_case__ : int , snake_case__ : int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(a_ , int(b / 2 ) ) * actual_power(a_ , int(b / 2 ) ) else: return a * actual_power(a_ , int(b / 2 ) ) * actual_power(a_ , int(b / 2 ) ) def _snake_case ( snake_case__ : int , snake_case__ : int ): if b < 0: return 1 / actual_power(a_ , a_ ) return actual_power(a_ , a_ ) if __name__ == "__main__": print(power(-2, -3))
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _snake_case ( snake_case__ : str , snake_case__ : Optional[int]=None ): A = None if token is not None: A = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} A = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A = requests.get(_A , headers=_A ).json() A = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) A = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_A ): A = requests.get(url + F'&page={i + 2}' , headers=_A ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _snake_case ( snake_case__ : str , snake_case__ : Tuple=None ): A = None if token is not None: A = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} A = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' A = requests.get(_A , headers=_A ).json() A = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) A = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_A ): A = requests.get(url + F'&page={i + 2}' , headers=_A ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Tuple ): A = None if token is not None: A = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} A = requests.get(_A , headers=_A , allow_redirects=_A ) A = result.headers['Location'] A = requests.get(_A , allow_redirects=_A ) A = os.path.join(_A , F'{artifact_name}.zip' ) with open(_A , 'wb' ) as fp: fp.write(response.content ) def _snake_case ( snake_case__ : str , snake_case__ : List[Any]=None ): A = [] A = [] A = None with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_A ) as f: for line in f: A = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A = line[: line.index(': ' )] A = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed A = line[len('FAILED ' ) :] failed_tests.append(_A ) elif filename == "job_name.txt": A = line if len(_A ) != len(_A ): raise ValueError( F'`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` ' F'and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) A = None if job_name and job_links: A = job_links.get(_A , _A ) # A list with elements of the form (line of error, error, failed test) A = [x + [y] + [job_link] for x, y in zip(_A , _A )] return result def _snake_case ( snake_case__ : str , snake_case__ : Optional[Any]=None ): A = [] A = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) ) return errors def _snake_case ( snake_case__ : Dict , snake_case__ : str=None ): A = Counter() counter.update([x[1] for x in logs] ) A = counter.most_common() A = {} for error, count in counts: if error_filter is None or error not in error_filter: A = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} A = dict(sorted(r.items() , key=lambda snake_case__ : item[1]["count"] , reverse=_A ) ) return r def _snake_case ( snake_case__ : Tuple ): A = test.split('::' )[0] if test.startswith('tests/models/' ): A = test.split('/' )[2] else: A = None return test def _snake_case ( snake_case__ : List[Any] , snake_case__ : str=None ): A = [(x[0], x[1], get_model(x[2] )) for x in logs] A = [x for x in logs if x[2] is not None] A = {x[2] for x in logs} A = {} for test in tests: A = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A = counter.most_common() A = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A = sum(error_counts.values() ) if n_errors > 0: A = {'count': n_errors, 'errors': error_counts} A = dict(sorted(r.items() , key=lambda snake_case__ : item[1]["count"] , reverse=_A ) ) return r def _snake_case ( snake_case__ : Union[str, Any] ): A = '| no. | error | status |' A = '|-:|:-|:-|' A = [header, sep] for error in reduced_by_error: A = reduced_by_error[error]['count'] A = F'| {count} | {error[:100]} | |' lines.append(_A ) return "\n".join(_A ) def _snake_case ( snake_case__ : Union[str, Any] ): A = '| model | no. of errors | major error | count |' A = '|-:|-:|-:|-:|' A = [header, sep] for model in reduced_by_model: A = reduced_by_model[model]['count'] A , A = list(reduced_by_model[model]['errors'].items() )[0] A = F'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_A ) return "\n".join(_A ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') _lowercase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowercase = get_job_links(args.workflow_run_id, token=args.token) _lowercase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowercase = k.find(''' / ''') _lowercase = k[index + len(''' / ''') :] _lowercase = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowercase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowercase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowercase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowercase = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowercase = reduce_by_error(errors) _lowercase = reduce_by_model(errors) _lowercase = make_github_table(reduced_by_error) _lowercase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
719
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] ): if isinstance(snake_case__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(snake_case__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(snake_case__ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class lowerCAmelCase_ ( _a ): '''simple docstring''' _lowerCamelCase: Tuple = ["""pixel_values"""] def __init__( self : str ,A_ : List[Any] = True ,A_ : List[Any] = None ,A_ : Union[str, Any] = PILImageResampling.BILINEAR ,A_ : Tuple = True ,A_ : List[str] = None ,A_ : Optional[Any] = True ,A_ : Dict = 1 / 255 ,A_ : List[str] = True ,A_ : Union[str, Any] = True ,A_ : Dict = None ,A_ : int = None ,**A_ : int ,) -> None: super().__init__(**snake_case_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(snake_case_ ,param_name='crop_size' ) A = do_resize A = size A = do_center_crop A = crop_size A = resample A = do_rescale A = rescale_factor A = offset A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Dict = PILImageResampling.BILINEAR ,A_ : Tuple = None ,**A_ : Union[str, Any] ,) -> np.ndarray: A = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) if "shortest_edge" in size: A = get_resize_output_image_size(snake_case_ ,size['shortest_edge'] ,default_to_square=snake_case_ ) elif "height" in size and "width" in size: A = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(snake_case_ ,size=snake_case_ ,resample=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Union[str, Any] ,A_ : Any = None ,**A_ : Optional[Any] ,) -> np.ndarray: A = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(snake_case_ ,size=(size['height'], size['width']) ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : str ,A_ : Dict = True ,A_ : int = None ,**A_ : List[Any] ,) -> str: A = image.astype(np.floataa ) if offset: A = image - (scale / 2) return rescale(snake_case_ ,scale=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : int ,A_ : int ,A_ : Optional[int] = None ,**A_ : Optional[int] ,) -> np.ndarray: return normalize(snake_case_ ,mean=snake_case_ ,std=snake_case_ ,data_format=snake_case_ ,**snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ,A_ : Tuple = None ,A_ : Optional[Any] = None ,A_ : Dict = None ,A_ : Tuple = None ,A_ : Dict = None ,A_ : Optional[int] = None ,A_ : Dict = None ,A_ : List[str] = None ,A_ : Any = None ,A_ : List[Any] = None ,A_ : Union[str, Any] = None ,A_ : Dict = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A = to_numpy_array(snake_case_ ) if do_resize: A = self.resize(image=snake_case_ ,size=snake_case_ ,resample=snake_case_ ) if do_center_crop: A = self.center_crop(snake_case_ ,size=snake_case_ ) if do_rescale: A = self.rescale(image=snake_case_ ,scale=snake_case_ ,offset=snake_case_ ) if do_normalize: A = self.normalize(image=snake_case_ ,mean=snake_case_ ,std=snake_case_ ) A = to_channel_dimension_format(snake_case_ ,snake_case_ ) return image def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ,A_ : str = None ,A_ : Optional[Any] = None ,A_ : Dict = None ,A_ : str = None ,A_ : Any = None ,A_ : Optional[Any] = None ,A_ : Optional[Any] = None ,A_ : Tuple = None ,A_ : List[Any] = None ,A_ : Any = None ,A_ : List[Any] = None ,A_ : int = None ,A_ : str = ChannelDimension.FIRST ,**A_ : Any ,) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = offset if offset is not None else self.offset A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(snake_case_ ,default_to_square=snake_case_ ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(snake_case_ ,param_name='crop_size' ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A = make_batched(snake_case_ ) A = [ [ self._preprocess_image( image=snake_case_ ,do_resize=snake_case_ ,size=snake_case_ ,resample=snake_case_ ,do_center_crop=snake_case_ ,crop_size=snake_case_ ,do_rescale=snake_case_ ,rescale_factor=snake_case_ ,offset=snake_case_ ,do_normalize=snake_case_ ,image_mean=snake_case_ ,image_std=snake_case_ ,data_format=snake_case_ ,) for img in video ] for video in videos ] A = {'pixel_values': videos} return BatchFeature(data=snake_case_ ,tensor_type=snake_case_ )
720
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets _lowercase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' _lowercase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' _lowercase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] ,) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : List[str]=None ) -> str: return { "matthews_correlation": float(matthews_corrcoef(_lowercase ,_lowercase ,sample_weight=_lowercase ) ), }
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
"""simple docstring""" def _snake_case ( snake_case__ : List[Any] = 100_0000 ): A = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _snake_case ( snake_case__ : Union[str, Any] ): return getitem, k def _snake_case ( snake_case__ : int , snake_case__ : Optional[Any] ): return setitem, k, v def _snake_case ( snake_case__ : List[Any] ): return delitem, k def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple , *snake_case__ : List[Any] ): try: return fun(snake_case__ , *snake_case__ ), None except Exception as e: return None, e _lowercase = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) _lowercase = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] _lowercase = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] _lowercase = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] _lowercase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _lowercase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def _snake_case ( snake_case__ : Tuple ): A = HashMap(initial_block_size=4 ) A = {} for _, (fun, *args) in enumerate(snake_case__ ): A , A = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) A , A = _run_operation(snake_case__ , snake_case__ , *snake_case__ ) assert my_res == py_res assert str(snake_case__ ) == str(snake_case__ ) assert set(snake_case__ ) == set(snake_case__ ) assert len(snake_case__ ) == len(snake_case__ ) assert set(my.items() ) == set(py.items() ) def _snake_case ( ): def is_public(snake_case__ : str ) -> bool: return not name.startswith('_' ) A = {name for name in dir({} ) if is_public(snake_case__ )} A = {name for name in dir(HashMap() ) if is_public(snake_case__ )} assert dict_public_names > hash_public_names
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''van''' def __init__( self : Union[str, Any] ,A_ : Dict=224 ,A_ : Tuple=3 ,A_ : Optional[int]=[7, 3, 3, 3] ,A_ : Optional[Any]=[4, 2, 2, 2] ,A_ : Dict=[64, 128, 320, 512] ,A_ : Tuple=[3, 3, 12, 3] ,A_ : Optional[Any]=[8, 8, 4, 4] ,A_ : Any="gelu" ,A_ : Any=0.02 ,A_ : List[Any]=1e-6 ,A_ : Optional[int]=1e-2 ,A_ : str=0.0 ,A_ : str=0.0 ,**A_ : List[Any] ,) -> List[Any]: super().__init__(**__A ) A = image_size A = num_channels A = patch_sizes A = strides A = hidden_sizes A = depths A = mlp_ratios A = hidden_act A = initializer_range A = layer_norm_eps A = layer_scale_init_value A = drop_path_rate A = dropout_rate
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[int] ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _snake_case ( snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : str ): A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A = features.copy() if features else default_expected_features A = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def _snake_case ( snake_case__ : int , snake_case__ : str , snake_case__ : List[Any] ): A = tmp_path / "cache" A = {"col_3": "float64", "col_1": "string", "col_2": "int64"} A = features.copy() if features else default_expected_features A = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : str ): A = {"col_2": "int64", "col_3": "float64", "col_1": "string"} A = features.copy() A = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = tmp_path / "cache" A = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[int] ): A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _snake_case ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[Any] ): if issubclass(_lowerCamelCase , _lowerCamelCase ): A = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): A = [jsonl_path] A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Union[str, Any]=("train",) ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: A = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int ): A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A = JsonDatasetReader({'train': jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _snake_case ( snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple ): A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A = features.copy() if features else default_expected_features A = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = JsonDatasetReader({'train': jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _snake_case ( snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): if split: A = {split: jsonl_path} else: A = "train" A = {"train": jsonl_path, "test": jsonl_path} A = tmp_path / "cache" A = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _snake_case ( snake_case__ : Any ): return json.load(_lowerCamelCase ) def _snake_case ( snake_case__ : Any ): return [json.loads(_lowerCamelCase ) for line in buffer] class lowerCAmelCase_ : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' ,[(True, load_json_lines), (False, load_json)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : List[str] ,A_ : Optional[int] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(A_ ,A_ ,lines=A_ ).write() buffer.seek(0 ) A = load_json_function(A_ ) assert isinstance(A_ ,A_ ) assert isinstance(exported_content[0] ,A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' ,[ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ,A_ : Tuple ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : List[str] ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(A_ ,A_ ,lines=A_ ,orient=A_ ).write() buffer.seek(0 ) A = load_json(A_ ) assert isinstance(A_ ,A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ ,'keys' ) and not hasattr(exported_content[0] ,'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' ,[(True, load_json_lines), (False, load_json)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : str ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(A_ ,A_ ,lines=A_ ,num_proc=2 ).write() buffer.seek(0 ) A = load_json_function(A_ ) assert isinstance(A_ ,A_ ) assert isinstance(exported_content[0] ,A_ ) assert len(A_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' ,[ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] ,) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(A_ ,A_ ,lines=A_ ,orient=A_ ,num_proc=2 ).write() buffer.seek(0 ) A = load_json(A_ ) assert isinstance(A_ ,A_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A_ ,'keys' ) and not hasattr(exported_content[0] ,'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(A_ ) == 10 def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ) -> Optional[Any]: with pytest.raises(A_ ): with io.BytesIO() as buffer: JsonDatasetWriter(A_ ,A_ ,num_proc=0 ) @pytest.mark.parametrize('compression, extension' ,[('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ) -> Tuple: A = tmp_path_factory.mktemp('data' ) / F'test.json.{extension}' A = str(shared_datadir / F'test_file.json.{extension}' ) JsonDatasetWriter(A_ ,A_ ,compression=A_ ).write() with fsspec.open(A_ ,'rb' ,compression='infer' ) as f: A = f.read() with fsspec.open(A_ ,'rb' ,compression='infer' ) as f: A = f.read() assert exported_content == original_content
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict ,A_ : int ,A_ : Tuple=13 ,A_ : str=7 ,A_ : str=True ,A_ : Optional[Any]=True ,A_ : List[Any]=True ,A_ : Optional[Any]=True ,A_ : List[Any]=99 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]=5 ,A_ : Optional[int]=4 ,A_ : Union[str, Any]=37 ,A_ : List[str]="gelu" ,A_ : Tuple=0.1 ,A_ : str=0.1 ,A_ : Optional[int]=512 ,A_ : Union[str, Any]=16 ,A_ : Dict=2 ,A_ : Any=0.02 ,A_ : List[Any]=4 ,) -> Optional[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: A = self.prepare_config_and_inputs() A = config_and_inputs A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = True _lowerCamelCase: Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = FlaxRoFormerModelTester(self ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained('junnyu/roformer_chinese_small' ,from_pt=_a ) A = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) A = jnp.array([[0, 1, 2, 3, 4, 5]] ) A = model(_a )[0] A = 5_0000 A = (1, 6, vocab_size) self.assertEqual(output.shape ,_a ) A = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] ,_a ,atol=1e-4 ) )
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : str ): return [ord(snake_case__ ) - 96 for elem in plain] def _snake_case ( snake_case__ : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def _snake_case ( ): A = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , snake_case__ ) print('Decoded:' , decode(snake_case__ ) ) if __name__ == "__main__": main()
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _snake_case ( snake_case__ : Optional[int] ): A = torch.exp(__snake_case ) A = torch.sum(__snake_case , dim=1 ) # sum of exp(x_i) A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Dict ) -> List[Any]: super().__init__() A = config.output_attentions A = config.output_hidden_states A = nn.ModuleList([BertLayer(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) A = nn.ModuleList([BertHighway(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) A = [-1 for _ in range(config.num_hidden_layers )] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> Optional[Any]: if (type(__lowerCAmelCase ) is float) or (type(__lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): A = x else: A = x def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> Union[str, Any]: A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : List[Any]=None ,A_ : List[Any]=None ,A_ : Dict=None ,A_ : List[str]=None ,) -> Tuple: A = () A = () A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: A = all_hidden_states + (hidden_states,) A = layer_module( __lowerCAmelCase ,__lowerCAmelCase ,head_mask[i] ,__lowerCAmelCase ,__lowerCAmelCase ) A = layer_outputs[0] if self.output_attentions: A = all_attentions + (layer_outputs[1],) A = (hidden_states,) if self.output_hidden_states: A = current_outputs + (all_hidden_states,) if self.output_attentions: A = current_outputs + (all_attentions,) A = self.highway[i](__lowerCAmelCase ) # logits, pooled_output if not self.training: A = highway_exit[0] A = entropy(__lowerCAmelCase ) A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowerCAmelCase ,i + 1 ) else: A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: A = all_hidden_states + (hidden_states,) A = (hidden_states,) if self.output_hidden_states: A = outputs + (all_hidden_states,) if self.output_attentions: A = outputs + (all_attentions,) A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Any ) -> Tuple: super().__init__(__lowerCAmelCase ) A = config A = BertEmbeddings(__lowerCAmelCase ) A = DeeBertEncoder(__lowerCAmelCase ) A = BertPooler(__lowerCAmelCase ) self.init_weights() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: self.encoder.init_highway_pooler(self.pooler ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.embeddings.word_embeddings def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Tuple ) -> Tuple: A = value def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ) -> List[str]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowerCAmelCase ) @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int]=None ,A_ : str=None ,A_ : Dict=None ,A_ : str=None ,A_ : Optional[int]=None ,A_ : int=None ,A_ : Optional[Any]=None ,A_ : Dict=None ,) -> Dict: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: A = input_ids.size() elif inputs_embeds is not None: A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if encoder_attention_mask is None: A = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if token_type_ids is None: A = torch.zeros(__lowerCAmelCase ,dtype=torch.long ,device=__lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A = self.get_extended_attention_mask(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: A = encoder_attention_mask[:, None, None, :] A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility A = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A = self.get_head_mask(__lowerCAmelCase ,self.config.num_hidden_layers ) A = self.embeddings( input_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ) A = self.encoder( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,) A = encoder_outputs[0] A = self.pooler(__lowerCAmelCase ) A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Dict ,A_ : List[Any] ,A_ : Dict ) -> List[Any]: A = message A = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any ,A_ : Optional[int] ) -> str: super().__init__() A = BertPooler(__lowerCAmelCase ) A = nn.Dropout(config.hidden_dropout_prob ) A = nn.Linear(config.hidden_size ,config.num_labels ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = encoder_outputs[0] A = self.pooler(__lowerCAmelCase ) # "return" pooler_output # BertModel A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification A = bmodel_output[1] A = self.dropout(__lowerCAmelCase ) A = self.classifier(__lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : Any ) -> List[Any]: super().__init__(__lowerCAmelCase ) A = config.num_labels A = config.num_hidden_layers A = DeeBertModel(__lowerCAmelCase ) A = nn.Dropout(config.hidden_dropout_prob ) A = nn.Linear(config.hidden_size ,self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[int]=None ,A_ : Any=None ,A_ : str=None ,A_ : str=None ,A_ : Any=None ,A_ : int=None ,A_ : Any=None ,A_ : List[Any]=-1 ,A_ : Union[str, Any]=False ,) -> int: A = self.num_layers try: A = self.bert( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits A = outputs[1] A = self.dropout(__lowerCAmelCase ) A = self.classifier(__lowerCAmelCase ) A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A = e.message A = e.exit_layer A = outputs[0] if not self.training: A = entropy(__lowerCAmelCase ) A = [] A = [] if labels is not None: if self.num_labels == 1: # We are doing regression A = MSELoss() A = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: A = CrossEntropyLoss() A = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits A = [] for highway_exit in outputs[-1]: A = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A = MSELoss() A = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: A = CrossEntropyLoss() A = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(__lowerCAmelCase ) if train_highway: A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A = (loss,) + outputs if not self.training: A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" import random def _snake_case ( snake_case__ : int , snake_case__ : float , snake_case__ : bool = False ): A = {i: [] for i in range(UpperCAmelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCAmelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCAmelCase__ ): for j in range(i + 1 , UpperCAmelCase__ ): if random.random() < probability: graph[i].append(UpperCAmelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCAmelCase__ ) return graph def _snake_case ( snake_case__ : int ): return { i: [j for j in range(UpperCAmelCase__ ) if i != j] for i in range(UpperCAmelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" from maths.prime_check import is_prime def _snake_case ( snake_case__ : int ): if not isinstance(_lowercase , _lowercase ): A = F'Input value of [number={number}] must be an integer' raise TypeError(_lowercase ) if is_prime(_lowercase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int]=13 ,A_ : str=32 ,A_ : str=3 ,A_ : int=4 ,A_ : List[str]=[10, 20, 30, 40] ,A_ : Any=[2, 2, 3, 2] ,A_ : Any=True ,A_ : int=True ,A_ : str=37 ,A_ : List[Any]="gelu" ,A_ : int=10 ,A_ : str=0.02 ,A_ : int=["stage2", "stage3", "stage4"] ,A_ : List[str]=[2, 3, 4] ,A_ : str=None ,) -> Optional[Any]: A = parent A = batch_size A = image_size A = num_channels A = num_stages A = hidden_sizes A = depths A = is_training A = use_labels A = intermediate_size A = hidden_act A = num_labels A = initializer_range A = out_features A = out_indices A = scope def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.num_labels ) A = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[str] ,A_ : Optional[Any] ,A_ : Dict ) -> Optional[int]: A = ConvNextVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ) -> Dict: A = ConvNextVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : Optional[int] ) -> int: A = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A = model(__lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None A = None A = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowerCamelCase: Optional[int] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase: Tuple = False _lowerCamelCase: int = False _lowerCamelCase: List[Any] = False _lowerCamelCase: List[str] = False _lowerCamelCase: Any = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = ConvNextVaModelTester(self ) A = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: pass def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: A , A = self.model_tester.prepare_config_and_inputs_with_labels() A = True if model_class.__name__ in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ]: continue A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() A = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) A = model(**__lowerCAmelCase ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: A , A = self.model_tester.prepare_config_and_inputs_with_labels() A = False A = True if ( model_class.__name__ in [*get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() A = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase ) A = model(**__lowerCAmelCase ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__lowerCAmelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: def check_hidden_states_output(A_ : Union[str, Any] ,A_ : Dict ,A_ : Tuple ): A = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ConvNextVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(__lowerCAmelCase ) A = self.default_image_processor A = prepare_img() A = preprocessor(images=__lowerCAmelCase ,return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): A = model(**__lowerCAmelCase ) # verify the logits A = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) A = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) )
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _lowercase = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _lowercase = { '''vinai/phobert-base''': 2_56, '''vinai/phobert-large''': 2_56, } def _snake_case ( snake_case__ : Any ): A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(_snake_case ) return pairs class lowerCAmelCase_ ( __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] ,A_ : Dict ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[int]="</s>" ,A_ : Union[str, Any]="</s>" ,A_ : Any="<s>" ,A_ : Optional[int]="<unk>" ,A_ : Dict="<pad>" ,A_ : str="<mask>" ,**A_ : List[Any] ,) -> Optional[Any]: super().__init__( bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,**UpperCAmelCase_ ,) A = vocab_file A = merges_file A = {} A = 0 A = 1 A = 2 A = 3 self.add_from_file(UpperCAmelCase_ ) A = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ ,encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:-1] ) for merge in merges] A = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) A = {} def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tuple ,A_ : Optional[Any] = None ) -> str: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : int ,A_ : Optional[Any] = None ,A_ : List[Any] = False ) -> Optional[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ ,token_ids_a=UpperCAmelCase_ ,already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ,A_ : int = None ) -> int: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> Optional[int]: if token in self.cache: return self.cache[token] A = tuple(UpperCAmelCase_ ) A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) A = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: A = min(UpperCAmelCase_ ,key=lambda A_ : self.bpe_ranks.get(UpperCAmelCase_ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCAmelCase_ ): try: A = word.index(UpperCAmelCase_ ,UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCAmelCase_ ) A = new_word if len(UpperCAmelCase_ ) == 1: break else: A = get_pairs(UpperCAmelCase_ ) A = '@@ '.join(UpperCAmelCase_ ) A = word[:-4] A = word return word def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ) -> Dict: A = [] A = re.findall(R'\S+\n?' ,UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(' ' ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ) -> Optional[int]: return self.encoder.get(UpperCAmelCase_ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Any ) -> Tuple: return self.decoder.get(UpperCAmelCase_ ,self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ) -> Tuple: A = ' '.join(UpperCAmelCase_ ).replace('@@ ' ,'' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ,A_ : str = None ) -> Union[str, Any]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( UpperCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCAmelCase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file ,UpperCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.merges_file ,UpperCAmelCase_ ) return out_vocab_file, out_merge_file def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[str] ) -> Union[str, Any]: if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): try: with open(UpperCAmelCase_ ,'r' ,encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'Incorrect encoding detected in {f}, please rebuild the dataset' ) return A = f.readlines() for lineTmp in lines: A = lineTmp.strip() A = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) A = line[:idx] A = len(self.encoder )
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase: Dict = '''xmod''' def __init__( self : Optional[Any] ,A_ : List[Any]=3_0522 ,A_ : Dict=768 ,A_ : Tuple=12 ,A_ : List[Any]=12 ,A_ : Union[str, Any]=3072 ,A_ : Union[str, Any]="gelu" ,A_ : List[str]=0.1 ,A_ : List[str]=0.1 ,A_ : List[str]=512 ,A_ : Tuple=2 ,A_ : List[Any]=0.02 ,A_ : List[Any]=1e-12 ,A_ : Optional[int]=1 ,A_ : Tuple=0 ,A_ : Any=2 ,A_ : int="absolute" ,A_ : List[str]=True ,A_ : List[Any]=None ,A_ : Any=False ,A_ : Dict=2 ,A_ : Dict=False ,A_ : Dict=True ,A_ : Optional[int]=True ,A_ : Optional[int]=("en_XX",) ,A_ : Tuple=None ,**A_ : List[Any] ,) -> Optional[int]: super().__init__(pad_token_id=UpperCamelCase__ ,bos_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ,**UpperCamelCase__ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout A = pre_norm A = adapter_reduction_factor A = adapter_layer_norm A = adapter_reuse_layer_norm A = ln_before_adapter A = list(UpperCamelCase__ ) A = default_language class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: if self.task == "multiple-choice": A = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowercase = logging.get_logger(__name__) _lowercase = '''T5Config''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''mt5''' _lowerCamelCase: Optional[Any] = MTaConfig class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = '''mt5''' _lowerCamelCase: Optional[Any] = MTaConfig class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''mt5''' _lowerCamelCase: List[Any] = MTaConfig
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = MgpstrTokenizer _lowerCamelCase: Dict = False _lowerCamelCase: Optional[int] = {} _lowerCamelCase: Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: super().setUp() # fmt: off A = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def _SCREAMING_SNAKE_CASE ( self : Any ,**A_ : int ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[str] ) -> Optional[int]: A = """tester""" A = """tester""" return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({'cls_token': special_token} ) A = tokenizer.encode([special_token] ,add_special_tokens=A_ ) self.assertEqual(len(A_ ) ,1 ) A = tokenizer.decode(A_ ,skip_special_tokens=A_ ) self.assertTrue(special_token not in decoded ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A = self.get_input_output_texts(A_ ) A = tokenizer.tokenize(A_ ) A = tokenizer.convert_tokens_to_ids(A_ ) A = tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertNotEqual(len(A_ ) ,0 ) A = tokenizer.decode(A_ ) self.assertIsInstance(A_ ,A_ ) self.assertEqual(text_a.replace(' ' ,'' ) ,A_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: pass
713
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowercase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : int ,A_ : Optional[int]=7 ,A_ : List[str]=3 ,A_ : Tuple=18 ,A_ : List[Any]=30 ,A_ : Tuple=400 ,A_ : Any=None ,A_ : Optional[int]=True ,A_ : List[str]=True ,A_ : Union[str, Any]=None ,) -> List[Any]: A = size if size is not None else {'height': 20, 'width': 20} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = size A = do_normalize A = do_convert_rgb A = [512, 1024, 2048, 4096] A = patch_size if patch_size is not None else {'height': 16, 'width': 16} def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' A = Image.open(requests.get(__lowercase ,stream=__lowercase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase_ ( lowercase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Any = PixaStructImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: A = PixaStructImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'do_normalize' ) ) self.assertTrue(hasattr(__lowercase ,'do_convert_rgb' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = self.image_processor_tester.prepare_dummy_image() A = self.image_processing_class(**self.image_processor_dict ) A = 2048 A = image_processor(__lowercase ,return_tensors='pt' ,max_patches=__lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.06_06 ) ,atol=1e-3 ,rtol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched A = image_processor( __lowercase ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 A = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__lowercase ): A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches A = 'Hello' A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ,header_text=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched A = image_processor( __lowercase ,return_tensors='pt' ,max_patches=__lowercase ,header_text=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched A = image_processor( __lowercase ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched A = image_processor( __lowercase ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase_ ( lowercase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = PixaStructImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = PixaStructImageProcessingTester(self ,num_channels=4 ) A = 3 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'do_normalize' ) ) self.assertTrue(hasattr(__lowercase ,'do_convert_rgb' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched A = image_processor( __lowercase ,return_tensors='pt' ,max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase_ ( __snake_case ): '''simple docstring''' _lowerCamelCase: Any = 'Wav2Vec2FeatureExtractor' _lowerCamelCase: List[str] = 'AutoTokenizer' def __init__( self : int ,A_ : Dict ,A_ : str ) -> int: super().__init__(A_ ,A_ ) A = self.feature_extractor A = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] ,A_ : Optional[Any] ,**A_ : List[Any] ) -> List[str]: try: return super().from_pretrained(A_ ,**A_ ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' ,A_ ,) A = WavaVecaFeatureExtractor.from_pretrained(A_ ,**A_ ) A = WavaVecaCTCTokenizer.from_pretrained(A_ ,**A_ ) return cls(feature_extractor=A_ ,tokenizer=A_ ) def __call__( self : Dict ,*A_ : Tuple ,**A_ : List[str] ) -> List[str]: if self._in_target_context_manager: return self.current_processor(*A_ ,**A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,A_ ) A = kwargs.pop('sampling_rate' ,A_ ) A = kwargs.pop('text' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A_ ,*A_ ,sampling_rate=A_ ,**A_ ) if text is not None: A = self.tokenizer(A_ ,**A_ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings["input_ids"] return inputs def _SCREAMING_SNAKE_CASE ( self : str ,*A_ : Dict ,**A_ : Dict ) -> List[str]: if self._in_target_context_manager: return self.current_processor.pad(*A_ ,**A_ ) A = kwargs.pop('input_features' ,A_ ) A = kwargs.pop('labels' ,A_ ) if len(A_ ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(A_ ,*A_ ,**A_ ) if labels is not None: A = self.tokenizer.pad(A_ ,**A_ ) if labels is None: return input_features elif input_features is None: return labels else: A = labels["input_ids"] return input_features def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,*A_ : str ,**A_ : Optional[int] ) -> Optional[Any]: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*A_ : Any ,**A_ : List[Any] ) -> Any: return self.tokenizer.decode(*A_ ,**A_ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase: Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) _lowerCamelCase: bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) _lowerCamelCase: bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowerCamelCase: bool = field(default=UpperCamelCase__ , metadata={'''help''': '''whether to use adafactor'''} ) _lowerCamelCase: Optional[float] = field( default=UpperCamelCase__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field( default=UpperCamelCase__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field(default=UpperCamelCase__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field( default=UpperCamelCase__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[str] = field( default='''linear''' , metadata={'''help''': F'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
716
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase = '''\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n''' def _snake_case ( snake_case__ : Any , snake_case__ : int , snake_case__ : Any=8 ): A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=512 , snake_case__ : int=512 ): A = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) A = np.array(pil_image.convert('RGB' ) ) A = arr.astype(np.floataa ) / 127.5 - 1 A = np.transpose(__lowerCAmelCase , [2, 0, 1] ) A = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class lowerCAmelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int ,A_ : UNetaDConditionModel ,A_ : DDPMScheduler ,A_ : VQModel ,) -> Union[str, Any]: super().__init__() self.register_modules( unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ,movq=lowerCamelCase__ ,) A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : int ,A_ : Tuple ,A_ : Union[str, Any] ) -> Union[str, Any]: A = min(int(num_inference_steps * strength ) ,lowerCamelCase__ ) A = max(num_inference_steps - init_timestep ,0 ) A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Tuple ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Dict=None ) -> Any: if not isinstance(lowerCamelCase__ ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase__ )}' ) A = image.to(device=lowerCamelCase__ ,dtype=lowerCamelCase__ ) A = batch_size * num_images_per_prompt if image.shape[1] == 4: A = image else: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): A = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCamelCase__ ) ] A = torch.cat(lowerCamelCase__ ,dim=0 ) else: A = self.movq.encode(lowerCamelCase__ ).latent_dist.sample(lowerCamelCase__ ) A = self.movq.config.scaling_factor * init_latents A = torch.cat([init_latents] ,dim=0 ) A = init_latents.shape A = randn_tensor(lowerCamelCase__ ,generator=lowerCamelCase__ ,device=lowerCamelCase__ ,dtype=lowerCamelCase__ ) # get latents A = self.scheduler.add_noise(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) A = init_latents return latents def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[Any]=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A = torch.device(F'cuda:{gpu_id}' ) A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase__ ,lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=0 ) -> List[Any]: if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=lowerCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A = None for cpu_offloaded_model in [self.unet, self.movq]: A = cpu_offload_with_hook(lowerCamelCase__ ,lowerCamelCase__ ,prev_module_hook=lowerCamelCase__ ) # We'll offload the last model manually. A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase__ ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase__ ) def __call__( self : str ,A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A_ : int = 512 ,A_ : int = 512 ,A_ : int = 100 ,A_ : float = 4.0 ,A_ : float = 0.3 ,A_ : int = 1 ,A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A_ : Optional[str] = "pil" ,A_ : bool = True ,) -> str: A = self._execution_device A = guidance_scale > 1.0 if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): A = torch.cat(lowerCamelCase__ ,dim=0 ) A = image_embeds.shape[0] if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): A = torch.cat(lowerCamelCase__ ,dim=0 ) if do_classifier_free_guidance: A = image_embeds.repeat_interleave(lowerCamelCase__ ,dim=0 ) A = negative_image_embeds.repeat_interleave(lowerCamelCase__ ,dim=0 ) A = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=lowerCamelCase__ ) if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): A = [image] if not all(isinstance(lowerCamelCase__ ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'Input is in incorrect format: {[type(lowerCamelCase__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) A = torch.cat([prepare_image(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for i in image] ,dim=0 ) A = image.to(dtype=image_embeds.dtype ,device=lowerCamelCase__ ) A = self.movq.encode(lowerCamelCase__ )["latents"] A = latents.repeat_interleave(lowerCamelCase__ ,dim=0 ) self.scheduler.set_timesteps(lowerCamelCase__ ,device=lowerCamelCase__ ) A = self.get_timesteps(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) A = timesteps[:1].repeat(batch_size * num_images_per_prompt ) A = downscale_height_and_width(lowerCamelCase__ ,lowerCamelCase__ ,self.movq_scale_factor ) A = self.prepare_latents( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,image_embeds.dtype ,lowerCamelCase__ ,lowerCamelCase__ ) for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = {"image_embeds": image_embeds} A = self.unet( sample=lowerCamelCase__ ,timestep=lowerCamelCase__ ,encoder_hidden_states=lowerCamelCase__ ,added_cond_kwargs=lowerCamelCase__ ,return_dict=lowerCamelCase__ ,)[0] if do_classifier_free_guidance: A = noise_pred.split(latents.shape[1] ,dim=1 ) A = noise_pred.chunk(2 ) A = variance_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,generator=lowerCamelCase__ ,)[0] # post-processing A = self.movq.decode(lowerCamelCase__ ,force_not_quantize=lowerCamelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: A = image * 0.5 + 0.5 A = image.clamp(0 ,1 ) A = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : List[Any] , snake_case__ : Any=False ): A = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): A = 'segformer.encoder.' + key if key.startswith('backbone' ): A = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A = key[key.find('patch_embed' ) + len('patch_embed' )] A = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowercase__ )-1}' ) if "norm" in key: A = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] A = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowercase__ )-1}' ) if "layer_norm1" in key: A = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: A = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 A = key[key.find('block' ) + len('block' )] A = key.replace(F'block{idx}' , F'block.{int(lowercase__ )-1}' ) if "attn.q" in key: A = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: A = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: A = key.replace('attn' , 'attention.self' ) if "fc1" in key: A = key.replace('fc1' , 'dense1' ) if "fc2" in key: A = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: A = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: A = key.replace('linear_fuse.conv' , 'linear_fuse' ) A = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A = key[key.find('linear_c' ) + len('linear_c' )] A = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowercase__ )-1}' ) if key.startswith('head' ): A = key.replace('head' , 'classifier' ) A = value return new_state_dict def _snake_case ( snake_case__ : Dict , snake_case__ : List[str] ): for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) A = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict A = kv_weight[ : config.hidden_sizes[i], : ] A = kv_bias[: config.hidden_sizes[i]] A = kv_weight[ config.hidden_sizes[i] :, : ] A = kv_bias[ config.hidden_sizes[i] : ] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def _snake_case ( snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int] ): A = SegformerConfig() A = False # set attributes based on model_name A = 'huggingface/label-files' if "segformer" in model_name: A = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: A = 150 A = 'ade20k-id2label.json' A = (1, 150, 128, 128) elif "city" in model_name: A = 19 A = 'cityscapes-id2label.json' A = (1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: A = True A = model_name[4:6] A = 1000 A = 'imagenet-1k-id2label.json' A = (1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes A = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) A = {int(lowercase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": A = [64, 128, 320, 512] A = 256 elif size == "b2": A = [64, 128, 320, 512] A = 768 A = [3, 4, 6, 3] elif size == "b3": A = [64, 128, 320, 512] A = 768 A = [3, 4, 18, 3] elif size == "b4": A = [64, 128, 320, 512] A = 768 A = [3, 8, 27, 3] elif size == "b5": A = [64, 128, 320, 512] A = 768 A = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) A = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase__ , align=lowercase__ , do_random_crop=lowercase__ ) # prepare image A = prepare_img() A = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: A = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) else: A = torch.load(lowercase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys A = rename_keys(lowercase__ , encoder_only=lowercase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict if encoder_only: A = False A = SegformerForImageClassification(lowercase__ ) else: A = SegformerForSemanticSegmentation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass A = model(lowercase__ ) A = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": A = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": A = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": A = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": A = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": A = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": A = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": A = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": A = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": A = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": A = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": A = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": A = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": A = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": A = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": A = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: A = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowercase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( __lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''visual_bert''' def __init__( self : Optional[Any] ,A_ : Union[str, Any]=3_0522 ,A_ : Tuple=768 ,A_ : Dict=512 ,A_ : Dict=12 ,A_ : Any=12 ,A_ : Optional[Any]=3072 ,A_ : Tuple="gelu" ,A_ : List[Any]=0.1 ,A_ : Tuple=0.1 ,A_ : Optional[int]=512 ,A_ : str=2 ,A_ : List[Any]=0.02 ,A_ : List[Any]=1e-12 ,A_ : List[str]=False ,A_ : Dict=True ,A_ : Optional[int]=1 ,A_ : str=0 ,A_ : Dict=2 ,**A_ : Union[str, Any] ,) -> Optional[int]: super().__init__(pad_token_id=__a ,bos_token_id=__a ,eos_token_id=__a ,**__a ) A = vocab_size A = max_position_embeddings A = hidden_size A = visual_embedding_dim A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps A = bypass_transformer A = special_visual_initialize
719
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[int] ): return len(set(_UpperCamelCase ) ) == len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase = logging.get_logger(__name__) class __lowercase ( __a ): '''simple docstring''' def __init__( self : List[str] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ,**A_ : Any ) -> Union[str, Any]: A = feature_size A = sampling_rate A = padding_value A = kwargs.pop('padding_side' ,'right' ) A = kwargs.pop('return_attention_mask' ,A__ ) super().__init__(**A__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[str] = True ,A_ : Optional[Any] = None ,A_ : Union[str, Any] = False ,A_ : List[Any] = None ,A_ : Union[str, Any] = None ,A_ : str = None ,) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): A = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) A = processed_features[self.model_input_names[0]] A = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: A = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A = required_input[0] if isinstance(A__ ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): A = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): A = 'tf' elif is_torch_tensor(A__ ): A = 'pt' elif isinstance(A__ ,(int, float, list, tuple, np.ndarray) ): A = 'np' else: raise ValueError( F'type of {first_element} unknown: {type(A__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): A = to_numpy(A__ ) else: A = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy A = self._get_padding_strategies(padding=A__ ,max_length=A__ ) A = processed_features[self.model_input_names[0]] A = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) A = [] for i in range(A__ ): A = {k: v[i] for k, v in processed_features.items()} # truncation A = self._truncate( A__ ,max_length=A__ ,pad_to_multiple_of=A__ ,truncation=A__ ,) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A = PaddingStrategy.MAX_LENGTH A = {} for i in range(A__ ): # padding A = self._pad( truncated_inputs[i] ,max_length=A__ ,padding_strategy=A__ ,pad_to_multiple_of=A__ ,return_attention_mask=A__ ,) for key, value in outputs.items(): if key not in batch_outputs: A = [] if value.dtype is np.dtype(np.floataa ): A = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ ,tensor_type=A__ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : Union[str, Any] = None ,A_ : str = PaddingStrategy.DO_NOT_PAD ,A_ : Dict = None ,A_ : List[str] = None ,) -> dict: A = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A = np.ones(len(A__ ) ,dtype=np.intaa ) if needs_to_be_padded: A = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: A = np.pad( processed_features['attention_mask'] ,(0, difference) ) A = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A = np.pad( A__ ,A__ ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A = np.pad( processed_features['attention_mask'] ,(difference, 0) ) A = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A = np.pad( A__ ,A__ ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[Any] ,A_ : Union[str, Any] = None ,A_ : Tuple = None ,A_ : List[Any] = None ,) -> Union[str, Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) A = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A = len(A__ ) > max_length if needs_to_be_truncated: A = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A = processed_features['attention_mask'][:max_length] return processed_features def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int]=False ,A_ : Tuple=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: A = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ ,A__ ): A = PaddingStrategy(A__ ) elif isinstance(A__ ,A__ ): A = padding else: A = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } _lowercase = {'''facebook/blenderbot_small-90M''': 5_12} def _snake_case ( snake_case__ : Dict ): A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(_SCREAMING_SNAKE_CASE ) return pairs class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: str = ['input_ids', 'attention_mask'] def __init__( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : Union[str, Any]="__start__" ,A_ : List[Any]="__end__" ,A_ : Optional[Any]="__unk__" ,A_ : Any="__null__" ,**A_ : int ,) -> Any: super().__init__(unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,**A_ ) with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.encoder.items()} with open(A_ ,encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = {} @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ) -> str: if token in self.cache: return self.cache[token] A = re.sub('([.,!?()])' ,R' \1' ,A_ ) A = re.sub('(\')' ,R' \1 ' ,A_ ) A = re.sub(R'\s{2,}' ,' ' ,A_ ) if "\n" in token: A = token.replace('\n' ,' __newln__' ) A = token.split(' ' ) A = [] for token in tokens: if not len(A_ ): continue A = token.lower() A = tuple(A_ ) A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) A = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: A = min(A_ ,key=lambda A_ : self.bpe_ranks.get(A_ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(A_ ): try: A = word.index(A_ ,A_ ) new_word.extend(word[i:j] ) A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(A_ ) A = new_word if len(A_ ) == 1: break else: A = get_pairs(A_ ) A = '@@ '.join(A_ ) A = word[:-4] A = word words.append(A_ ) return " ".join(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : str ) -> List[str]: A = [] A = re.findall(R'\S+\n?' ,A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ) -> int: A = token.lower() return self.encoder.get(A_ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ) -> str: return self.decoder.get(A_ ,self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[str] ) -> str: A = ' '.join(A_ ).replace('@@ ' ,'' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) A = 0 with open(A_ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase_ ( __snake_case ): '''simple docstring''' _lowerCamelCase: int = '''Wav2Vec2FeatureExtractor''' _lowerCamelCase: str = '''AutoTokenizer''' def __init__( self : Any ,A_ : Any ,A_ : Optional[Any] ) -> Optional[int]: super().__init__(__UpperCamelCase ,__UpperCamelCase ) A = self.feature_extractor A = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,A_ : Tuple ,**A_ : Any ) -> str: try: return super().from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' ,__UpperCamelCase ,) A = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = WavaVecaCTCTokenizer.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) return cls(feature_extractor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) def __call__( self : Tuple ,*A_ : List[str] ,**A_ : int ) -> Optional[Any]: if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase ,**__UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,__UpperCamelCase ) A = kwargs.pop('sampling_rate' ,__UpperCamelCase ) A = kwargs.pop('text' ,__UpperCamelCase ) if len(__UpperCamelCase ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(__UpperCamelCase ,*__UpperCamelCase ,sampling_rate=__UpperCamelCase ,**__UpperCamelCase ) if text is not None: A = self.tokenizer(__UpperCamelCase ,**__UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: A = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*A_ : Optional[int] ,**A_ : Any ) -> Dict: if self._in_target_context_manager: return self.current_processor.pad(*__UpperCamelCase ,**__UpperCamelCase ) A = kwargs.pop('input_features' ,__UpperCamelCase ) A = kwargs.pop('labels' ,__UpperCamelCase ) if len(__UpperCamelCase ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) if labels is not None: A = self.tokenizer.pad(__UpperCamelCase ,**__UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: A = labels['input_ids'] return input_features def _SCREAMING_SNAKE_CASE ( self : Tuple ,*A_ : Any ,**A_ : Optional[Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase ,**__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,*A_ : List[Any] ,**A_ : List[Any] ) -> Tuple: return self.tokenizer.decode(*__UpperCamelCase ,**__UpperCamelCase ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" from collections import deque class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] ,A_ : int ,A_ : Tuple ,A_ : Tuple ) -> None: A = process_name # process name A = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A = arrival_time A = burst_time # remaining burst time A = 0 # total time of the process wait in ready queue A = 0 # time from arrival time to completion time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Tuple ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[Any] ,) -> None: A = number_of_queues # time slice of queues that round robin algorithm applied A = time_slices # unfinished process is in this ready_queue A = queue # current time A = current_time # finished process is in this sequence queue A = deque() def _SCREAMING_SNAKE_CASE ( self : Any ) -> list[str]: A = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> list[int]: A = [] for i in range(len(lowercase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Any ) -> list[int]: A = [] for i in range(len(lowercase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> list[int]: A = [] for i in range(len(lowercase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ) -> list[int]: return [q.burst_time for q in queue] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Any ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ) -> deque[Process]: A = deque() # sequence deque of finished process while len(lowercase__ ) != 0: A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowercase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A = 0 # set the process's turnaround time because it is finished A = self.current_time - cp.arrival_time # set the completion time A = self.current_time # add the process to queue that has finished queue finished.append(lowercase__ ) self.finish_queue.extend(lowercase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Any ,A_ : List[Any] ) -> tuple[deque[Process], deque[Process]]: A = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowercase__ ) ): A = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowercase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowercase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A = 0 # set the finish time A = self.current_time # update the process' turnaround time because it is finished A = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowercase__ ) self.finish_queue.extend(lowercase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> deque[Process]: for i in range(self.number_of_queues - 1 ): A = self.round_robin( self.ready_queue ,self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase = Process('''P1''', 0, 53) _lowercase = Process('''P2''', 0, 17) _lowercase = Process('''P3''', 0, 68) _lowercase = Process('''P4''', 0, 24) _lowercase = 3 _lowercase = [17, 25] _lowercase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _lowercase = Process('''P1''', 0, 53) _lowercase = Process('''P2''', 0, 17) _lowercase = Process('''P3''', 0, 68) _lowercase = Process('''P4''', 0, 24) _lowercase = 3 _lowercase = [17, 25] _lowercase = deque([Pa, Pa, Pa, Pa]) _lowercase = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ) -> Any: A = {} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : List[str] ,A_ : str ) -> List[Any]: if nodea not in self.connections: self.add_node(lowercase__ ) if nodea not in self.connections: self.add_node(lowercase__ ) A = probability def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return list(self.connections ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Any ) -> Optional[int]: A = 0 A = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _snake_case ( snake_case__ : str , snake_case__ : list[tuple[str, str, float]] , snake_case__ : int ): A = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A = Counter(graph.get_nodes() ) A = start for _ in range(SCREAMING_SNAKE_CASE__ ): A = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } _lowercase = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } _lowercase = '''▁''' class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase: str = VOCAB_FILES_NAMES _lowerCamelCase: Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: int = AlbertTokenizer def __init__( self : int ,A_ : Optional[Any]=None ,A_ : Dict=None ,A_ : Optional[int]=True ,A_ : str=True ,A_ : Any=False ,A_ : Union[str, Any]="[CLS]" ,A_ : str="[SEP]" ,A_ : Union[str, Any]="<unk>" ,A_ : Union[str, Any]="[SEP]" ,A_ : List[Any]="<pad>" ,A_ : Optional[Any]="[CLS]" ,A_ : Optional[Any]="[MASK]" ,**A_ : List[Any] ,) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A = ( AddedToken(__snake_case ,lstrip=__snake_case ,rstrip=__snake_case ,normalized=__snake_case ) if isinstance(__snake_case ,__snake_case ) else mask_token ) super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,remove_space=__snake_case ,keep_accents=__snake_case ,bos_token=__snake_case ,eos_token=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,**__snake_case ,) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> Union[str, Any]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[Any]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ,A_ : Optional[str] = None ) -> Optional[Any]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( __snake_case ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file ,__snake_case ) return (out_vocab_file,)
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" import os import sys import transformers _lowercase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = RoCBertTokenizer _lowerCamelCase: Dict = None _lowerCamelCase: List[Any] = False _lowerCamelCase: Union[str, Any] = True _lowerCamelCase: Union[str, Any] = filter_non_english def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] A = {} A = {} for i, value in enumerate(__a ): A = i A = i A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['word_shape_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file ,'w' ,encoding='utf-8' ) as word_shape_writer: json.dump(__a ,__a ,ensure_ascii=__a ) with open(self.word_pronunciation_file ,'w' ,encoding='utf-8' ) as word_pronunciation_writer: json.dump(__a ,__a ,ensure_ascii=__a ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) A = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(__a ,['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) ,[5, 6, 2, 5, 7, 8] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: A = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = RoCBertBasicTokenizer(do_lower_case=__a ,strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = RoCBertBasicTokenizer(do_lower_case=__a ,strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = RoCBertBasicTokenizer(do_lower_case=__a ,strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: A = RoCBertBasicTokenizer(do_lower_case=__a ,strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = RoCBertBasicTokenizer(do_lower_case=__a ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A = {} for i, token in enumerate(__a ): A = i A = RoCBertWordpieceTokenizer(vocab=__a ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: A = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(__a ,**__a ) A = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A = tokenizer_r.encode_plus( __a ,return_attention_mask=__a ,return_token_type_ids=__a ,return_offsets_mapping=__a ,add_special_tokens=__a ,) A = tokenizer_r.do_lower_case if hasattr(__a ,'do_lower_case' ) else False A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = ["的", "人", "有"] A = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = True A = self.tokenizer_class.from_pretrained(__a ,**__a ) A = self.rust_tokenizer_class.from_pretrained(__a ,**__a ) A = tokenizer_p.encode(__a ,add_special_tokens=__a ) A = tokenizer_r.encode(__a ,add_special_tokens=__a ) A = tokenizer_r.convert_ids_to_tokens(__a ) A = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a ,__a ) self.assertListEqual(__a ,__a ) A = False A = self.rust_tokenizer_class.from_pretrained(__a ,**__a ) A = self.tokenizer_class.from_pretrained(__a ,**__a ) A = tokenizer_r.encode(__a ,add_special_tokens=__a ) A = tokenizer_p.encode(__a ,add_special_tokens=__a ) A = tokenizer_r.convert_ids_to_tokens(__a ) A = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". A = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a ,__a ) self.assertListEqual(__a ,__a ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) A = tokenizer.encode('你好' ,add_special_tokens=__a ) A = tokenizer.encode('你是谁' ,add_special_tokens=__a ) A = tokenizer.build_inputs_with_special_tokens(__a ) A = tokenizer.build_inputs_with_special_tokens(__a ,__a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A = "你好,你是谁" A = tokenizer.tokenize(__a ) A = tokenizer.convert_tokens_to_ids(__a ) A = tokenizer.convert_tokens_to_shape_ids(__a ) A = tokenizer.convert_tokens_to_pronunciation_ids(__a ) A = tokenizer.prepare_for_model( __a ,__a ,__a ,add_special_tokens=__a ) A = tokenizer.encode_plus(__a ,add_special_tokens=__a ) self.assertEqual(__a ,__a )
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" import argparse _lowercase = '''docs/source/_static/js/custom.js''' def _snake_case ( snake_case__ : str ): with open(__UpperCamelCase , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 A = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') _lowercase = parser.parse_args() update_custom_js(args.version)
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ProphetNetTokenizer _lowerCamelCase: List[str] = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[str]: A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ,strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: A = BasicTokenizer(do_lower_case=_lowerCAmelCase ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A = {} for i, token in enumerate(_lowerCAmelCase ): A = i A = WordpieceTokenizer(vocab=_lowerCAmelCase ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] A = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] A = tokenizer(_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) A = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=_lowerCAmelCase ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowercase = numpy.array([0, 0]) _lowercase = numpy.array([0.5, 0.8_660_254]) _lowercase = numpy.array([1, 0]) _lowercase = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : int ): A = initial_vectors for _ in range(snake_case_ ): A = iteration_step(snake_case_ ) return vectors def _snake_case ( snake_case__ : Union[str, Any] ): A = [] for i, start_vector in enumerate(vectors[:-1] ): A = vectors[i + 1] new_vectors.append(snake_case_ ) A = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _snake_case ( snake_case__ : int , snake_case__ : Union[str, Any] ): A = numpy.radians(snake_case_ ) A = numpy.cos(snake_case_ ), numpy.sin(snake_case_ ) A = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case_ , snake_case_ ) def _snake_case ( snake_case__ : List[str] ): A = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() A = zip(*snake_case_ ) plt.plot(snake_case_ , snake_case_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowercase = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCamelCase: Tuple = CLIPConfig _lowerCamelCase: Optional[int] = ['''CLIPEncoderLayer'''] def __init__( self : List[str] ,A_ : Any ) -> List[Any]: super().__init__(UpperCamelCase__ ) A = CLIPVisionModelWithProjection(config.vision_config ) A = nn.Linear(config.vision_config.projection_dim ,1 ) A = nn.Linear(config.vision_config.projection_dim ,1 ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Optional[Any]=0.5 ,A_ : Optional[Any]=0.5 ) -> Tuple: A = self.vision_model(UpperCamelCase__ )[0] A = self.p_head(UpperCamelCase__ ) A = nsfw_detected.flatten() A = nsfw_detected > p_threshold A = nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: A = np.zeros(images[idx].shape ) A = self.w_head(UpperCamelCase__ ) A = watermark_detected.flatten() A = watermark_detected > w_threshold A = watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: A = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" from collections import deque def _snake_case ( snake_case__ : Tuple ): A = len(lowerCamelCase_ ) A = deque() A = [False for _ in range(lowerCamelCase_ )] A = [-1 for _ in range(lowerCamelCase_ )] A = index_of[:] def strong_connect(snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): A = index # the number when this node is seen A = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase_ ) A = True for w in g[v]: if index_of[w] == -1: A = strong_connect(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A = [] A = stack.pop() A = False component.append(lowerCamelCase_ ) while w != v: A = stack.pop() A = False component.append(lowerCamelCase_ ) components.append(lowerCamelCase_ ) return index A = [] for v in range(lowerCamelCase_ ): if index_of[v] == -1: strong_connect(lowerCamelCase_ , 0 , lowerCamelCase_ ) return components def _snake_case ( snake_case__ : Any , snake_case__ : Tuple ): A = [[] for _ in range(lowerCamelCase_ )] for u, v in edges: g[u].append(lowerCamelCase_ ) return g if __name__ == "__main__": # Test _lowercase = 7 _lowercase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _lowercase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _lowercase = [(u, v) for u, v in zip(source, target)] _lowercase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCAmelCase_ ( pl.LightningModule ): '''simple docstring''' def __init__( self : Any ,A_ : Any ) -> Dict: super().__init__() A = model A = 2 A = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: pass def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : str ): A = LongformerModel.from_pretrained(__snake_case ) A = LightningModel(__snake_case ) A = torch.load(__snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model A = LongformerForQuestionAnswering.from_pretrained(__snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
import warnings from functools import wraps from typing import Callable def _snake_case ( snake_case__ : int ): @wraps(a__ ) def _inner_fn(*snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , a__ , ) return fn(*a__ , **a__ ) return _inner_fn
713
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCAmelCase_ ( UpperCamelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__A ,'num_attention_heads' ) ) self.parent.assertTrue(hasattr(__A ,'num_encoder_blocks' ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : List[Any]=64 ,A_ : int=3 ,A_ : Dict=4 ,A_ : str=[2, 2, 2, 2] ,A_ : Optional[Any]=[8, 4, 2, 1] ,A_ : str=[16, 32, 64, 128] ,A_ : Any=[1, 4, 8, 16] ,A_ : Tuple=[1, 2, 4, 8] ,A_ : List[Any]=True ,A_ : List[str]=True ,A_ : str="gelu" ,A_ : str=0.1 ,A_ : Dict=0.1 ,A_ : Optional[Any]=0.02 ,A_ : Union[str, Any]=3 ,A_ : Any=None ,) -> List[Any]: A = parent A = batch_size A = image_size A = num_channels A = num_encoder_blocks A = sr_ratios A = depths A = hidden_sizes A = downsampling_rates A = num_attention_heads A = is_training A = use_labels A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = num_labels A = scope def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) A = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ,A_ : Optional[int] ,A_ : str ) -> Tuple: A = SegformerModel(config=__A ) model.to(__A ) model.eval() A = model(__A ) A = A = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ,A_ : Any ,A_ : Union[str, Any] ) -> str: A = self.num_labels A = SegformerForSemanticSegmentation(__A ) model.to(__A ) model.eval() A = model(__A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A = model(__A ,labels=__A ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ,A_ : int ,A_ : List[str] ) -> Dict: A = 1 A = SegformerForSemanticSegmentation(config=__A ) model.to(__A ) model.eval() A = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(__A ) A = model(__A ,labels=__A ) self.parent.assertGreater(result.loss ,0.0 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase: int = True _lowerCamelCase: int = False _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = SegformerModelTester(self ) A = SegformerConfigTester(self ,config_class=__A ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__A ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__A ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__A ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True for model_class in self.all_model_classes: A = True A = False A = True A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__A ,__A ) ) A = outputs.attentions A = sum(self.model_tester.depths ) self.assertEqual(len(__A ) ,__A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A = True A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__A ,__A ) ) A = outputs.attentions self.assertEqual(len(__A ) ,__A ) # verify the first attentions (first block, first layer) A = (self.model_tester.image_size // 4) ** 2 A = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) A = (self.model_tester.image_size // 32) ** 2 A = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) A = len(__A ) # Check attention is always last and order is fine A = True A = True A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__A ,__A ) ) self.assertEqual(out_len + 1 ,len(__A ) ) A = outputs.attentions self.assertEqual(len(__A ) ,__A ) # verify the first attentions (first block, first layer) A = (self.model_tester.image_size // 4) ** 2 A = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: def check_hidden_states_output(A_ : Optional[Any] ,A_ : str ,A_ : List[str] ): A = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__A ,__A ) ) A = outputs.hidden_states A = self.model_tester.num_encoder_blocks self.assertEqual(len(__A ) ,__A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(__A ,__A ,__A ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: if not self.model_tester.is_training: return A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True for model_class in self.all_model_classes: if model_class in get_values(__A ): continue A = model_class(__A ) model.to(__A ) model.train() A = self._prepare_for_class(__A ,__A ,return_labels=__A ) A = model(**__A ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: pass @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = SegformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: A = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) A = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __A ) A = prepare_img() A = image_processor(images=__A ,return_tensors='pt' ) A = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): A = model(__A ) A = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,__A ) A = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__A ,atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) A = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(__A ) A = prepare_img() A = image_processor(images=__A ,return_tensors='pt' ) A = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): A = model(__A ) A = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape ,__A ) A = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__A ,atol=1e-1 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: A = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__A ,align=__A ,do_random_crop=__A ) A = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __A ) A = prepare_img() A = image_processor(images=__A ,return_tensors='pt' ) A = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): A = model(__A ) A = outputs.logits.detach().cpu() A = image_processor.post_process_semantic_segmentation(outputs=__A ,target_sizes=[(500, 300)] ) A = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,__A ) A = image_processor.post_process_semantic_segmentation(outputs=__A ) A = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape ,__A )
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
"""simple docstring""" _lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
716
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowercase = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( ): A = 'https://pypi.org/pypi/diffusers/json' A = json.loads(request.urlopen(_lowercase ).read() )['releases'].keys() return sorted(_lowercase , key=lambda snake_case__ : version.Version(_lowercase ) ) def _snake_case ( ): if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowercase ) os.makedirs(_lowercase , exist_ok=_lowercase ) A = Path(_lowercase ) / '__init__.py' if not init_path.exists(): init_path.touch() def _snake_case ( snake_case__ : Any ): init_hf_modules() A = Path(_lowercase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_lowercase , exist_ok=_lowercase ) A = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _snake_case ( snake_case__ : Union[str, Any] ): with open(_lowercase , 'r' , encoding='utf-8' ) as f: A = f.read() # Imports of the form `import .xxx` A = re.findall('^\s*import\s+\.(\S+)\s*$' , _lowercase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , _lowercase , flags=re.MULTILINE ) # Unique-ify return list(set(_lowercase ) ) def _snake_case ( snake_case__ : Any ): A = False A = [module_file] A = [] # Let's recurse through all relative imports while not no_change: A = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowercase ) ) A = Path(_lowercase ).parent A = [str(module_path / m ) for m in new_imports] A = [f for f in new_import_files if f not in all_relative_imports] A = [F'{f}.py' for f in new_import_files] A = len(_lowercase ) == 0 all_relative_imports.extend(_lowercase ) return all_relative_imports def _snake_case ( snake_case__ : List[str] ): with open(_lowercase , 'r' , encoding='utf-8' ) as f: A = f.read() # Imports of the form `import xxx` A = re.findall('^\s*import\s+(\S+)\s*$' , _lowercase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , _lowercase , flags=re.MULTILINE ) # Only keep the top-level module A = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all A = list(set(_lowercase ) ) A = [] for imp in imports: try: importlib.import_module(_lowercase ) except ImportError: missing_packages.append(_lowercase ) if len(_lowercase ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(_lowercase )}. Run `pip install {" ".join(_lowercase )}`' ) return get_relative_imports(_lowercase ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Dict ): A = module_path.replace(os.path.sep , '.' ) A = importlib.import_module(_lowercase ) if class_name is None: return find_pipeline_class(_lowercase ) return getattr(_lowercase , _lowercase ) def _snake_case ( snake_case__ : Optional[Any] ): from ..pipelines import DiffusionPipeline A = dict(inspect.getmembers(_lowercase , inspect.isclass ) ) A = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowercase ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) A = cls return pipeline_class def _snake_case ( snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Any = None , snake_case__ : Union[str, Any] = False , snake_case__ : Tuple = False , snake_case__ : int = None , snake_case__ : Any = None , snake_case__ : Tuple = None , snake_case__ : Any = False , ): A = str(_lowercase ) A = os.path.join(_lowercase , _lowercase ) if os.path.isfile(_lowercase ): A = module_file_or_url A = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: A = get_diffusers_versions() # cut ".dev0" A = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: A = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: A = F'v{revision}' elif revision == "main": A = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub A = COMMUNITY_PIPELINES_URL.format(revision=_lowercase , pipeline=_lowercase ) try: A = cached_download( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) A = 'git' A = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached A = hf_hub_download( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) A = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment A = check_imports(_lowercase ) # Now we move the module inside our cached dynamic modules. A = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowercase ) A = Path(_lowercase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowercase , submodule_path / module_file ) for module_needed in modules_needed: A = F'{module_needed}.py' shutil.copy(os.path.join(_lowercase , _lowercase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowercase , _lowercase ): A = use_auth_token elif use_auth_token is True: A = HfFolder.get_token() else: A = None A = model_info(_lowercase , revision=_lowercase , token=_lowercase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A = submodule_path / commit_hash A = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowercase ) if not (submodule_path / module_file).exists(): shutil.copy(_lowercase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowercase , F'{module_needed}.py' , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return os.path.join(_lowercase , _lowercase ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple = None , snake_case__ : Any = None , snake_case__ : Any = False , snake_case__ : Tuple = False , snake_case__ : Any = None , snake_case__ : str = None , snake_case__ : List[str] = None , snake_case__ : Tuple = False , **snake_case__ : int , ): A = get_cached_module_file( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return get_class_in_module(_lowercase , final_module.replace('.py' , '' ) )
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float = 1 / sqrt(2 ) ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = (1 - _cos) / 2 A = 1 - _cos A = 1 + alpha A = -2 * _cos A = 1 - alpha A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float = 1 / sqrt(2 ) ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = (1 + _cos) / 2 A = -1 - _cos A = 1 + alpha A = -2 * _cos A = 1 - alpha A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float = 1 / sqrt(2 ) ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = _sin / 2 A = 0 A = -ba A = 1 + alpha A = -2 * _cos A = 1 - alpha A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float = 1 / sqrt(2 ) ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = 1 - alpha A = -2 * _cos A = 1 + alpha A = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : float = 1 / sqrt(2 ) , ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = 10 ** (gain_db / 40) A = 1 + alpha * big_a A = -2 * _cos A = 1 - alpha * big_a A = 1 + alpha / big_a A = -2 * _cos A = 1 - alpha / big_a A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : float = 1 / sqrt(2 ) , ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = 10 ** (gain_db / 40) A = (big_a + 1) - (big_a - 1) * _cos A = (big_a + 1) + (big_a - 1) * _cos A = (big_a - 1) - (big_a + 1) * _cos A = (big_a - 1) + (big_a + 1) * _cos A = 2 * sqrt(_lowerCamelCase ) * alpha A = big_a * (pmc + aaa) A = 2 * big_a * mpc A = big_a * (pmc - aaa) A = ppmc + aaa A = -2 * pmpc A = ppmc - aaa A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _snake_case ( snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : float = 1 / sqrt(2 ) , ): A = tau * frequency / samplerate A = sin(_lowerCamelCase ) A = cos(_lowerCamelCase ) A = _sin / (2 * q_factor) A = 10 ** (gain_db / 40) A = (big_a + 1) - (big_a - 1) * _cos A = (big_a + 1) + (big_a - 1) * _cos A = (big_a - 1) - (big_a + 1) * _cos A = (big_a - 1) + (big_a + 1) * _cos A = 2 * sqrt(_lowerCamelCase ) * alpha A = big_a * (ppmc + aaa) A = -2 * big_a * pmpc A = big_a * (ppmc - aaa) A = pmc + aaa A = 2 * mpc A = pmc - aaa A = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''MCTCTFeatureExtractor''' _lowerCamelCase: Any = '''AutoTokenizer''' def __init__( self : Tuple ,A_ : List[str] ,A_ : List[str] ) -> Dict: super().__init__(A__ ,A__ ) A = self.feature_extractor A = False def __call__( self : Union[str, Any] ,*A_ : List[Any] ,**A_ : str ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A__ ,**A__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A = kwargs.pop('raw_speech' ) else: A = kwargs.pop('audio' ,A__ ) A = kwargs.pop('sampling_rate' ,A__ ) A = kwargs.pop('text' ,A__ ) if len(A__ ) > 0: A = args[0] A = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A = self.feature_extractor(A__ ,*A__ ,sampling_rate=A__ ,**A__ ) if text is not None: A = self.tokenizer(A__ ,**A__ ) if text is None: return inputs elif audio is None: return encodings else: A = encodings["""input_ids"""] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,*A_ : Dict ,**A_ : str ) -> List[str]: return self.tokenizer.batch_decode(*A__ ,**A__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,*A_ : str ,**A_ : List[Any] ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A__ ,**A__ ) A = kwargs.pop('input_features' ,A__ ) A = kwargs.pop('labels' ,A__ ) if len(A__ ) > 0: A = args[0] A = args[1:] if input_features is not None: A = self.feature_extractor.pad(A__ ,*A__ ,**A__ ) if labels is not None: A = self.tokenizer.pad(A__ ,**A__ ) if labels is None: return input_features elif input_features is None: return labels else: A = labels["""input_ids"""] return input_features def _SCREAMING_SNAKE_CASE ( self : List[Any] ,*A_ : str ,**A_ : List[str] ) -> List[str]: return self.tokenizer.decode(*A__ ,**A__ ) @contextmanager def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A = True A = self.tokenizer yield A = self.feature_extractor A = False
719
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : str ): # Initialise PyTorch model A = TaConfig.from_json_file(lowerCAmelCase__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
720
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowercase = logging.getLogger(__name__) _lowercase = 50 # max width of layer names _lowercase = 70 # max width of quantizer names def _snake_case ( snake_case__ : Optional[int] ): A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_lowerCamelCase , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_lowerCamelCase , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_lowerCamelCase , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_lowerCamelCase , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_lowerCamelCase , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_lowerCamelCase , type=_lowerCamelCase , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_lowerCamelCase , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( snake_case__ : str ): if args.calibrator == "max": A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) A = 'histogram' elif args.calibrator == "mse": A = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) A = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase ) A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict=False , snake_case__ : Union[str, Any]=False ): logger.info('Configuring Model for Quantization' ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ['embeddings'] , which='weight' , _disabled=_lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [''] , _disabled=_lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase ) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase ) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase ) def _snake_case ( snake_case__ : str ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def _snake_case ( snake_case__ : Tuple , snake_case__ : List[Any] ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Dict ): def fusea(snake_case__ : int , snake_case__ : str , snake_case__ : List[str] ): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return A = qq._amax.detach().item() A = qk._amax.detach().item() A = qv._amax.detach().item() A = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) qq._amax.fill_(_lowerCamelCase ) qk._amax.fill_(_lowerCamelCase ) qv._amax.fill_(_lowerCamelCase ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( snake_case__ : Any , snake_case__ : Dict ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase ) A = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def _snake_case ( snake_case__ : int ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: A = mod.weight.shape[0] A = mod._weight_quantizer._amax.detach() A = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def _snake_case ( snake_case__ : Dict ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) A = set(range(len(mod.weight.size() ) ) ) - axis_set A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) A = amax def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Any=25 , snake_case__ : Optional[int]=180 , snake_case__ : Any=None ): if ignore is None: A = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase ): A = [ignore] A = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , 'weight' ): continue A = max(_lowerCamelCase , len(_lowerCamelCase ) ) for name, mod in model.named_modules(): A = getattr(_lowerCamelCase , '_input_quantizer' , _lowerCamelCase ) A = getattr(_lowerCamelCase , '_weight_quantizer' , _lowerCamelCase ) if not hasattr(_lowerCamelCase , 'weight' ): continue if type(_lowerCamelCase ) in ignore: continue if [True for s in ignore if type(_lowerCamelCase ) is str and s in name]: continue A = F'Act:{input_q.extra_repr()}' A = F'Wgt:{weight_q.extra_repr()}' A = F'{name:{name_width}} {act_str} {wgt_str}' if len(_lowerCamelCase ) <= line_width: logger.info(_lowerCamelCase ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def _snake_case ( snake_case__ : Optional[Any] ): A = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def _snake_case ( snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : str ): A = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: logger.warning(F'{name} has no {quantizer}' ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Union[str, Any]="both" , **snake_case__ : Any ): A = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '_input_quantizer' , _lowerCamelCase , _lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , '_weight_quantizer' , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Union[str, Any] , **snake_case__ : List[Any] ): for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , '_input_quantizer' ) or hasattr(_lowerCamelCase , '_weight_quantizer' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) elif name.endswith('_quantizer' ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): A = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase )
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : List[str] ): A = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: A = 1024 A = 4096 A = 24 A = 16 A = [5, 11, 17, 23] A = [256, 512, 1024, 1024] A = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: A = 768 A = [1, 1, 1, 0.5] A = [256, 512, 768, 768] A = 150 A = 16 A = (1, 384, 384) A = False A = 'project' if "ade" in checkpoint_url: A = True A = 768 A = [1, 1, 1, 0.5] A = 150 A = 16 A = 'huggingface/label-files' A = 'ade20k-id2label.json' A = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='dataset' ) ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = [1, 150, 480, 480] return config, expected_shape def _snake_case ( snake_case__ : List[Any] ): A = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : str ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: A = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: A = name.replace('patch_embed' , '' ) if "pos_embed" in name: A = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: A = name.replace('proj' , 'projection' ) if "blocks" in name: A = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: A = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: A = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: A = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: A = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: A = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: A = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: A = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: A = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: A = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: A = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: A = name.replace('conv1' , 'convolution1' ) if "conv2" in name: A = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: A = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: A = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: A = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: A = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: A = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: A = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: A = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: A = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: A = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: A = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: A = name.replace('pretrained' , 'dpt' ) if "bn" in name: A = name.replace('bn' , 'batch_norm' ) if "head" in name: A = name.replace('head' , 'head.head' ) if "encoder.norm" in name: A = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: A = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: A = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: A = name.replace('..' , '.' ) if "stem.conv" in name: A = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: A = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: A = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: A = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: A = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: A = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: A = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _snake_case ( snake_case__ : int , snake_case__ : Any ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) A = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[: config.hidden_size, :] A = in_proj_bias[: config.hidden_size] A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A = in_proj_weight[ -config.hidden_size :, : ] A = in_proj_bias[-config.hidden_size :] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _snake_case ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Tuple ): A , A = get_dpt_config(snake_case__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A = torch.load(snake_case__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): A = state_dict.pop(snake_case__ ) A = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model A = DPTForSemanticSegmentation(snake_case__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image A = 480 if 'ade' in checkpoint_url else 384 A = DPTImageProcessor(size=snake_case__ ) A = prepare_img() A = image_processor(snake_case__ , return_tensors='pt' ) # forward pass A = model(**snake_case__ ).logits if 'ade' in checkpoint_url else model(**snake_case__ ).predicted_depth if show_prediction: A = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=snake_case__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) _lowercase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _lowercase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _lowercase = { '''ctrl''': 2_56, } _lowercase = { '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def _snake_case ( snake_case__ : Optional[Any] ): A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(SCREAMING_SNAKE_CASE_ ) return pairs class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Union[str, Any] = CONTROL_CODES def __init__( self : Optional[Any] ,A_ : int ,A_ : str ,A_ : int="<unk>" ,**A_ : Union[str, Any] ) -> Optional[int]: super().__init__(unk_token=lowercase__ ,**lowercase__ ) with open(lowercase__ ,encoding='utf-8' ) as vocab_handle: A = json.load(lowercase__ ) A = {v: k for k, v in self.encoder.items()} with open(lowercase__ ,encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) A = {} @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> Any: if token in self.cache: return self.cache[token] A = tuple(lowercase__ ) A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) A = get_pairs(lowercase__ ) if not pairs: return token while True: A = min(lowercase__ ,key=lambda A_ : self.bpe_ranks.get(lowercase__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A = bigram A = [] A = 0 while i < len(lowercase__ ): try: A = word.index(lowercase__ ,lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(lowercase__ ) A = new_word if len(lowercase__ ) == 1: break else: A = get_pairs(lowercase__ ) A = "@@ ".join(lowercase__ ) A = word[:-4] A = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Union[str, Any]: A = [] A = re.findall(R'\S+\n?' ,lowercase__ ) for token in words: split_tokens.extend(list(self.bpe(lowercase__ ).split(' ' ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[Any] ) -> Any: return self.encoder.get(lowercase__ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ) -> List[str]: return self.decoder.get(lowercase__ ,self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ) -> Optional[int]: A = " ".join(lowercase__ ).replace('@@ ' ,'' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Union[str, Any] = None ) -> Dict: if not os.path.isdir(lowercase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( lowercase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( lowercase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowercase__ ,ensure_ascii=lowercase__ ) + '\n' ) A = 0 with open(lowercase__ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(lowercase__ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[int] ,A_ : Union[str, Any]=13 ,A_ : List[Any]=7 ,A_ : Optional[int]=True ,A_ : Dict=True ,A_ : int=True ,A_ : Tuple=True ,A_ : Any=99 ,A_ : Tuple=32 ,A_ : List[str]=5 ,A_ : Dict=4 ,A_ : Dict=37 ,A_ : Union[str, Any]="gelu" ,A_ : Union[str, Any]=0.1 ,A_ : Tuple=0.1 ,A_ : Optional[Any]=512 ,A_ : Optional[Any]=16 ,A_ : Tuple=2 ,A_ : List[Any]=0.02 ,A_ : Optional[int]=False ,A_ : int=True ,A_ : Union[str, Any]="None" ,A_ : List[Any]=3 ,A_ : int=4 ,A_ : List[str]=None ,) -> Any: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = relative_attention A = position_biased_input A = pos_att_type A = scope def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = self.get_config() A = 300 return config def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Tuple ) -> Union[str, Any]: self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : Any ,A_ : Tuple ,A_ : List[Any] ) -> int: A = DebertaModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ )[0] A = model(A_ ,token_type_ids=A_ )[0] A = model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Dict ,A_ : int ,A_ : List[str] ,A_ : Tuple ,A_ : str ,A_ : Union[str, Any] ,A_ : Dict ) -> List[str]: A = DebertaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Tuple ,A_ : List[str] ,A_ : Any ,A_ : Any ,A_ : Any ) -> List[str]: A = self.num_labels A = DebertaForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : str ,A_ : int ) -> str: A = self.num_labels A = DebertaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Tuple ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Union[str, Any] ) -> int: A = DebertaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = self.prepare_config_and_inputs() ( A ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase: Tuple = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase: str = True _lowerCamelCase: Optional[int] = False _lowerCamelCase: Any = False _lowerCamelCase: Any = False _lowerCamelCase: str = False def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = DebertaModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = DebertaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: pass @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = DebertaModel.from_pretrained('microsoft/deberta-base' ) A = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A = model(A_ ,attention_mask=A_ )[0] # compare the actual values for a slice. A = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,A_ ,atol=1e-4 ) ,F'{output[:, 1:4, 1:4]}' )
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( __A , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = BertTokenizer _lowerCamelCase: Dict = BertTokenizerFast _lowerCamelCase: Optional[int] = True _lowerCamelCase: Optional[Any] = True _lowerCamelCase: Any = filter_non_english def _SCREAMING_SNAKE_CASE ( self : int ) -> int: super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> List[Any]: A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,[9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(A_ ) A = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokenizer.encode(A_ ,add_special_tokens=A_ ) A = rust_tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) A = self.get_rust_tokenizer() A = tokenizer.encode(A_ ) A = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ ,A_ ) # With lower casing A = self.get_tokenizer(do_lower_case=A_ ) A = self.get_rust_tokenizer(do_lower_case=A_ ) A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(A_ ) A = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = tokenizer.encode(A_ ,add_special_tokens=A_ ) A = rust_tokenizer.encode(A_ ,add_special_tokens=A_ ) self.assertListEqual(A_ ,A_ ) A = self.get_rust_tokenizer() A = tokenizer.encode(A_ ) A = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = BasicTokenizer(do_lower_case=A_ ,strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = BasicTokenizer(do_lower_case=A_ ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = BasicTokenizer() A = 'a\n\'ll !!to?\'d of, can\'t.' A = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A = {} for i, token in enumerate(A_ ): A = i A = WordpieceTokenizer(vocab=A_ ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.get_tokenizer() A = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: A = self.tokenizer_class.from_pretrained('bert-base-uncased' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=A_ ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ) A = tokenizer.build_inputs_with_special_tokens(A_ ,A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A = tokenizer_r.encode_plus( A_ ,return_attention_mask=A_ ,return_token_type_ids=A_ ,return_offsets_mapping=A_ ,add_special_tokens=A_ ,) A = tokenizer_r.do_lower_case if hasattr(A_ ,'do_lower_case' ) else False A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = ['的', '人', '有'] A = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = True A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = tokenizer_p.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.convert_ids_to_tokens(A_ ) A = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ ,A_ ) self.assertListEqual(A_ ,A_ ) A = False A = self.rust_tokenizer_class.from_pretrained(A_ ,**A_ ) A = self.tokenizer_class.from_pretrained(A_ ,**A_ ) A = tokenizer_r.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_p.encode(A_ ,add_special_tokens=A_ ) A = tokenizer_r.convert_ids_to_tokens(A_ ) A = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". A = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ ,A_ ) self.assertListEqual(A_ ,A_ )
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''src/diffusers''' _lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : List[str] ): return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , lowerCAmelCase__ ) is not None def _snake_case ( snake_case__ : Optional[int] ): A = object_name.split('.' ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): A = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Now let's find the class / func in the code! A = '' A = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) _lowercase = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") _lowercase = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") _lowercase = re.compile(r"""<FILL\s+[^>]*>""") def _snake_case ( snake_case__ : Any ): A = code.split('\n' ) A = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _snake_case ( snake_case__ : Optional[int] ): A = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: A = F'class Bla:\n{code}' A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase__ ) A = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) A , A = style_docstrings_in_code(lowerCAmelCase__ ) return result[len('class Bla:\n' ) :] if has_indent else result def _snake_case ( snake_case__ : str , snake_case__ : str=False ): with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(lowerCAmelCase__ ) A = get_indent(lowerCAmelCase__ ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break A = lines[line_index] A = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = ''.join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] A = '\n'.join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: A = replace_pattern.replace('with' , '' ).split(',' ) A = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) A = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCAmelCase__ ) return diffs def _snake_case ( snake_case__ : Optional[int] = False ): A = glob.glob(os.path.join(lowerCAmelCase__ , '**/*.py' ) , recursive=lowerCAmelCase__ ) A = [] for filename in all_files: A = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: A = '\n'.join(lowerCAmelCase__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" from random import randint, random def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str = False , snake_case__ : Any = False , snake_case__ : Dict = 5 , ): A = [[-1] * number_of_cells] # Create a highway without any car A = 0 A = max(lowerCAmelCase_ , 0 ) while i < number_of_cells: A = ( randint(0 , lowerCAmelCase_ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): A = 0 A = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase_ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase_ , -1 ) def _snake_case ( snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] ): A = len(lowerCAmelCase_ ) # Beforce calculations, the highway is empty A = [-1] * number_of_cells for car_index in range(lowerCAmelCase_ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A = min(highway_now[car_index] + 1 , lowerCAmelCase_ ) # Number of empty cell before the next car A = get_distance(lowerCAmelCase_ , lowerCAmelCase_ ) - 1 # We can't have the car causing an accident A = min(next_highway[car_index] , lowerCAmelCase_ ) if random() < probability: # Randomly, a driver will slow down A = max(next_highway[car_index] - 1 , 0 ) return next_highway def _snake_case ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Tuple ): A = len(highway[0] ) for i in range(lowerCAmelCase_ ): A = update(highway[i] , lowerCAmelCase_ , lowerCAmelCase_ ) A = [-1] * number_of_cells for car_index in range(lowerCAmelCase_ ): A = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A = (car_index + speed) % number_of_cells # Commit the change of position A = speed highway.append(lowerCAmelCase_ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = ComputeEnvironment.AMAZON_SAGEMAKER _lowerCamelCase: List[str] = True _lowerCamelCase: int = '''ml.p3.2xlarge''' _lowerCamelCase: Optional[int] = '''accelerate_sagemaker_execution_role''' _lowerCamelCase: int = '''hf-sm''' _lowerCamelCase: Dict = '''us-east-1''' _lowerCamelCase: int = 1 _lowerCamelCase: str = '''accelerate-sagemaker-1''' _lowerCamelCase: Union[str, Any] = '''1.6''' _lowerCamelCase: Union[str, Any] = '''4.4''' _lowerCamelCase: Any = '''train.py''' _lowerCamelCase: str = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] _lowerCamelCase: Union[str, Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. A = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] ,A_ ) assert isinstance(converted_args['do_train'] ,A_ ) assert isinstance(converted_args['epochs'] ,A_ ) assert isinstance(converted_args['learning_rate'] ,A_ ) assert isinstance(converted_args['max_steps'] ,A_ ) with pytest.raises(A_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from __future__ import annotations def _snake_case ( snake_case__ : int ): if len(A_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) A = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[Any] = 1_6000 ): A = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav A = randint(0 , len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Optional[str] = field(default=snake_case__ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) _lowerCamelCase: str = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _lowerCamelCase: str = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _lowerCamelCase: str = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) _lowerCamelCase: str = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) _lowerCamelCase: Optional[int] = field( default=snake_case__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase: Optional[int] = field( default=snake_case__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _lowerCamelCase: float = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) _lowerCamelCase: str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowerCamelCase: Optional[str] = field( default=snake_case__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowerCamelCase: bool = field( default=snake_case__ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) _lowerCamelCase: bool = field( default=snake_case__ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) _lowerCamelCase: bool = field( default=snake_case__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowerCamelCase: Optional[bool] = field( default=snake_case__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _lowerCamelCase: bool = field( default=snake_case__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' ,_A ,) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , snake_case__ , snake_case__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. A = DatasetDict() A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' 'Make sure to set `--label_column_name` to the correct text column - one of ' F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A = feature_extractor.model_input_names[0] def train_transforms(snake_case__ : int ): A = [] for audio in batch[data_args.audio_column_name]: A = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) A = feature_extractor(snake_case__ , sampling_rate=feature_extractor.sampling_rate ) A = {model_input_name: inputs.get(snake_case__ )} A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ : List[Any] ): A = [audio['array'] for audio in batch[data_args.audio_column_name]] A = feature_extractor(snake_case__ , sampling_rate=feature_extractor.sampling_rate ) A = {model_input_name: inputs.get(snake_case__ )} A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A = raw_datasets['train'].features[data_args.label_column_name].names A = {}, {} for i, label in enumerate(snake_case__ ): A = str(snake_case__ ) A = label # Load the accuracy metric from the datasets package A = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ : Dict ): A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=snake_case__ , references=eval_pred.label_ids ) A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case__ ) , labelaid=snake_case__ , idalabel=snake_case__ , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ , output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: A = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ , output_all_columns=snake_case__ ) # Initialize our trainer A = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A = trainer.evaluate() trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) # Write model card and (optionally) push to hub A = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[Any] ): for attribute in key.split('.' ): A = getattr(__snake_case , __snake_case ) if weight_type is not None: A = getattr(__snake_case , __snake_case ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): A = [] A = fairseq_model.state_dict() A = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) A = True else: for key, mapped_key in MAPPING.items(): A = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): A = True if "*" in mapped_key: A = name.split(__snake_case )[0].split('.' )[-2] A = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "weight" in name: A = 'weight' elif "bias" in name: A = 'bias' else: A = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def _snake_case ( snake_case__ : int , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Dict ): A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _snake_case ( snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple=None , snake_case__ : int=None , snake_case__ : str=True ): if config_path is not None: A = HubertConfig.from_pretrained(__snake_case ) else: A = HubertConfig() if is_finetuned: if dict_path: A = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(__snake_case , 'vocab.json' ) if not os.path.isdir(__snake_case ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , __snake_case ) A = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__snake_case , ) A = True if config.feat_extract_norm == 'layer' else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) A = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) A = HubertForCTC(__snake_case ) else: A = HubertModel(__snake_case ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(__snake_case , __snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowercase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : str=0 ) -> List[Any]: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(lowerCamelCase_ ) ) A = np.random.RandomState(lowerCamelCase_ ) A = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs() A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = """A fantasy landscape, trending on artstation""" A = np.random.RandomState(0 ) A = pipe( prompt=lowerCamelCase_ ,image=lowerCamelCase_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=lowerCamelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = """A fantasy landscape, trending on artstation""" A = np.random.RandomState(0 ) A = pipe( prompt=lowerCamelCase_ ,image=lowerCamelCase_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCamelCase_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
from itertools import product def _snake_case ( snake_case__ : int , snake_case__ : int ): A = sides_number A = max_face_number * dice_number A = [0] * (max_total + 1) A = 1 A = range(A__ , max_face_number + 1 ) for dice_numbers in product(A__ , repeat=A__ ): A = sum(A__ ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ): A = total_frequency_distribution( sides_number=4 , dice_number=9 ) A = total_frequency_distribution( sides_number=6 , dice_number=6 ) A = 0 A = 9 A = 4 * 9 A = 6 for peter_total in range(A__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A = (4**9) * (6**6) A = peter_wins_count / total_games_number A = round(A__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
713
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _snake_case ( snake_case__ : int ): return x + 2 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = "x = 3" A = {} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3} ) A = "x = y" A = {"y": 5} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 5, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = "y = add_two(x)" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: A = evaluate(A_ ,{} ,state=A_ ) assert result is None assert "tried to execute add_two" in out.out def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = "x = 3" A = {} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: A = "test_dict = {'x': x, 'y': add_two(x)}" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) self.assertDictEqual(A_ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: A = "x = 3\ny = 5" A = {} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = "text = f'This is x: {x}.'" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A_ ,{'x': 3, 'text': 'This is x: 3.'} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = "if x <= 3:\n y = 2\nelse:\n y = 5" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A_ ,{'x': 3, 'y': 2} ) A = {"x": 8} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 8, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = "test_list = [x, add_two(x)]" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) self.assertListEqual(A_ ,[3, 5] ) self.assertDictEqual(A_ ,{'x': 3, 'test_list': [3, 5]} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = "y = x" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3, 'y': 3} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = "test_list = [x, add_two(x)]\ntest_list[1]" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'test_list': [3, 5]} ) A = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: A = "x = 0\nfor i in range(3):\n x = i" A = {} A = evaluate(A_ ,{'range': range} ,state=A_ ) assert result == 2 self.assertDictEqual(A_ ,{'x': 2, 'i': 2} )
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : Union[str, Any] ,A_ : Optional[int]=13 ,A_ : Dict=7 ,A_ : str=True ,A_ : str=True ,A_ : Optional[int]=True ,A_ : Any=True ,A_ : Dict=99 ,A_ : str=[1, 1, 2] ,A_ : List[Any]=1 ,A_ : List[Any]=32 ,A_ : Optional[int]=4 ,A_ : str=8 ,A_ : Any=37 ,A_ : Union[str, Any]="gelu_new" ,A_ : List[Any]=0.1 ,A_ : Optional[int]=0.1 ,A_ : Dict=0.0 ,A_ : List[Any]=512 ,A_ : Optional[int]=3 ,A_ : Dict=0.02 ,A_ : List[str]=3 ,A_ : List[str]=4 ,A_ : Any=None ,A_ : Optional[int]=False ,) -> Any: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = block_sizes A = num_decoder_layers A = d_model A = n_head A = d_head A = d_inner A = hidden_act A = hidden_dropout A = attention_dropout A = activation_dropout A = max_position_embeddings A = type_vocab_size A = 2 A = num_labels A = num_choices A = scope A = initializer_std # Used in the tests to check the size of the first attention layer A = n_head # Used in the tests to check the size of the first hidden state A = self.d_model # Used in the tests to check the number of output hidden states/attentions A = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A = self.num_hidden_layers + 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : str ,A_ : int ,A_ : str ,A_ : List[str] ,A_ : Union[str, Any] ,) -> Tuple: A = TFFunnelModel(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) A = [input_ids, input_mask] A = model(lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A = False A = TFFunnelModel(config=lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) A = False A = TFFunnelModel(config=lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Any ,A_ : Dict ,A_ : int ,A_ : Any ,A_ : Tuple ,A_ : List[str] ,A_ : str ,) -> Tuple: A = TFFunnelBaseModel(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) A = [input_ids, input_mask] A = model(lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) A = False A = TFFunnelBaseModel(config=lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) A = False A = TFFunnelBaseModel(config=lowercase_ ) A = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ,A_ : str ,A_ : Tuple ,A_ : Optional[int] ,A_ : str ,A_ : Optional[Any] ,) -> Any: A = TFFunnelForPreTraining(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : Union[str, Any] ,) -> int: A = TFFunnelForMaskedLM(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[str] ,A_ : Optional[int] ,A_ : str ,A_ : int ,A_ : str ,A_ : Dict ,A_ : Union[str, Any] ,) -> List[str]: A = self.num_labels A = TFFunnelForSequenceClassification(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[str] ,A_ : List[str] ,A_ : Any ,A_ : int ,A_ : Any ,A_ : Tuple ,A_ : List[str] ,) -> Optional[int]: A = self.num_choices A = TFFunnelForMultipleChoice(config=lowercase_ ) A = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ,A_ : str ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Union[str, Any] ,A_ : Optional[int] ,) -> Optional[Any]: A = self.num_labels A = TFFunnelForTokenClassification(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Optional[Any] ,A_ : str ,A_ : Optional[Any] ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : Optional[Any] ,) -> Optional[int]: A = TFFunnelForQuestionAnswering(config=lowercase_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: str = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: A = TFFunnelModelTester(self ) A = ConfigTester(self ,config_class=lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _lowerCamelCase: int = False _lowerCamelCase: List[str] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = TFFunnelModelTester(self ,base=lowercase_ ) A = ConfigTester(self ,config_class=lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: int = AutoencoderKL _lowerCamelCase: Union[str, Any] = '''sample''' _lowerCamelCase: int = 1E-2 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: A = 4 A = 3 A = (32, 32) A = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) return {"sample": image} @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: return (3, 32, 32) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return (3, 32, 32) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } A = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: pass @unittest.skipIf(torch_device == 'mps' ,'Gradient checkpointing skipped on MPS' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # enable deterministic behavior for gradient checkpointing A , A = self.prepare_init_args_and_inputs_for_common() A = self.model_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) assert not model.is_gradient_checkpointing and model.training A = model(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() A = torch.randn_like(lowerCAmelCase_ ) A = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing A = self.model_class(**lowerCAmelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training A = model_a(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() A = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) A = dict(model.named_parameters() ) A = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A , A = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ,output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(lowerCAmelCase_ ) A = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) A = model.to(lowerCAmelCase_ ) model.eval() if torch_device == "mps": A = torch.manual_seed(0 ) else: A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) A = image.to(lowerCAmelCase_ ) with torch.no_grad(): A = model(lowerCAmelCase_ ,sample_posterior=lowerCAmelCase_ ,generator=lowerCAmelCase_ ).sample A = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": A = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": A = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: A = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,rtol=1e-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Optional[Any] ,A_ : Optional[Any] ) -> List[Any]: return F'gaussian_noise_s={seed}_shape={"_".join([str(lowerCAmelCase_ ) for s in shape] )}.npy' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int]=0 ,A_ : Tuple=(4, 3, 512, 512) ,A_ : List[Any]=False ) -> Any: A = torch.floataa if fpaa else torch.floataa A = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase_ ,lowerCAmelCase_ ) ) ).to(lowerCAmelCase_ ).to(lowerCAmelCase_ ) return image def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any]="CompVis/stable-diffusion-v1-4" ,A_ : Optional[int]=False ) -> int: A = 'fp16' if fpaa else None A = torch.floataa if fpaa else torch.floataa A = AutoencoderKL.from_pretrained( lowerCAmelCase_ ,subfolder='vae' ,torch_dtype=lowerCAmelCase_ ,revision=lowerCAmelCase_ ,) model.to(lowerCAmelCase_ ).eval() return model def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any]=0 ) -> int: if torch_device == "mps": return torch.manual_seed(lowerCAmelCase_ ) return torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Dict ,A_ : Any ,A_ : Union[str, Any] ) -> Tuple: A = self.get_sd_vae_model() A = self.get_sd_image(lowerCAmelCase_ ) A = self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A = model(lowerCAmelCase_ ,generator=lowerCAmelCase_ ,sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A = sample[-1, -2:, -2:, :2].flatten().float().cpu() A = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Union[str, Any] ) -> Optional[int]: A = self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A = self.get_sd_image(lowerCAmelCase_ ,fpaa=lowerCAmelCase_ ) A = self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A = model(lowerCAmelCase_ ,generator=lowerCAmelCase_ ,sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A = sample[-1, -2:, :2, -2:].flatten().float().cpu() A = torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ,A_ : Any ,A_ : Tuple ) -> Any: A = self.get_sd_vae_model() A = self.get_sd_image(lowerCAmelCase_ ) with torch.no_grad(): A = model(lowerCAmelCase_ ).sample assert sample.shape == image.shape A = sample[-1, -2:, -2:, :2].flatten().float().cpu() A = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tuple ,A_ : Any ) -> Any: A = self.get_sd_vae_model() A = self.get_sd_image(lowerCAmelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] A = sample[-1, -2:, :2, -2:].flatten().cpu() A = torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ,A_ : List[Any] ) -> Optional[int]: A = self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A = self.get_sd_image(lowerCAmelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCAmelCase_ ) with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] A = sample[-1, -2:, :2, -2:].flatten().float().cpu() A = torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='xformers is not required when using PyTorch 2.0.' ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ) -> Optional[Any]: A = self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A = self.get_sd_image(lowerCAmelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCAmelCase_ ) with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='xformers is not required when using PyTorch 2.0.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> int: A = self.get_sd_vae_model() A = self.get_sd_image(lowerCAmelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A = model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[str] ,A_ : str ) -> Tuple: A = self.get_sd_vae_model() A = self.get_sd_image(lowerCAmelCase_ ) A = self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A = model.encode(lowerCAmelCase_ ).latent_dist A = dist.sample(generator=lowerCAmelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] A = sample[0, -1, -3:, -3:].flatten().cpu() A = torch.tensor(lowerCAmelCase_ ) A = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=lowerCAmelCase_ )
716
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
0
"""simple docstring""" def _snake_case ( snake_case__ : Tuple , snake_case__ : int ): return number | (1 << position) def _snake_case ( snake_case__ : str , snake_case__ : int ): return number & ~(1 << position) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : List[str] ): return number ^ (1 << position) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): return ((number >> position) & 1) == 1 def _snake_case ( snake_case__ : str , snake_case__ : Dict ): return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING _lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] ): A = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, "{attribute}"' in modeling_source or F'getattr(self.config, "{attribute}"' in modeling_source ): A = True # Deal with multi-line cases elif ( re.search( rF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , snake_case__ , ) is not None ): A = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] A = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed A = True if not attribute_used: A = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A = True elif attribute in ["tie_word_embeddings"] and default_value is False: A = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A = True elif attribute.endswith('_token_id' ): A = True # configuration class specific cases if not case_allowed: A = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _snake_case ( snake_case__ : int ): A = dict(inspect.signature(config_class.__init__ ).parameters ) A = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] A = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A = {} if len(config_class.attribute_map ) > 0: A = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A = inspect.getsourcefile(snake_case__ ) A = os.path.dirname(snake_case__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A = [os.path.join(snake_case__ , snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith('modeling_' )] # Get the source code strings A = [] for path in modeling_paths: if os.path.isfile(snake_case__ ): with open(snake_case__ ) as fp: modeling_sources.append(fp.read() ) A = [] for config_param, default_value in zip(snake_case__ , snake_case__ ): # `attributes` here is all the variant names for `config_param` A = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): unused_attributes.append(attributes[0] ) return sorted(snake_case__ ) def _snake_case ( ): A = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda snake_case__ : inspect.isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ) and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A = check_config_attributes_being_used(snake_case__ ) if len(snake_case__ ) > 0: A = unused_attributes if len(snake_case__ ) > 0: A = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(snake_case__ ) if __name__ == "__main__": check_config_attributes()
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
"""simple docstring""" from jiwer import compute_measures import datasets _lowercase = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' _lowercase = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' _lowercase = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/jitsi/jiwer/'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any]=None ,A_ : Union[str, Any]=None ,A_ : Dict=False ) -> List[str]: if concatenate_texts: return compute_measures(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )["wer"] else: A = 0 A = 0 for prediction, reference in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): A = compute_measures(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
719
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowercase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowercase = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def _snake_case ( snake_case__ : Dict ): A = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=snake_case__ )[0] @deprecated(snake_case__ , 'Please use tf.data to implement this functionality.' ) def _snake_case ( snake_case__ : Any ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=snake_case__ ) as bytestream: A = _readaa(snake_case__ ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) A = _readaa(snake_case__ ) A = _readaa(snake_case__ ) A = _readaa(snake_case__ ) A = bytestream.read(rows * cols * num_images ) A = numpy.frombuffer(snake_case__ , dtype=numpy.uinta ) A = data.reshape(snake_case__ , snake_case__ , snake_case__ , 1 ) return data @deprecated(snake_case__ , 'Please use tf.one_hot on tensors.' ) def _snake_case ( snake_case__ : Dict , snake_case__ : Optional[Any] ): A = labels_dense.shape[0] A = numpy.arange(snake_case__ ) * num_classes A = numpy.zeros((num_labels, num_classes) ) A = 1 return labels_one_hot @deprecated(snake_case__ , 'Please use tf.data to implement this functionality.' ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Any=False , snake_case__ : List[str]=10 ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=snake_case__ ) as bytestream: A = _readaa(snake_case__ ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) A = _readaa(snake_case__ ) A = bytestream.read(snake_case__ ) A = numpy.frombuffer(snake_case__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(snake_case__ , snake_case__ ) return labels class lowerCAmelCase_ : '''simple docstring''' @deprecated( snake_case_ ,'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' ,) def __init__( self : Optional[int] ,A_ : Union[str, Any] ,A_ : str ,A_ : Dict=False ,A_ : Union[str, Any]=False ,A_ : Optional[Any]=dtypes.floataa ,A_ : Optional[int]=True ,A_ : int=None ,) -> Optional[Any]: A = random_seed.get_seed(snake_case_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A = dtypes.as_dtype(snake_case_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: A = 1_0000 A = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' A = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A = images.reshape( images.shape[0] ,images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A = images.astype(numpy.floataa ) A = numpy.multiply(snake_case_ ,1.0 / 2_55.0 ) A = images A = labels A = 0 A = 0 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: return self._images @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return self._labels @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self._num_examples @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return self._epochs_completed def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : List[Any]=False ,A_ : Union[str, Any]=True ) -> List[str]: if fake_data: A = [1] * 784 A = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(snake_case_ )], [fake_label for _ in range(snake_case_ )], ) A = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A = numpy.arange(self._num_examples ) numpy.random.shuffle(snake_case_ ) A = self.images[perma] A = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A = self._num_examples - start A = self._images[start : self._num_examples] A = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A = numpy.arange(self._num_examples ) numpy.random.shuffle(snake_case_ ) A = self.images[perm] A = self.labels[perm] # Start next epoch A = 0 A = batch_size - rest_num_examples A = self._index_in_epoch A = self._images[start:end] A = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) ,axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) ,axis=0 ), ) else: self._index_in_epoch += batch_size A = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(snake_case__ , 'Please write your own downloading logic.' ) def _snake_case ( snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any ): if not gfile.Exists(snake_case__ ): gfile.MakeDirs(snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) if not gfile.Exists(snake_case__ ): urllib.request.urlretrieve(snake_case__ , snake_case__ ) # noqa: S310 with gfile.GFile(snake_case__ ) as f: A = f.size() print('Successfully downloaded' , snake_case__ , snake_case__ , 'bytes.' ) return filepath @deprecated( snake_case__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=False , snake_case__ : Tuple=False , snake_case__ : str=dtypes.floataa , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=5000 , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=snake_case__ , one_hot=snake_case__ , dtype=snake_case__ , seed=snake_case__ ) A = fake() A = fake() A = fake() return _Datasets(train=snake_case__ , validation=snake_case__ , test=snake_case__ ) if not source_url: # empty string check A = DEFAULT_SOURCE_URL A = "train-images-idx3-ubyte.gz" A = "train-labels-idx1-ubyte.gz" A = "t10k-images-idx3-ubyte.gz" A = "t10k-labels-idx1-ubyte.gz" A = _maybe_download( snake_case__ , snake_case__ , source_url + train_images_file ) with gfile.Open(snake_case__ , 'rb' ) as f: A = _extract_images(snake_case__ ) A = _maybe_download( snake_case__ , snake_case__ , source_url + train_labels_file ) with gfile.Open(snake_case__ , 'rb' ) as f: A = _extract_labels(snake_case__ , one_hot=snake_case__ ) A = _maybe_download( snake_case__ , snake_case__ , source_url + test_images_file ) with gfile.Open(snake_case__ , 'rb' ) as f: A = _extract_images(snake_case__ ) A = _maybe_download( snake_case__ , snake_case__ , source_url + test_labels_file ) with gfile.Open(snake_case__ , 'rb' ) as f: A = _extract_labels(snake_case__ , one_hot=snake_case__ ) if not 0 <= validation_size <= len(snake_case__ ): A = ( "Validation size should be between 0 and " F'{len(snake_case__ )}. Received: {validation_size}.' ) raise ValueError(snake_case__ ) A = train_images[:validation_size] A = train_labels[:validation_size] A = train_images[validation_size:] A = train_labels[validation_size:] A = {"dtype": dtype, "reshape": reshape, "seed": seed} A = _DataSet(snake_case__ , snake_case__ , **snake_case__ ) A = _DataSet(snake_case__ , snake_case__ , **snake_case__ ) A = _DataSet(snake_case__ , snake_case__ , **snake_case__ ) return _Datasets(train=snake_case__ , validation=snake_case__ , test=snake_case__ )
720
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase = False @skip_mps class __lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = StableDiffusionAttendAndExcitePipeline _lowerCamelCase: List[Any] = False _lowerCamelCase: Tuple = TEXT_TO_IMAGE_PARAMS _lowerCamelCase: Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) _lowerCamelCase: str = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase: Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ) -> Dict: super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] ) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=UpperCAmelCase__ ,) A = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=UpperCAmelCase__ ,set_alpha_to_one=UpperCAmelCase__ ,) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=512 ,) A = CLIPTextModel(UpperCAmelCase__ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ,A_ : Optional[int]=0 ) -> Dict: if str(UpperCAmelCase__ ).startswith('mps' ): A = torch.manual_seed(UpperCAmelCase__ ) else: A = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = '''cpu''' A = self.get_dummy_components() A = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A = self.get_dummy_inputs(UpperCAmelCase__ ) A = pipe(**UpperCAmelCase__ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 64, 64, 3) ) A = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ ,1e-3 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: self._test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=7e-4 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: super().test_save_load_local(expected_max_difference=5e-4 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ) -> int: super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ) -> List[str]: super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = torch.manual_seed(51 ) A = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,safety_checker=UpperCAmelCase__ ,torch_dtype=torch.floataa ) pipe.to('cuda' ) A = '''a painting of an elephant with glasses''' A = [5, 7] A = pipe( prompt=UpperCAmelCase__ ,token_indices=UpperCAmelCase__ ,guidance_scale=7.5 ,generator=UpperCAmelCase__ ,num_inference_steps=5 ,max_iter_to_alter=5 ,output_type='numpy' ,).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase: Tuple = "speech_to_text" _lowerCamelCase: List[str] = ["past_key_values"] _lowerCamelCase: Tuple = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[str] ,A_ : Optional[Any]=1_0000 ,A_ : List[Any]=12 ,A_ : List[str]=2048 ,A_ : int=4 ,A_ : str=6 ,A_ : Union[str, Any]=2048 ,A_ : Optional[Any]=4 ,A_ : Dict=0.0 ,A_ : Tuple=0.0 ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : List[Any]="relu" ,A_ : Any=256 ,A_ : int=0.1 ,A_ : Any=0.0 ,A_ : Optional[Any]=0.0 ,A_ : int=0.02 ,A_ : Optional[int]=2 ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=1 ,A_ : Optional[int]=0 ,A_ : int=2 ,A_ : Tuple=6000 ,A_ : Optional[int]=1024 ,A_ : List[str]=2 ,A_ : List[Any]=(5, 5) ,A_ : List[Any]=1024 ,A_ : Union[str, Any]=80 ,A_ : Tuple=1 ,**A_ : Union[str, Any] ,) -> Optional[int]: A = vocab_size A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_source_positions A = max_target_positions A = num_conv_layers A = list(_lowerCamelCase ) A = conv_channels A = input_feat_per_channel A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,is_encoder_decoder=_lowerCamelCase ,decoder_start_token_id=_lowerCamelCase ,**_lowerCamelCase ,)
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowercase = (3, 9, -11, 0, 7, 5, 1, -1) _lowercase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Dict = 42 _lowerCamelCase: int = 42 class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : int ) -> None: A = None for i in sorted(__lowerCamelCase ,reverse=__lowerCamelCase ): A = Node(__lowerCamelCase ,self.head ) def __iter__( self : str ) -> Iterator[int]: A = self.head while node: yield node.data A = node.next_node def __len__( self : Dict ) -> int: return sum(1 for _ in self ) def __str__( self : int ) -> str: return " -> ".join([str(__lowerCamelCase ) for node in self] ) def _snake_case ( snake_case__ : SortedLinkedList , snake_case__ : SortedLinkedList ): return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
701
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase = 8 def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int]=BITS ): A = x.device A = (x * 255).int().clamp(0 , 255 ) A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b c h w -> b c 1 h w' ) A = ((x & mask) != 0).float() A = rearrange(snake_case__ , 'b c d h w -> b (c d) h w' ) A = bits * 2 - 1 return bits def _snake_case ( snake_case__ : Any , snake_case__ : Any=BITS ): A = x.device A = (x > 0).int() A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=snake_case__ , dtype=torch.intaa ) A = rearrange(snake_case__ , 'd -> d 1 1' ) A = rearrange(snake_case__ , 'b (c d) h w -> b c d h w' , d=8 ) A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def _snake_case ( self : Optional[int] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : float = 0.0 , snake_case__ : bool = True , snake_case__ : List[str]=None , snake_case__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas A = self.alphas_cumprod[timestep] A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) A = self._get_variance(snake_case__ , snake_case__ ) A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 A = model_output.device if torch.is_tensor(snake_case__ ) else 'cpu' A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=snake_case__ ).to(snake_case__ ) A = self._get_variance(snake_case__ , snake_case__ ) ** 0.5 * eta * noise A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def _snake_case ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Tuple="epsilon" , snake_case__ : List[str]=None , snake_case__ : bool = True , ): A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: A , A = torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: A = None # 1. compute alphas, betas A = self.alphas_cumprod[t] A = self.alphas_cumprod[t - 1] if t > 0 else self.one A = 1 - alpha_prod_t A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": A = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" A = self.bit_scale if self.config.clip_sample: A = torch.clamp(snake_case__ , -scale , snake_case__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A = 0 if t > 0: A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=snake_case__ ).to(model_output.device ) A = (self._get_variance(snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : UNetaDConditionModel ,A_ : Union[DDIMScheduler, DDPMScheduler] ,A_ : Optional[float] = 1.0 ,) -> Optional[int]: super().__init__() A = bit_scale A = ( ddim_bit_scheduler_step if isinstance(A_ ,A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Tuple ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 256 ,A_ : Optional[int] = 50 ,A_ : Optional[torch.Generator] = None ,A_ : Optional[int] = 1 ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=A_ ,) A = decimal_to_bits(A_ ) * self.bit_scale A = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual A = self.unet(A_ ,A_ ).sample # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step(A_ ,A_ ,A_ ).prev_sample A = bits_to_decimal(A_ ) if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
22
0
"""simple docstring""" from __future__ import annotations class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : str ,A_ : str ) -> Tuple: A , A = text, pattern A , A = len(_lowercase ), len(_lowercase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : str ) -> Dict: for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Tuple: for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1 ): A = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: A = self.match_in_pattern(self.text[mismatch_index] ) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = "ABAABA" _lowercase = "AB" _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' def __init__( self : int ) -> Tuple: # test for the above condition self.test() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = 0 A = False while not completed: if counter == 1: self.reset() A = self.advance() if not self.does_advance(lowercase_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) A = self.update(lowercase_ ) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : str ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Dict ) -> Union[str, Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[int]=False ) -> Tuple: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' def __init__( self : Dict ,A_ : Union[str, Any] ) -> List[Any]: super(lowercase_ ,self ).__init__() if not isinstance(lowercase_ ,lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(lowercase_ ,lowercase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) A = token_ids A = len(self.token_ids ) A = -1 # the index of the currently fulfilled step A = False def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> Tuple: if not isinstance(lowercase_ ,lowercase_ ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> int: if not isinstance(lowercase_ ,lowercase_ ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}' ) A = False A = False A = False if self.does_advance(lowercase_ ): self.fulfilled_idx += 1 A = True if self.fulfilled_idx == (self.seqlen - 1): A = True A = completed else: # failed to make progress. A = True self.reset() return stepped, completed, reset def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = False A = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return self.seqlen - (self.fulfilled_idx + 1) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any]=False ) -> List[str]: A = PhrasalConstraint(self.token_ids ) if stateful: A = self.seqlen A = self.fulfilled_idx A = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : int ,A_ : Optional[Any]=True ) -> List[str]: A = max([len(lowercase_ ) for one in nested_token_ids] ) A = {} for token_ids in nested_token_ids: A = root for tidx, token_id in enumerate(lowercase_ ): if token_id not in level: A = {} A = level[token_id] if no_subsets and self.has_subsets(lowercase_ ,lowercase_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) A = root def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ) -> Union[str, Any]: A = self.trie for current_token in current_seq: A = start[current_token] A = list(start.keys() ) return next_tokens def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ) -> str: A = self.next_tokens(lowercase_ ) return len(lowercase_ ) == 0 def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tuple ) -> str: A = list(root.values() ) if len(lowercase_ ) == 0: return 1 else: return sum([self.count_leaves(lowercase_ ) for nn in next_nodes] ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Optional[int] ) -> Tuple: A = self.count_leaves(lowercase_ ) return len(lowercase_ ) != leaf_count class lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' def __init__( self : Any ,A_ : Tuple ) -> Optional[int]: super(lowercase_ ,self ).__init__() if not isinstance(lowercase_ ,lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(lowercase_ ,lowercase_ ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(lowercase_ ,lowercase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) A = DisjunctiveTrie(lowercase_ ) A = nested_token_ids A = self.trie.max_height A = [] A = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.trie.next_tokens(self.current_seq ) if len(lowercase_ ) == 0: return None else: return token_list def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> str: if not isinstance(lowercase_ ,lowercase_ ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}' ) A = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ) -> str: if not isinstance(lowercase_ ,lowercase_ ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}' ) A = False A = False A = False if self.does_advance(lowercase_ ): self.current_seq.append(lowercase_ ) A = True else: A = True self.reset() A = self.trie.reached_leaf(self.current_seq ) A = completed return stepped, completed, reset def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = False A = [] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int=False ) -> Dict: A = DisjunctiveConstraint(self.token_ids ) if stateful: A = self.seqlen A = self.current_seq A = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : Optional[Any] ) -> Union[str, Any]: A = constraints # max # of steps required to fulfill a given constraint A = max([c.seqlen for c in constraints] ) A = len(lowercase_ ) A = False self.init_state() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = [] A = None A = [constraint.copy(stateful=lowercase_ ) for constraint in self.constraints] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: A = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A = constraint.advance() if isinstance(lowercase_ ,lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ): token_list.extend(lowercase_ ) else: A = self.inprogress_constraint.advance() if isinstance(lowercase_ ,lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ): token_list.extend(lowercase_ ) if len(lowercase_ ) == 0: return None else: return token_list def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ) -> Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A = self.add(lowercase_ ) # the entire list of constraints are fulfilled if self.completed: break def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ) -> Optional[int]: if not isinstance(lowercase_ ,lowercase_ ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) A = False, False if self.completed: A = True A = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A = self.inprogress_constraint.update(lowercase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase_ ) ) A = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A = None if len(self.pending_constraints ) == 0: # we're done! A = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowercase_ ): A = pending_constraint.update(lowercase_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(lowercase_ ) A = None if not complete and stepped: A = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict=True ) -> Optional[int]: A = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A = [ constraint.copy(stateful=lowercase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A = self.inprogress_constraint.copy(stateful=lowercase_ ) A = [constraint.copy() for constraint in self.pending_constraints] return new_state
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : str ,A_ : int = 3 ,A_ : int = 3 ,A_ : Tuple[str] = ("DownEncoderBlock2D",) ,A_ : Tuple[str] = ("UpDecoderBlock2D",) ,A_ : Tuple[int] = (64,) ,A_ : int = 1 ,A_ : str = "silu" ,A_ : int = 3 ,A_ : int = 32 ,A_ : int = 256 ,A_ : int = 32 ,A_ : Optional[int] = None ,A_ : float = 0.1_82_15 ,A_ : str = "group" ,) -> List[str]: super().__init__() # pass init params to Encoder A = Encoder( in_channels=A_ ,out_channels=A_ ,down_block_types=A_ ,block_out_channels=A_ ,layers_per_block=A_ ,act_fn=A_ ,norm_num_groups=A_ ,double_z=A_ ,) A = vq_embed_dim if vq_embed_dim is not None else latent_channels A = nn.Convad(A_ ,A_ ,1 ) A = VectorQuantizer(A_ ,A_ ,beta=0.25 ,remap=A_ ,sane_index_shape=A_ ) A = nn.Convad(A_ ,A_ ,1 ) # pass init params to Decoder A = Decoder( in_channels=A_ ,out_channels=A_ ,up_block_types=A_ ,block_out_channels=A_ ,layers_per_block=A_ ,act_fn=A_ ,norm_num_groups=A_ ,norm_type=A_ ,) @apply_forward_hook def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : torch.FloatTensor ,A_ : bool = True ) -> VQEncoderOutput: A = self.encoder(A_ ) A = self.quant_conv(A_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=A_ ) @apply_forward_hook def _SCREAMING_SNAKE_CASE ( self : str ,A_ : torch.FloatTensor ,A_ : bool = False ,A_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: A , A , A = self.quantize(A_ ) else: A = h A = self.post_quant_conv(A_ ) A = self.decoder(A_ ,quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : torch.FloatTensor ,A_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: A = sample A = self.encode(A_ ).latents A = self.decode(A_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A_ )
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" from math import pow, sqrt def _snake_case ( *snake_case__ : float ): A = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( snake_case__ : float , snake_case__ : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = BertTokenizer _lowerCamelCase: str = BertTokenizerFast _lowerCamelCase: List[str] = True _lowerCamelCase: str = True _lowerCamelCase: Optional[int] = filter_non_english def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ) -> Optional[int]: A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__UpperCamelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) ,[9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(__UpperCamelCase ) A = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) A = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) A = self.get_rust_tokenizer() A = tokenizer.encode(__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) # With lower casing A = self.get_tokenizer(do_lower_case=__UpperCamelCase ) A = self.get_rust_tokenizer(do_lower_case=__UpperCamelCase ) A = 'UNwant\u00E9d,running' A = tokenizer.tokenize(__UpperCamelCase ) A = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) A = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) A = self.get_rust_tokenizer() A = tokenizer.encode(__UpperCamelCase ) A = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) ,['ah', '\u535A', '\u63A8', 'zz'] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = BasicTokenizer(do_lower_case=__UpperCamelCase ,strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['h\u00E9llo'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: A = BasicTokenizer(do_lower_case=__UpperCamelCase ,strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) ,['hello'] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = BasicTokenizer(do_lower_case=__UpperCamelCase ,strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = BasicTokenizer(do_lower_case=__UpperCamelCase ,strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) ,['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = BasicTokenizer(do_lower_case=__UpperCamelCase ,never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) ,['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = BasicTokenizer() A = 'a\n\'ll !!to?\'d of, can\'t.' A = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(__UpperCamelCase ) ,__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A = {} for i, token in enumerate(__UpperCamelCase ): A = i A = WordpieceTokenizer(vocab=__UpperCamelCase ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) ,['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) ,['[UNK]', 'runn', '##ing'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = self.get_tokenizer() A = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__UpperCamelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(__UpperCamelCase ) for t in ['Test', '\xad', 'test']] ,[['[UNK]'], [], ['[UNK]']] ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = self.tokenizer_class.from_pretrained('bert-base-uncased' ) A = tokenizer.encode('sequence builders' ,add_special_tokens=__UpperCamelCase ) A = tokenizer.encode('multi-sequence build' ,add_special_tokens=__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ,__UpperCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' A = tokenizer_r.encode_plus( __UpperCamelCase ,return_attention_mask=__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,) A = tokenizer_r.do_lower_case if hasattr(__UpperCamelCase ,'do_lower_case' ) else False A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['offset_mapping'] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: A = ['的', '人', '有'] A = ''.join(__UpperCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = True A = self.tokenizer_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = tokenizer_p.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = tokenizer_r.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase ) A = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) A = False A = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = self.tokenizer_class.from_pretrained(__UpperCamelCase ,**__UpperCamelCase ) A = tokenizer_r.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = tokenizer_p.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) A = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase ) A = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(__UpperCamelCase ) ] self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase )
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _lowercase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'words.txt' ) A = """""" with open(snake_case__ ) as f: A = f.readline() A = [word.strip('\"' ) for word in words.strip('\r\n' ).split(',' )] A = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = tempfile.mkdtemp() # fmt: off A = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A = dict(zip(UpperCamelCase__ ,range(len(UpperCamelCase__ ) ) ) ) A = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) A = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A = os.path.join(self.tmpdirname ,UpperCamelCase__ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(UpperCamelCase__ ,UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : str ,**A_ : List[Any] ) -> Optional[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,**A_ : Optional[Any] ) -> Optional[int]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,**A_ : Optional[Any] ) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname ,**UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] A = [Image.fromarray(np.moveaxis(UpperCamelCase__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = self.get_tokenizer() A = self.get_rust_tokenizer() A = self.get_image_processor() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCamelCase__ ) A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor ,UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A = self.get_image_processor(do_normalize=UpperCamelCase__ ,padding_value=1.0 ) A = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=UpperCamelCase__ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: A = self.get_image_processor() A = self.get_tokenizer() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) A = self.prepare_image_inputs() A = image_processor(UpperCamelCase__ ,return_tensors='np' ) A = processor(images=UpperCamelCase__ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = self.get_image_processor() A = self.get_tokenizer() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) A = 'lower newer' A = processor(text=UpperCamelCase__ ) A = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = self.get_image_processor() A = self.get_tokenizer() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) A = 'lower newer' A = self.prepare_image_inputs() A = processor(text=UpperCamelCase__ ,images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = self.get_image_processor() A = self.get_tokenizer() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) A = self.prepare_image_inputs() A = self.prepare_image_inputs() A = processor(images=UpperCamelCase__ ,visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = self.get_image_processor() A = self.get_tokenizer() A = CLIPSegProcessor(tokenizer=UpperCamelCase__ ,image_processor=UpperCamelCase__ ) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(UpperCamelCase__ ) A = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ ,UpperCamelCase__ )
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _snake_case ( snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Dict=True , snake_case__ : List[Any]="pt" ): A = {'add_prefix_space': True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(' ' ) else {} A = padding_side return tokenizer( [line] , max_length=snake_case__ , padding='max_length' if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) def _snake_case ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str]=None , ): A = input_ids.ne(snake_case__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase_ ( a__ ): '''simple docstring''' def __init__( self : str ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Dict ,A_ : Tuple="train" ,A_ : Tuple=None ,A_ : Dict=None ,A_ : Dict=None ,A_ : int="" ,) -> str: super().__init__() A = Path(lowerCamelCase_ ).joinpath(type_path + '.source' ) A = Path(lowerCamelCase_ ).joinpath(type_path + '.target' ) A = self.get_char_lens(self.src_file ) A = max_source_length A = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' A = tokenizer A = prefix if n_obs is not None: A = self.src_lens[:n_obs] A = src_lang A = tgt_lang def __len__( self : Any ) -> Tuple: return len(self.src_lens ) def __getitem__( self : Optional[Any] ,A_ : Union[str, Any] ) -> Dict[str, torch.Tensor]: A = index + 1 # linecache starts at 1 A = self.prefix + linecache.getline(str(self.src_file ) ,lowerCamelCase_ ).rstrip('\n' ) A = linecache.getline(str(self.tgt_file ) ,lowerCamelCase_ ).rstrip('\n' ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer ) A = self.tokenizer.generator if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer A = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_source_length ,'right' ) A = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_target_length ,'right' ) A = source_inputs['input_ids'].squeeze() A = target_inputs['input_ids'].squeeze() A = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Union[str, Any] ) -> Dict: return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ) -> Dict[str, torch.Tensor]: A = torch.stack([x['input_ids'] for x in batch] ) A = torch.stack([x['attention_mask'] for x in batch] ) A = torch.stack([x['decoder_input_ids'] for x in batch] ) A = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) A = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) A = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ) A , A = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) A = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowercase = getLogger(__name__) def _snake_case ( snake_case__ : Dict ): return list(itertools.chain.from_iterable(snake_case__ ) ) def _snake_case ( snake_case__ : Optional[int] ): A = get_git_info() save_json(snake_case__ , os.path.join(snake_case__ , 'git_log.json' ) ) def _snake_case ( snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=4 , **snake_case__ : List[str] ): with open(snake_case__ , 'w' ) as f: json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ ) def _snake_case ( snake_case__ : List[str] ): with open(snake_case__ ) as f: return json.load(snake_case__ ) def _snake_case ( ): A = git.Repo(search_parent_directories=snake_case__ ) A = { 'repo_id': str(snake_case__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _snake_case ( snake_case__ : List[str] , snake_case__ : Any ): return list(map(snake_case__ , snake_case__ ) ) def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : List[str] ): with open(snake_case__ , 'wb' ) as f: return pickle.dump(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Dict ): def remove_articles(snake_case__ : Optional[Any] ): return re.sub(r'\b(a|an|the)\b' , ' ' , snake_case__ ) def white_space_fix(snake_case__ : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(snake_case__ : int ): A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def _snake_case ( snake_case__ : Dict , snake_case__ : List[Any] ): A = normalize_answer(snake_case__ ).split() A = normalize_answer(snake_case__ ).split() A = Counter(snake_case__ ) & Counter(snake_case__ ) A = sum(common.values() ) if num_same == 0: return 0 A = 1.0 * num_same / len(snake_case__ ) A = 1.0 * num_same / len(snake_case__ ) A = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] ): return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) def _snake_case ( snake_case__ : List[str] , snake_case__ : str ): assert len(snake_case__ ) == len(snake_case__ ) A = 0 for hypo, pred in zip(snake_case__ , snake_case__ ): em += exact_match_score(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: em /= len(snake_case__ ) return {"em": em} def _snake_case ( snake_case__ : Any ): return model_prefix.startswith('rag' ) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : str ): A = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A = 'dropout_rate' for p in extra_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(snake_case__ ) ) delattr(snake_case__ , snake_case__ ) continue A = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p] setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) delattr(snake_case__ , snake_case__ ) return hparams, config
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowercase_ ): '''simple docstring''' _lowerCamelCase: Any = '''vivit''' def __init__( self : Optional[Any] ,A_ : Union[str, Any]=224 ,A_ : List[str]=32 ,A_ : Dict=[2, 16, 16] ,A_ : List[str]=3 ,A_ : Optional[Any]=768 ,A_ : Dict=12 ,A_ : Union[str, Any]=12 ,A_ : Dict=3072 ,A_ : Any="gelu_fast" ,A_ : Tuple=0.0 ,A_ : List[Any]=0.0 ,A_ : Optional[int]=0.02 ,A_ : Optional[int]=1e-06 ,A_ : str=True ,**A_ : Any ,) -> Dict: A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**UpperCamelCase__ )
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Any ): return EnvironmentCommand() def _snake_case ( snake_case__ : str ): return EnvironmentCommand(args.accelerate_config_file ) class lowerCAmelCase_ ( __UpperCAmelCase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> str: A = parser.add_parser('env' ) download_parser.set_defaults(func=lowerCAmelCase_ ) download_parser.add_argument( '--accelerate-config_file' ,default=lowerCAmelCase_ ,help='The accelerate config file to use for the default values in the launching script.' ,) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : Any ,A_ : Optional[Any] ,*A_ : Optional[Any] ) -> str: A = accelerate_config_file def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = 'not installed' if is_safetensors_available(): import safetensors A = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors A = F'{safetensors.__version__} but is ignored because of PyTorch version too old.' A = 'not installed' A = A = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_ ): A = load_config_from_file(self._accelerate_config_file ).to_dict() A = ( '\n'.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) else F'\t{accelerate_config}' ) A = 'not installed' A = 'NA' if is_torch_available(): import torch A = torch.__version__ A = torch.cuda.is_available() A = 'not installed' A = 'NA' if is_tf_available(): import tensorflow as tf A = tf.__version__ try: # deprecated in v2.1 A = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A = bool(tf.config.list_physical_devices('GPU' ) ) A = 'not installed' A = 'not installed' A = 'not installed' A = 'NA' if is_flax_available(): import flax import jax import jaxlib A = flax.__version__ A = jax.__version__ A = jaxlib.__version__ A = jax.lib.xla_bridge.get_backend().platform A = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': F'{safetensors_version}', 'Accelerate version': F'{accelerate_version}', 'Accelerate config': F'{accelerate_config_str}', 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Tensorflow version (GPU?)': F'{tf_version} ({tf_cuda_available})', 'Flax version (CPU?/GPU?/TPU?)': F'{flax_version} ({jax_backend})', 'Jax version': F'{jax_version}', 'JaxLib version': F'{jaxlib_version}', 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Union[str, Any] ) -> int: return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" import re def _snake_case ( snake_case__ : str ): return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def _snake_case ( snake_case__ : str ): A = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _snake_case ( snake_case__ : str , snake_case__ : bool , snake_case__ : str ): try: A = split_input(a_ ) if upper: A = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: A = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _snake_case ( snake_case__ : str ): return to_simple_case(a_ ) def _snake_case ( snake_case__ : str ): try: A = to_simple_case(a_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _snake_case ( snake_case__ : str , snake_case__ : bool ): return to_complex_case(a_ , a_ , '_' ) def _snake_case ( snake_case__ : str , snake_case__ : bool ): return to_complex_case(a_ , a_ , '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0