code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
703
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
0
"""simple docstring""" import numpy # List of input, output pairs _lowercase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _lowercase = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _lowercase = [2, 4, 1, 5] _lowercase = len(train_data) _lowercase = 0.009 def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : str="train" ): return calculate_hypothesis_value(snake_case__ , snake_case__ ) - output( snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Optional[int] ): A = 0 for i in range(len(snake_case__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _snake_case ( snake_case__ : Optional[int] , snake_case__ : List[str] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _snake_case ( snake_case__ : Any , snake_case__ : List[str] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _snake_case ( snake_case__ : Tuple , snake_case__ : Any=m ): A = 0 for i in range(snake_case__ ): if index == -1: summation_value += _error(snake_case__ ) else: summation_value += _error(snake_case__ ) * train_data[i][0][index] return summation_value def _snake_case ( snake_case__ : Optional[int] ): A = summation_of_cost_derivative(snake_case__ , snake_case__ ) / m return cost_derivative_value def _snake_case ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output A = 0.000002 A = 0 A = 0 while True: j += 1 A = [0, 0, 0, 0] for i in range(0 , len(snake_case__ ) ): A = get_cost_derivative(i - 1 ) A = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case__ , snake_case__ , atol=snake_case__ , rtol=snake_case__ , ): break A = temp_parameter_vector print(('Number of iterations:', j) ) def _snake_case ( ): for i in range(len(snake_case__ ) ): print(('Actual output value:', output(snake_case__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(snake_case__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
704
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Optional[Dict[str, int]] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Optional[Any] ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(A_ ,default_to_square=A_ ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(A_ ,param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ,default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(A_ ,size=size['shortest_edge'] ,default_to_square=A_ ) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ ,size=(size['height'], size['width']) ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : np.ndarray ,A_ : float ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ) -> np.ndarray: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Any ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : ImageInput ,A_ : Optional[bool] = None ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : Dict[str, int] = None ,A_ : Optional[bool] = None ,A_ : Optional[float] = None ,A_ : Optional[bool] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**A_ : Tuple ,) -> List[Any]: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ,default_to_square=A_ ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(A_ ,param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_center_crop: A = [self.center_crop(image=A_ ,size=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : List[Tuple] = None ) -> str: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] ,A_ : Any ,A_ : int=13 ,A_ : Optional[int]=7 ,A_ : List[Any]=True ,A_ : str=True ,A_ : Optional[Any]=99 ,A_ : Optional[Any]=32 ,A_ : Optional[int]=5 ,A_ : str=4 ,A_ : int=37 ,A_ : Optional[Any]="gelu" ,A_ : int=0.1 ,A_ : Dict=0.1 ,A_ : Any=50 ,A_ : Tuple=0.02 ,A_ : Tuple=True ,A_ : Optional[Any]=None ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = initializer_range A = use_labels A = scope def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = self.get_config() return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=A_ ,initializer_range=self.initializer_range ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: ( ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : Dict ,A_ : Any ,A_ : Union[str, Any] ,**A_ : int ,) -> List[Any]: A = BertGenerationEncoder(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ,A_ : Union[str, Any] ,A_ : int ,A_ : Union[str, Any] ,A_ : Dict ,A_ : int ,**A_ : Union[str, Any] ,) -> int: A = True A = BertGenerationEncoder(config=A_ ) model.to(A_ ) model.eval() A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,) A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : Optional[int] ,A_ : Dict ,**A_ : Tuple ,) -> int: A = True A = True A = BertGenerationDecoder(config=A_ ).to(A_ ).eval() # first forward pass A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,use_cache=A_ ,) A = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A = torch.cat([input_ids, next_tokens] ,dim=-1 ) A = torch.cat([input_mask, next_mask] ,dim=-1 ) A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,output_hidden_states=A_ ,)['hidden_states'][0] A = model( A_ ,attention_mask=A_ ,encoder_hidden_states=A_ ,encoder_attention_mask=A_ ,past_key_values=A_ ,output_hidden_states=A_ ,)['hidden_states'][0] # select random slice A = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A = output_from_no_past[:, -3:, random_slice_idx].detach() A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ ,A_ ,atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : int ,A_ : int ,A_ : List[str] ,*A_ : int ,) -> List[str]: A = BertGenerationDecoder(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A , A , A , A = self.prepare_config_and_inputs() A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _lowerCamelCase: Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () _lowerCamelCase: Union[str, Any] = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = BertGenerationEncoderTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: A , A , A , A = self.model_tester.prepare_config_and_inputs() A = 'bert' self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: # This regression test was failing with PyTorch < 1.3 ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A = None self.model_tester.create_and_check_model_as_decoder( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) A = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A = model(A_ )[0] A = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,A_ ) A = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A_ ,atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) A = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A = model(A_ )[0] A = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,A_ ) A = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,A_ ,atol=1e-4 ) )
705
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase = data_utils.TransfoXLTokenizer _lowercase = data_utils.TransfoXLCorpus _lowercase = data_utils _lowercase = data_utils def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case__ , 'rb' ) as fp: A = pickle.load(snake_case__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) A = corpus.vocab.__dict__ torch.save(snake_case__ , snake_case__ ) A = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , snake_case__ ) A = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(snake_case__ , snake_case__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A = os.path.abspath(snake_case__ ) A = os.path.abspath(snake_case__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": A = TransfoXLConfig() else: A = TransfoXLConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A = TransfoXLLMHeadModel(snake_case__ ) A = load_tf_weights_in_transfo_xl(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A = os.path.join(snake_case__ , snake_case__ ) A = os.path.join(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {os.path.abspath(snake_case__ )}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {os.path.abspath(snake_case__ )}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _lowercase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
22
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''roformer''' def __init__( self : Optional[Any] ,A_ : str=5_0000 ,A_ : str=None ,A_ : Optional[Any]=768 ,A_ : Optional[int]=12 ,A_ : List[str]=12 ,A_ : int=3072 ,A_ : str="gelu" ,A_ : List[str]=0.1 ,A_ : Dict=0.1 ,A_ : Union[str, Any]=1536 ,A_ : Dict=2 ,A_ : str=0.02 ,A_ : Union[str, Any]=1e-12 ,A_ : List[str]=0 ,A_ : List[str]=False ,A_ : Optional[Any]=True ,**A_ : Tuple ,) -> str: super().__init__(pad_token_id=A_ ,**A_ ) A = vocab_size A = hidden_size if embedding_size is None else embedding_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = rotary_value A = use_cache class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = (DDPMParallelScheduler,) def _SCREAMING_SNAKE_CASE ( self : Dict ,**A_ : int ) -> Dict: A = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ ,beta_end=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ ,prediction_type=A_ ,sample_max_value=A_ ,) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = len(A_ ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] ,dim=0 ) A = torch.arange(A_ )[0:3, None].repeat(1 ,A_ ) A = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) A = scheduler.batch_step_no_noise(A_ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ) A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.50_05 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = len(A_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual A = model(A_ ,A_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(A_ ,A_ ,A_ ,generator=A_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.33_72 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type='v_prediction' ) A = scheduler_class(**A_ ) A = len(A_ ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual A = model(A_ ,A_ ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(A_ ,A_ ,A_ ,generator=A_ ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(A_ ) ) A = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.26_31 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) A = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(A_ ) A = prev_t.item() self.assertEqual(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = [100, 87, 50, 51, 0] with self.assertRaises(A_ ,msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = [100, 87, 50, 1, 0] A = len(A_ ) with self.assertRaises(A_ ,msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ ,timesteps=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**A_ ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ ,msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' ,): scheduler.set_timesteps(timesteps=A_ )
707
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _snake_case ( snake_case__ : str = "isbn/0140328726" ): A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case__ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _snake_case ( snake_case__ : dict ): A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): A = ', '.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
22
0
"""simple docstring""" _lowercase = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''PerceiverFeatureExtractor'''] _lowercase = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import math def _snake_case ( snake_case__ : int = 100 ): A = sum(i * i for i in range(1 , n + 1 ) ) A = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
709
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _snake_case ( snake_case__ : int ): A = SwinvaConfig() A = swinva_name.split('_' ) A = name_split[1] if "to" in name_split[3]: A = int(name_split[3][-3:] ) else: A = int(name_split[3] ) if "to" in name_split[2]: A = int(name_split[2][-2:] ) else: A = int(name_split[2][6:] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "to" in swinva_name: A = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A = 2_1841 A = 'huggingface/label-files' A = 'imagenet-22k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[Any] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: A = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: A = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: A = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: A = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swinv2.' + name return name def _snake_case ( snake_case__ : List[Any] , snake_case__ : List[Any] ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[dim : dim * 2, :] A = val[-dim:, :] else: A = val[:dim] A = val[ dim : dim * 2 ] A = val[-dim:] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Tuple ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swinva_config(snake_case__ ) A = SwinvaForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
0
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from math import pi, sqrt def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case ( ): assert gamma(0.5 ) == sqrt(snake_case__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase = 1.0 while num: _lowercase = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
22
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod @abstractmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Optional[int]: raise NotImplementedError() @abstractmethod def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: raise NotImplementedError()
711
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: torch.FloatTensor class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : Dict=3 ,A_ : int=3 ,A_ : str=("DownEncoderBlock2D",) ,A_ : Dict=(64,) ,A_ : str=2 ,A_ : Union[str, Any]=32 ,A_ : Optional[int]="silu" ,A_ : str=True ,) -> Union[str, Any]: super().__init__() A = layers_per_block A = torch.nn.Convad( A_ ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) # down A = block_out_channels[0] for i, down_block_type in enumerate(A_ ): A = output_channel A = block_out_channels[i] A = i == len(A_ ) - 1 A = get_down_block( A_ ,num_layers=self.layers_per_block ,in_channels=A_ ,out_channels=A_ ,add_downsample=not is_final_block ,resnet_eps=1e-6 ,downsample_padding=0 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,) self.down_blocks.append(A_ ) # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # out A = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = 2 * out_channels if double_z else out_channels A = nn.Convad(block_out_channels[-1] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = x A = self.conv_in(A_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : Dict ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,use_reentrant=A_ ) # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,use_reentrant=A_ ) else: for down_block in self.down_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ) # middle A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,A_ ) else: # down for down_block in self.down_blocks: A = down_block(A_ ) # middle A = self.mid_block(A_ ) # post-process A = self.conv_norm_out(A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any]=3 ,A_ : Optional[int]=3 ,A_ : str=("UpDecoderBlock2D",) ,A_ : Any=(64,) ,A_ : Optional[int]=2 ,A_ : Optional[int]=32 ,A_ : Tuple="silu" ,A_ : Optional[int]="group" ,) -> Any: super().__init__() A = layers_per_block A = nn.Convad( A_ ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) A = None A = nn.ModuleList([] ) A = in_channels if norm_type == 'spatial' else None # mid A = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=A_ ,temb_channels=A_ ,) # up A = list(reversed(A_ ) ) A = reversed_block_out_channels[0] for i, up_block_type in enumerate(A_ ): A = output_channel A = reversed_block_out_channels[i] A = i == len(A_ ) - 1 A = get_up_block( A_ ,num_layers=self.layers_per_block + 1 ,in_channels=A_ ,out_channels=A_ ,prev_output_channel=A_ ,add_upsample=not is_final_block ,resnet_eps=1e-6 ,resnet_act_fn=A_ ,resnet_groups=A_ ,attention_head_dim=A_ ,temb_channels=A_ ,resnet_time_scale_shift=A_ ,) self.up_blocks.append(A_ ) A = output_channel # out if norm_type == "spatial": A = SpatialNorm(block_out_channels[0] ,A_ ) else: A = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=A_ ,eps=1e-6 ) A = nn.SiLU() A = nn.Convad(block_out_channels[0] ,A_ ,3 ,padding=1 ) A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Union[str, Any]=None ) -> Any: A = z A = self.conv_in(A_ ) A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A_ : List[Any] ): def custom_forward(*A_ : Tuple ): return module(*A_ ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ,use_reentrant=A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint( create_custom_forward(A_ ) ,A_ ,A_ ,use_reentrant=A_ ) else: # middle A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = torch.utils.checkpoint.checkpoint(create_custom_forward(A_ ) ,A_ ,A_ ) else: # middle A = self.mid_block(A_ ,A_ ) A = sample.to(A_ ) # up for up_block in self.up_blocks: A = up_block(A_ ,A_ ) # post-process if latent_embeds is None: A = self.conv_norm_out(A_ ) else: A = self.conv_norm_out(A_ ,A_ ) A = self.conv_act(A_ ) A = self.conv_out(A_ ) return sample class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Optional[int] ,A_ : Any ,A_ : str ,A_ : Dict=None ,A_ : List[Any]="random" ,A_ : Optional[int]=False ,A_ : str=True ) -> List[str]: super().__init__() A = n_e A = vq_embed_dim A = beta A = legacy A = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) A = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) A = self.used.shape[0] A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A = self.re_embed A = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: A = n_e A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ) -> Any: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) A = (inds[:, :, None] == used[None, None, ...]).long() A = match.argmax(-1 ) A = match.sum(2 ) < 1 if self.unknown_index == "random": A = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: A = self.unknown_index return new.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = inds.shape assert len(A_ ) > 1 A = inds.reshape(ishape[0] ,-1 ) A = self.used.to(A_ ) if self.re_embed > self.used.shape[0]: # extra token A = 0 # simply set to zero A = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,A_ ) return back.reshape(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> str: # reshape z -> (batch, height, width, channel) and flatten A = z.permute(0 ,2 ,3 ,1 ).contiguous() A = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A = torch.argmin(torch.cdist(A_ ,self.embedding.weight ) ,dim=1 ) A = self.embedding(A_ ).view(z.shape ) A = None A = None # compute loss for embedding if not self.legacy: A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A = z + (z_q - z).detach() # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: A = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis A = self.remap_to_used(A_ ) A = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: A = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : str ) -> Union[str, Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: A = indices.reshape(shape[0] ,-1 ) # add batch axis A = self.unmap_to_all(A_ ) A = indices.reshape(-1 ) # flatten again # get quantized latent vectors A = self.embedding(A_ ) if shape is not None: A = z_q.view(A_ ) # reshape back to match original input shape A = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : str ,A_ : Tuple ,A_ : Dict=False ) -> List[str]: A = parameters A , A = torch.chunk(A_ ,2 ,dim=1 ) A = torch.clamp(self.logvar ,-30.0 ,20.0 ) A = deterministic A = torch.exp(0.5 * self.logvar ) A = torch.exp(self.logvar ) if self.deterministic: A = A = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype A = randn_tensor( self.mean.shape ,generator=A_ ,device=self.parameters.device ,dtype=self.parameters.dtype ) A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Union[str, Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.mean
22
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
712
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase = '''src/transformers''' _lowercase = '''docs/source/en''' _lowercase = '''.''' def _snake_case ( snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Dict ): with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Find the start prompt. A = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 A = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _lowercase = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _lowercase = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _lowercase = direct_transformers_import(TRANSFORMERS_PATH) def _snake_case ( snake_case__ : Any ): A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , snake_case__ ) return [m.group(0 ) for m in matches] def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): A = 2 if text == '✅' or text == '❌' else len(snake_case__ ) A = (width - text_length) // 2 A = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _snake_case ( ): A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. A = collections.defaultdict(snake_case__ ) A = collections.defaultdict(snake_case__ ) A = collections.defaultdict(snake_case__ ) A = collections.defaultdict(snake_case__ ) A = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): A = None if attr_name.endswith('Tokenizer' ): A = slow_tokenizers A = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): A = fast_tokenizers A = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: A = tf_models A = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: A = flax_models A = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: A = pt_models A = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): A = True break # Try again after removing the last word in the name A = ''.join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! A = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). A = [len(snake_case__ ) + 2 for c in columns] A = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se A = '|' + '|'.join([_center_text(snake_case__ , snake_case__ ) for c, w in zip(snake_case__ , snake_case__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" A = {True: '✅', False: '❌'} for name in model_names: A = model_name_to_prefix[name] A = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__ , snake_case__ ) for l, w in zip(snake_case__ , snake_case__ )] ) + "|\n" return table def _snake_case ( snake_case__ : Dict=False ): A , A , A , A = _find_text_in_file( filename=os.path.join(snake_case__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) A = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_model_table(args.fix_and_overwrite)
713
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Optional[int]=2 ,A_ : Any=True ,A_ : List[str]=False ,A_ : Tuple=10 ,A_ : List[Any]=3 ,A_ : Any=32 * 8 ,A_ : Dict=32 * 8 ,A_ : List[Any]=4 ,A_ : Tuple=64 ,) -> List[str]: A = parent A = batch_size A = is_training A = use_auxiliary_loss A = num_queries A = num_channels A = min_size A = max_size A = num_labels A = hidden_dim A = hidden_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A_ ) A = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=A_ ) A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=A_ ) > 0.5 ).float() A = (torch.rand((self.batch_size, self.num_labels) ,device=A_ ) > 0.5).long() A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = MaskaFormerConfig( hidden_size=self.hidden_dim ,) A = self.num_queries A = self.num_labels A = [1, 1, 1, 1] A = self.num_channels A = 64 A = 128 A = self.hidden_dim A = self.hidden_dim A = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A , A , A , A , A = self.prepare_config_and_inputs() A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ,A_ : Optional[int] ) -> Union[str, Any]: A = output.encoder_hidden_states A = output.pixel_decoder_hidden_states A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A_ ) ,config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : List[str] ,A_ : Union[str, Any]=False ) -> str: with torch.no_grad(): A = MaskaFormerModel(config=A_ ) model.to(A_ ) model.eval() A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ,output_hidden_states=A_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Any ,A_ : Dict ,A_ : Any ,A_ : Dict ) -> Optional[Any]: A = MaskaFormerForUniversalSegmentation(config=A_ ) model.to(A_ ) model.eval() def comm_check_on_output(A_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A = model(pixel_values=A_ ,pixel_mask=A_ ) A = model(A_ ) comm_check_on_output(A_ ) A = model( pixel_values=A_ ,pixel_mask=A_ ,mask_labels=A_ ,class_labels=A_ ) comm_check_on_output(A_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase: Optional[Any] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase: int = False _lowerCamelCase: Dict = False _lowerCamelCase: List[str] = False _lowerCamelCase: int = False def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = MaskaFormerModelTester(self ) A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A_ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A = MaskaFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = (self.model_tester.min_size,) * 2 A = { 'pixel_values': torch.randn((2, 3, *size) ,device=A_ ), 'mask_labels': torch.randn((2, 10, *size) ,device=A_ ), 'class_labels': torch.zeros(2 ,10 ,device=A_ ).long(), } A = self.model_tester.get_config() A = MaskaFormerForUniversalSegmentation(A_ ).to(A_ ) A = model(**A_ ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A_ ,**A_ ,output_hidden_states=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ).to(A_ ) A = model(**A_ ,output_attentions=A_ ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not self.model_tester.is_training: return A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = model_class(A_ ) model.to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.all_model_classes[1] A , A , A , A , A = self.model_tester.prepare_config_and_inputs() A = True A = True A = model_class(A_ ).to(A_ ) model.train() A = model(A_ ,mask_labels=A_ ,class_labels=A_ ) A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase = 1e-4 def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A_ ) A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) A = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,A_ ,atol=A_ ) ) A = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(A_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = prepare_img() A = image_processor(A_ ,return_tensors='pt' ).to(A_ ) A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A_ ,(1, 3, 384, 384) ) with torch.no_grad(): A = model(**A_ ) # masks_queries_logits A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] A = torch.tensor(A_ ).to(A_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,A_ ,atol=A_ ) ) # class_queries_logits A = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) A = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,A_ ,atol=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A_ ).eval() A = self.default_image_processor A = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) A = inputs['pixel_values'].to(A_ ) A = [el.to(A_ ) for el in inputs['mask_labels']] A = [el.to(A_ ) for el in inputs['class_labels']] with torch.no_grad(): A = model(**A_ ) self.assertTrue(outputs.loss is not None )
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
"""simple docstring""" def _snake_case ( snake_case__ : Tuple , snake_case__ : List[Any] ): A = 0 A = len(snake_case__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None A = sorted_collection[point] if current_item == item: return point else: if point < left: A = left A = point elif point > right: A = right A = point else: if item < current_item: A = point - 1 else: A = point + 1 return None def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif point > right: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( snake_case__ , snake_case__ , snake_case__ , point - 1 ) else: return interpolation_search_by_recursion( snake_case__ , snake_case__ , point + 1 , snake_case__ ) def _snake_case ( snake_case__ : Dict ): if collection != sorted(snake_case__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _lowercase = 0 if debug == 1: _lowercase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _lowercase = 67 _lowercase = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
"""simple docstring""" import numpy as np def _snake_case ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float = 1e-12 , snake_case__ : int = 100 , ): assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) A = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. A = False A = 0 A = 0 A = 1e12 while not convergence: # Multiple matrix by the vector. A = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. A = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) A = vector.conj().T if is_complex else vector.T A = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: A = True A = lambda_ if is_complex: A = np.real(lambda_ ) return lambda_, vector def _snake_case ( ): A = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) A = np.array([41, 4, 20] ) A = real_input_matrix.astype(np.complexaaa ) A = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T A = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": A = real_input_matrix A = real_vector elif problem_type == "complex": A = complex_input_matrix A = complex_vector # Our implementation. A , A = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). A , A = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
716
"""simple docstring""" import sys from collections import defaultdict class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ) -> int: A = [] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> Optional[int]: return self.node_position[vertex] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Any ) -> List[Any]: A = pos def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : str ,A_ : Dict ,A_ : List[str] ) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,A_ ) self.top_to_bottom(A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int] ,A_ : Dict ,A_ : str ,A_ : Union[str, Any] ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] ,A_ ) else: A = val A = temp self.set_position(A_ ,A_ ) break A = parent else: A = val A = temp self.set_position(A_ ,0 ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Dict ) -> Union[str, Any]: A = len(A_ ) // 2 - 1 for i in range(A_ ,-1 ,-1 ): self.top_to_bottom(A_ ,A_ ,len(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : Dict ) -> Union[str, Any]: A = positions[0] A = sys.maxsize self.top_to_bottom(A_ ,0 ,len(A_ ) ,A_ ) return temp def _snake_case ( snake_case__ : Dict ): A = Heap() A = [0] * len(snake_case__ ) A = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): A = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): A = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase = int(input('''Enter number of edges: ''').strip()) _lowercase = defaultdict(list) for _ in range(edges_number): _lowercase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : np.ndarray , snake_case__ : Union[int, Iterable[int]] , snake_case__ : bool , snake_case__ : int ): def constraint_to_multiple_of(snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=None ): A = round(val / multiple ) * multiple if max_val is not None and x > max_val: A = math.floor(val / multiple ) * multiple if x < min_val: A = math.ceil(val / multiple ) * multiple return x A = (output_size, output_size) if isinstance(snake_case__ , snake_case__ ) else output_size A , A = get_image_size(snake_case__ ) A , A = output_size # determine new height and width A = output_height / input_height A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A = scale_width else: # fit height A = scale_height A = constraint_to_multiple_of(scale_height * input_height , multiple=snake_case__ ) A = constraint_to_multiple_of(scale_width * input_width , multiple=snake_case__ ) return (new_height, new_width) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = False ,A_ : int = 1 ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Any ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'height': 384, 'width': 384} A = get_size_dict(A_ ) A = do_resize A = size A = keep_aspect_ratio A = ensure_multiple_of A = resample A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : bool = False ,A_ : int = 1 ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) A = get_resize_output_image_size( A_ ,output_size=(size['height'], size['width']) ,keep_aspect_ratio=A_ ,multiple=A_ ,) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : np.ndarray ,A_ : Union[int, float] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ,) -> Tuple: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Tuple ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : ImageInput ,A_ : bool = None ,A_ : int = None ,A_ : bool = None ,A_ : int = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : float = None ,A_ : bool = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : ChannelDimension = ChannelDimension.FIRST ,**A_ : Optional[Any] ,) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ) A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A = resample if resample is not None else self.resample A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : List[Tuple] = None ) -> Tuple: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int ,A_ : Tuple ,A_ : str=7 ,A_ : Tuple=3 ,A_ : List[Any]=18 ,A_ : List[str]=30 ,A_ : Optional[Any]=400 ,A_ : Any=True ,A_ : Optional[Any]=None ,A_ : List[str]=True ,) -> str: A = size if size is not None else {'height': 18, 'width': 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = ImageGPTImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ ,'clusters' ) ) self.assertTrue(hasattr(A_ ,'do_resize' ) ) self.assertTrue(hasattr(A_ ,'size' ) ) self.assertTrue(hasattr(A_ ,'do_normalize' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: A = self.image_processing_class(**self.image_processor_dict ) A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(A_ ,'image_processor.json' ) image_processor_first.to_json_file(A_ ) A = self.image_processing_class.from_json_file(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) A = self.image_processing_class.from_pretrained(A_ ).to_dict() A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,A_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: pass def _snake_case ( ): A = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) A = Image.open(dataset[4]['file'] ) A = Image.open(dataset[5]['file'] ) A = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) A = prepare_images() # test non-batched A = image_processing(images[0] ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) A = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,A_ ) # test batched A = image_processing(A_ ,return_tensors='pt' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) A = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,A_ )
22
0
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowercase = logging.get_logger(__name__) _lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def _snake_case ( snake_case__ : List[DatasetType] , snake_case__ : Optional[List[float]] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[DatasetInfo] = None , snake_case__ : Optional[NamedSplit] = None , snake_case__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' ) if i == 0: A , A = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) else: return _interleave_iterable_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) def _snake_case ( snake_case__ : List[DatasetType] , snake_case__ : Optional[DatasetInfo] = None , snake_case__ : Optional[NamedSplit] = None , snake_case__ : int = 0 , ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(snake_case__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.' ) if i == 0: A , A = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ ) else: return _concatenate_iterable_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
719
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _snake_case ( snake_case__ : Optional[int] ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' ,type=A_ ,default=A_ ,help='Path to location to store the models' ) download_parser.add_argument( '--force' ,action='store_true' ,help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' ,action='store_true' ,help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' ,) download_parser.add_argument('model' ,type=A_ ,help='Name of the model to download' ) download_parser.set_defaults(func=A_ ) def __init__( self : Dict ,A_ : str ,A_ : str ,A_ : bool ,A_ : bool ) -> Union[str, Any]: A = model A = cache A = force A = trust_remote_code def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
22
0
"""simple docstring""" def _snake_case ( snake_case__ : list[int] , snake_case__ : str ): A = int(snake_case__ ) # Initialize Result A = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _lowercase = [] _lowercase = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): _lowercase = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) _lowercase = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter _lowercase = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] _lowercase = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) _lowercase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
720
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
0
"""simple docstring""" def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : int , snake_case__ : int , snake_case__ : set ): A , A = len(snake_case__ ), len(grid[0] ) if ( min(snake_case__ , snake_case__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A = 0 count += depth_first_search(snake_case__ , row + 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , row - 1 , snake_case__ , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col + 1 , snake_case__ ) count += depth_first_search(snake_case__ , snake_case__ , col - 1 , snake_case__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''CLIPFeatureExtractor'''] _lowercase = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import requests SCREAMING_SNAKE_CASE = "YOUR API KEY" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: UpperCAmelCase_ = "+".join(query.split() ) UpperCAmelCase_ = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase_ = requests.get(__SCREAMING_SNAKE_CASE ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = StableDiffusionSAGPipeline lowerCAmelCase_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : List[Any] = False def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def A__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ): UpperCAmelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = "." UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
1
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if not nums: return 0 UpperCAmelCase_ = nums[0] UpperCAmelCase_ = 0 for num in nums[1:]: UpperCAmelCase_ , UpperCAmelCase_ = ( max_excluding + num, max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), ) return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self , lowerCAmelCase ): with open(lowerCAmelCase , encoding="utf-8" ) as input_file: UpperCAmelCase_ = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase_ = input_file.read() UpperCAmelCase_ = regexp.search(lowerCAmelCase ) return match def A__ ( self , lowerCAmelCase ): with open(lowerCAmelCase , encoding="utf-8" ) as input_file: UpperCAmelCase_ = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase_ = regexp.finditer(lowerCAmelCase ) UpperCAmelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self ): UpperCAmelCase_ = Path("./datasets" ) UpperCAmelCase_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCAmelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def A__ ( self ): UpperCAmelCase_ = Path("./datasets" ) UpperCAmelCase_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCAmelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'trocr' lowerCAmelCase_ : Union[str, Any] = ['past_key_values'] lowerCAmelCase_ : List[Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , lowerCAmelCase=5_0265 , lowerCAmelCase=1024 , lowerCAmelCase=12 , lowerCAmelCase=16 , lowerCAmelCase=4096 , lowerCAmelCase="gelu" , lowerCAmelCase=512 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , **lowerCAmelCase , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = init_std UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = scale_embedding UpperCAmelCase_ = use_learned_position_embeddings UpperCAmelCase_ = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
23
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def A__ ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) UpperCAmelCase_ = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
23
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE = { "gpt-neox-20b": 2048, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase="<|endoftext|>" , lowerCAmelCase=False , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase_ = add_prefix_space def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
23
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE = getLogger(__name__) SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 8 , __SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="summarization" , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Dict: UpperCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ).open("w" , encoding="utf-8" ) UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) if fpaa: UpperCAmelCase_ = model.half() UpperCAmelCase_ = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. UpperCAmelCase_ = time.time() # update config with task specific params use_task_specific_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if prefix is None: UpperCAmelCase_ = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ): UpperCAmelCase_ = [prefix + text for text in examples_chunk] UpperCAmelCase_ = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="pt" , truncation=__SCREAMING_SNAKE_CASE , padding="longest" ).to(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() UpperCAmelCase_ = int(time.time() - start_time ) # seconds UpperCAmelCase_ = len(__SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def snake_case__ ( ) -> Union[str, Any]: return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def snake_case__ ( __SCREAMING_SNAKE_CASE=True ) -> str: UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("model_name" , type=__SCREAMING_SNAKE_CASE , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=__SCREAMING_SNAKE_CASE , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=__SCREAMING_SNAKE_CASE , help="where to save summaries" ) parser.add_argument("--reference_path" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=__SCREAMING_SNAKE_CASE , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__SCREAMING_SNAKE_CASE , default=8 , required=__SCREAMING_SNAKE_CASE , help="batch size" ) parser.add_argument( "--n_obs" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=__SCREAMING_SNAKE_CASE , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() UpperCAmelCase_ = parse_numeric_n_bool_cl_kwargs(__SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) UpperCAmelCase_ = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCAmelCase_ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) UpperCAmelCase_ = generate_summaries_or_translations( __SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores UpperCAmelCase_ = calculate_bleu if "translation" in args.task else calculate_rouge UpperCAmelCase_ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCAmelCase_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__SCREAMING_SNAKE_CASE )] UpperCAmelCase_ = score_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) scores.update(__SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(__SCREAMING_SNAKE_CASE ) if args.info: UpperCAmelCase_ = args.info if verbose: print(__SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(__SCREAMING_SNAKE_CASE , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-1" SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-2" SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-3" SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ): super()._init_() UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = StableDiffusionPipeline( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , requires_safety_checker=lowerCAmelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ): return {k: getattr(self , lowerCAmelCase ) for k in self.config.keys() if not k.startswith("_" )} def A__ ( self , lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def A__ ( self ): self.enable_attention_slicing(lowerCAmelCase ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , **lowerCAmelCase , ): return self.pipea( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , **lowerCAmelCase , ): return self.pipea( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , **lowerCAmelCase , ): return self.pipea( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , **lowerCAmelCase , ): return self.pipea( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) @torch.no_grad() def A__ ( self , lowerCAmelCase , lowerCAmelCase = 512 , lowerCAmelCase = 512 , lowerCAmelCase = 50 , lowerCAmelCase = 7.5 , lowerCAmelCase = None , lowerCAmelCase = 1 , lowerCAmelCase = 0.0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "pil" , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = 1 , **lowerCAmelCase , ): UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowerCAmelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ = self.textaimg_sda_a( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ = self.textaimg_sda_a( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ = self.textaimg_sda_a( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ = self.textaimg_sda_a( prompt=lowerCAmelCase , height=lowerCAmelCase , width=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , output_type=lowerCAmelCase , return_dict=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=lowerCAmelCase , **lowerCAmelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
23
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if index == number_of_items: return 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = knapsack(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase_ = values[index] + knapsack( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
23
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
1
from __future__ import annotations class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = text, pattern UpperCAmelCase_ , UpperCAmelCase_ = len(lowerCAmelCase ), len(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ ( self , lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ ( self ): # searches pattern in text and returns index positions UpperCAmelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ = self.mismatch_in_text(lowerCAmelCase ) if mismatch_index == -1: positions.append(lowerCAmelCase ) else: UpperCAmelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE = "ABAABA" SCREAMING_SNAKE_CASE = "AB" SCREAMING_SNAKE_CASE = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = abs(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = abs(__SCREAMING_SNAKE_CASE ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: return sum(int(__SCREAMING_SNAKE_CASE ) for c in str(abs(__SCREAMING_SNAKE_CASE ) ) ) def snake_case__ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = f'''{func.__name__}({value})''' UpperCAmelCase_ = timeit(f'''__main__.{call}''' , setup="import __main__" ) print(f'''{call:56} = {func(__SCREAMING_SNAKE_CASE )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
1
import requests def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = {"Content-Type": "application/json"} UpperCAmelCase_ = requests.post(__SCREAMING_SNAKE_CASE , json={"text": message_body} , headers=__SCREAMING_SNAKE_CASE ) if response.status_code != 200: UpperCAmelCase_ = ( "Request to slack returned an error " f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
23
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: UpperCAmelCase_ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), f'''{len(__SCREAMING_SNAKE_CASE )} != {len(__SCREAMING_SNAKE_CASE )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) SCREAMING_SNAKE_CASE = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } SCREAMING_SNAKE_CASE = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: try: UpperCAmelCase_ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[int]: if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(__SCREAMING_SNAKE_CASE ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "student" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Tuple[PreTrainedModel, List[int], List[int]]: UpperCAmelCase_ = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ).save_pretrained(__SCREAMING_SNAKE_CASE ) # purely for convenience UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).eval() else: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), f'''teacher must be a model or string got type {type(__SCREAMING_SNAKE_CASE )}''' UpperCAmelCase_ = teacher.config.to_diff_dict() try: UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase_ = teacher_e if d is None: UpperCAmelCase_ = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase_ , UpperCAmelCase_ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase_ = teacher_e if d is None: UpperCAmelCase_ = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__SCREAMING_SNAKE_CASE ) # Copy weights UpperCAmelCase_ = teacher.config_class(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_config(__SCREAMING_SNAKE_CASE ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase_ = student.load_state_dict(teacher.state_dict() , strict=__SCREAMING_SNAKE_CASE ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase_ , UpperCAmelCase_ = list(range(__SCREAMING_SNAKE_CASE ) ), list(range(__SCREAMING_SNAKE_CASE ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(__SCREAMING_SNAKE_CASE ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase_ = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if d_layers_to_copy is None: UpperCAmelCase_ = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: if hasattr( __SCREAMING_SNAKE_CASE , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __SCREAMING_SNAKE_CASE ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __SCREAMING_SNAKE_CASE ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.decoder.block , student.decoder.block , __SCREAMING_SNAKE_CASE ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCAmelCase_ = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(__SCREAMING_SNAKE_CASE ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
23
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BICUBIC , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ = do_convert_rgb def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BICUBIC , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size=size["shortest_edge"] , default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="size" , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ = [convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
1
from __future__ import annotations def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() UpperCAmelCase_ = module UpperCAmelCase_ = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase , bias=lowerCAmelCase ) , nn.Linear(lowerCAmelCase , module.out_features , bias=lowerCAmelCase ) , ) UpperCAmelCase_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A__ ( self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): return self.module(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) + self.adapter(lowerCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = 'bigscience/bloom-1b7' # Constant values lowerCAmelCase_ : Union[str, Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCAmelCase_ : List[Any] = 'Hello my name is' lowerCAmelCase_ : List[str] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCAmelCase_ : Any = 10 def A__ ( self ): # Models and tokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() # Models and tokenizer UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) def A__ ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase , "quantization_config" ) ) UpperCAmelCase_ = config.to_dict() UpperCAmelCase_ = config.to_diff_dict() UpperCAmelCase_ = config.to_json_string() def A__ ( self ): from bitsandbytes.nn import Paramsabit UpperCAmelCase_ = self.model_fpaa.get_memory_footprint() UpperCAmelCase_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCAmelCase_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A__ ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A__ ( self ): UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self ): UpperCAmelCase_ = BitsAndBytesConfig() UpperCAmelCase_ = True UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self ): with self.assertRaises(lowerCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase ): UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase , load_in_abit=lowerCAmelCase , device_map="auto" , bnb_abit_quant_type="nf4" , ) def A__ ( self ): with self.assertRaises(lowerCAmelCase ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCAmelCase_ = self.model_fpaa.to(torch.floataa ) UpperCAmelCase_ = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.to("cpu" ) # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.half() # Check this does not throw an error UpperCAmelCase_ = self.model_fpaa.float() def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCAmelCase , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def A__ ( cls ): UpperCAmelCase_ = "t5-small" UpperCAmelCase_ = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCAmelCase_ = AutoTokenizer.from_pretrained(cls.model_name ) UpperCAmelCase_ = "Translate in German: Hello, my dog is cute" def A__ ( self ): gc.collect() torch.cuda.empty_cache() def A__ ( self ): from transformers import TaForConditionalGeneration UpperCAmelCase_ = TaForConditionalGeneration._keep_in_fpaa_modules UpperCAmelCase_ = None # test with `t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) UpperCAmelCase_ = modules def A__ ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) # test with `flan-t5-small` UpperCAmelCase_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCAmelCase_ = model.generate(**lowerCAmelCase ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() # model_name UpperCAmelCase_ = "bigscience/bloom-560m" UpperCAmelCase_ = "t5-small" # Different types of model UpperCAmelCase_ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # Sequence classification model UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # CausalLM model UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase , device_map="auto" ) # Seq2seq model UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase , device_map="auto" ) def A__ ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A__ ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() def A__ ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCAmelCase_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): super().setUp() def A__ ( self ): UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCAmelCase_ = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch UpperCAmelCase_ = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = "facebook/opt-350m" super().setUp() def A__ ( self ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCAmelCase_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCAmelCase_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase ) ): UpperCAmelCase_ = LoRALayer(module.q_proj , rank=16 ) UpperCAmelCase_ = LoRALayer(module.k_proj , rank=16 ) UpperCAmelCase_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCAmelCase_ = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCAmelCase_ = model.forward(**lowerCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase , lowerCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Dict = 'gpt2-xl' lowerCAmelCase_ : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = False ): UpperCAmelCase_ = scheduler UpperCAmelCase_ = optimizers if isinstance(lowerCAmelCase , (list, tuple) ) else [optimizers] UpperCAmelCase_ = split_batches UpperCAmelCase_ = step_with_optimizer UpperCAmelCase_ = GradientState() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase_ = AcceleratorState().num_processes for _ in range(lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) else: self.scheduler.step(*lowerCAmelCase , **lowerCAmelCase ) def A__ ( self ): return self.scheduler.get_last_lr() def A__ ( self ): return self.scheduler.state_dict() def A__ ( self , lowerCAmelCase ): self.scheduler.load_state_dict(lowerCAmelCase ) def A__ ( self ): return self.scheduler.get_lr() def A__ ( self , *lowerCAmelCase , **lowerCAmelCase ): return self.scheduler.print_lr(*lowerCAmelCase , **lowerCAmelCase )
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = 'cvt' def __init__( self , lowerCAmelCase=3 , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[64, 192, 384] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 10] , lowerCAmelCase=[4.0, 4.0, 4.0] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=[0.0, 0.0, 0.1] , lowerCAmelCase=[True, True, True] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase=[3, 3, 3] , lowerCAmelCase=[1, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[1, 1, 1] , lowerCAmelCase=[1, 1, 1] , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_sizes UpperCAmelCase_ = patch_stride UpperCAmelCase_ = patch_padding UpperCAmelCase_ = embed_dim UpperCAmelCase_ = num_heads UpperCAmelCase_ = depth UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = attention_drop_rate UpperCAmelCase_ = drop_rate UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = cls_token UpperCAmelCase_ = qkv_projection_method UpperCAmelCase_ = kernel_qkv UpperCAmelCase_ = padding_kv UpperCAmelCase_ = stride_kv UpperCAmelCase_ = padding_q UpperCAmelCase_ = stride_q UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps
23
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1E-12 ) -> List[Any]: UpperCAmelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T UpperCAmelCase_ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T ) class lowerCamelCase ( nn.Module ): '''simple docstring''' lowerCAmelCase_ : CLIPConfig lowerCAmelCase_ : jnp.dtype = jnp.floataa def A__ ( self ): UpperCAmelCase_ = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase_ = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase , dtype=self.dtype ) UpperCAmelCase_ = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase_ = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase_ = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) UpperCAmelCase_ = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = self.vision_model(lowerCAmelCase )[1] UpperCAmelCase_ = self.visual_projection(lowerCAmelCase ) UpperCAmelCase_ = jax_cosine_distance(lowerCAmelCase , self.special_care_embeds ) UpperCAmelCase_ = jax_cosine_distance(lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase_ = 0.0 UpperCAmelCase_ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase_ = jnp.round(lowerCAmelCase , 3 ) UpperCAmelCase_ = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase ) # Use a lower threshold if an image has any special care concept UpperCAmelCase_ = is_special_care * 0.01 UpperCAmelCase_ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase_ = jnp.round(lowerCAmelCase , 3 ) UpperCAmelCase_ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = CLIPConfig lowerCAmelCase_ : int = 'clip_input' lowerCAmelCase_ : Tuple = FlaxStableDiffusionSafetyCheckerModule def __init__( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = 0 , lowerCAmelCase = jnp.floataa , lowerCAmelCase = True , **lowerCAmelCase , ): if input_shape is None: UpperCAmelCase_ = (1, 224, 224, 3) UpperCAmelCase_ = self.module_class(config=lowerCAmelCase , dtype=lowerCAmelCase , **lowerCAmelCase ) super().__init__(lowerCAmelCase , lowerCAmelCase , input_shape=lowerCAmelCase , seed=lowerCAmelCase , dtype=lowerCAmelCase , _do_init=_do_init ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None ): # init input tensor UpperCAmelCase_ = jax.random.normal(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(lowerCAmelCase ) UpperCAmelCase_ = {"params": params_rng, "dropout": dropout_rng} UpperCAmelCase_ = self.module.init(lowerCAmelCase , lowerCAmelCase )["params"] return random_params def __call__( self , lowerCAmelCase , lowerCAmelCase = None , ): UpperCAmelCase_ = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(lowerCAmelCase , dtype=jnp.floataa ) , rngs={} , )
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = CamembertTokenizer lowerCAmelCase_ : int = CamembertTokenizerFast lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Union[str, Any] = True def A__ ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): UpperCAmelCase_ = "<pad>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase ) , 1004 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def A__ ( self ): UpperCAmelCase_ = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ): # fmt: off UpperCAmelCase_ = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase_ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCAmelCase , )
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
from math import factorial, pi def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 30 ) -> float: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) UpperCAmelCase_ = float(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 30 ) -> float: if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) UpperCAmelCase_ = float(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ : Any = TF_MODEL_FOR_MASKED_LM_MAPPING def A__ ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) UpperCAmelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-0_5, "token": 3_8015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-0_5, "token": 2_5506, "token_str": " accuser"}, ] , ) UpperCAmelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-0_5, "token": 3_8015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-0_5, "token": 2_5506, "token_str": " accuser", }, ] , ) UpperCAmelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-0_5, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) UpperCAmelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS"}, ] , ) UpperCAmelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS"}, ] , ) UpperCAmelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-0_5, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3606, "token_str": " Clara"}, ] , ) UpperCAmelCase_ = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=6 ) , [ [ { "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def A__ ( self ): UpperCAmelCase_ = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() UpperCAmelCase_ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) @slow @require_torch def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(lowerCAmelCase ) @slow @require_tf def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) UpperCAmelCase_ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2790, "token_str": " Lyon", }, ] , ) UpperCAmelCase_ = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) UpperCAmelCase_ = None UpperCAmelCase_ = None self.run_pipeline_test(lowerCAmelCase , [] ) @require_tf def A__ ( self ): UpperCAmelCase_ = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) UpperCAmelCase_ = None UpperCAmelCase_ = None self.run_pipeline_test(lowerCAmelCase , [] ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase_ = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = fill_masker.tokenizer UpperCAmelCase_ = fill_masker.model UpperCAmelCase_ = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) UpperCAmelCase_ = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) UpperCAmelCase_ = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCAmelCase , [ [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ], [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ], ] , ) with self.assertRaises(lowerCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCAmelCase ): fill_masker("This is" ) self.run_test_top_k(lowerCAmelCase , lowerCAmelCase ) self.run_test_targets(lowerCAmelCase , lowerCAmelCase ) self.run_test_top_k_targets(lowerCAmelCase , lowerCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCAmelCase , lowerCAmelCase ) self.fill_mask_with_multiple_masks(lowerCAmelCase , lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = tokenizer.get_vocab() UpperCAmelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase , targets=lowerCAmelCase ) UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) UpperCAmelCase_ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCAmelCase ) UpperCAmelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCAmelCase ) ) # Call argument UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) UpperCAmelCase_ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowerCAmelCase ) UpperCAmelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowerCAmelCase ) ) # Score equivalence UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase ) UpperCAmelCase_ = [top_mask["token_str"] for top_mask in outputs] UpperCAmelCase_ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase ) == set(lowerCAmelCase ): UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase ) UpperCAmelCase_ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCAmelCase ) , nested_simplify(lowerCAmelCase ) ) # Raises with invalid with self.assertRaises(lowerCAmelCase ): UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCAmelCase ): UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(lowerCAmelCase ): UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase , top_k=2 ) UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase , [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ] , ) self.assertEqual(nested_simplify(lowerCAmelCase ) , nested_simplify(lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = tokenizer.get_vocab() UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) # top_k=2, ntargets=3 UpperCAmelCase_ = sorted(vocab.keys() )[:3] UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=lowerCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase_ = [el["token_str"] for el in sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["score"] , reverse=lowerCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase ).issubset(lowerCAmelCase ): UpperCAmelCase_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=lowerCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCAmelCase ) , nested_simplify(lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase_ = sorted(vocab.keys() )[:3] UpperCAmelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase_ = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=lowerCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCAmelCase ) , 3 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = FillMaskPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase_ = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase , [ [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ], [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ], [ {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, {"sequence": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase ), "token": ANY(lowerCAmelCase ), "token_str": ANY(lowerCAmelCase )}, ], ] , )
23
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
1
from torch import nn def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
23
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'ibert' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=False , lowerCAmelCase="none" , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = quant_mode UpperCAmelCase_ = force_dequant class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def snake_case__ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCAmelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = AudioDiffusionPipeline(vqvae=lowerCAmelCase , unet=self.dummy_unet , mel=lowerCAmelCase , scheduler=lowerCAmelCase ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=lowerCAmelCase , steps=4 ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=lowerCAmelCase , steps=4 , return_dict=lowerCAmelCase ) UpperCAmelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = self.dummy_vqvae_and_unet UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCAmelCase , scheduler=lowerCAmelCase ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ = pipe(raw_audio=lowerCAmelCase , generator=lowerCAmelCase , start_step=5 , steps=10 ) UpperCAmelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = self.dummy_unet_condition UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCAmelCase , mel=lowerCAmelCase , scheduler=lowerCAmelCase ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ = torch.rand((1, 1, 10) ) UpperCAmelCase_ = pipe(generator=lowerCAmelCase , encoding=lowerCAmelCase ) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = torch_device UpperCAmelCase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=lowerCAmelCase ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
23
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase ): super().__init__() self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCAmelCase = 1 , lowerCAmelCase = 100 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): if audio_length_in_s is None: UpperCAmelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate UpperCAmelCase_ = audio_length_in_s * self.unet.config.sample_rate UpperCAmelCase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) UpperCAmelCase_ = int(lowerCAmelCase ) if sample_size % down_scale_factor != 0: UpperCAmelCase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' " process." ) UpperCAmelCase_ = int(lowerCAmelCase ) UpperCAmelCase_ = next(iter(self.unet.parameters() ) ).dtype UpperCAmelCase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase_ = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) # set step values self.scheduler.set_timesteps(lowerCAmelCase , device=audio.device ) UpperCAmelCase_ = self.scheduler.timesteps.to(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 UpperCAmelCase_ = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample UpperCAmelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCAmelCase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCAmelCase )
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import string def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def snake_case__ ( ) -> None: UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
23
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
1
from __future__ import annotations SCREAMING_SNAKE_CASE = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Matrix | None: if location := find_empty_location(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = digit if sudoku(__SCREAMING_SNAKE_CASE ) is not None: return grid UpperCAmelCase_ = 0 return None def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> None: for row in grid: for cell in row: print(__SCREAMING_SNAKE_CASE , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") SCREAMING_SNAKE_CASE = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = 'summarization' lowerCAmelCase_ : Any = ['loss'] lowerCAmelCase_ : List[str] = ROUGE_KEYS lowerCAmelCase_ : Dict = 'rouge2' def __init__( self , lowerCAmelCase , **lowerCAmelCase ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(lowerCAmelCase , num_labels=lowerCAmelCase , mode=self.mode , **lowerCAmelCase ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) UpperCAmelCase_ = Path(self.output_dir ) / "metrics.json" UpperCAmelCase_ = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase_ = 0 UpperCAmelCase_ = defaultdict(lowerCAmelCase ) UpperCAmelCase_ = self.config.model_type UpperCAmelCase_ = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size UpperCAmelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase_ = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } UpperCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase_ = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase_ = get_git_info()["repo_sha"] UpperCAmelCase_ = hparams.num_workers UpperCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase_ = self.decoder_start_token_id UpperCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) UpperCAmelCase_ = False UpperCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase_ = self.hparams.eval_max_gen_length else: UpperCAmelCase_ = self.model.config.max_length UpperCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) UpperCAmelCase_ = True return readable_batch def A__ ( self , lowerCAmelCase , **lowerCAmelCase ): return self.model(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer.batch_decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) return lmap(str.strip , lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer.pad_token_id UpperCAmelCase_ , UpperCAmelCase_ = batch["input_ids"], batch["attention_mask"] UpperCAmelCase_ = batch["labels"] if isinstance(self.model , lowerCAmelCase ): UpperCAmelCase_ = self.model._shift_right(lowerCAmelCase ) else: UpperCAmelCase_ = shift_tokens_right(lowerCAmelCase , lowerCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase_ = decoder_input_ids self.save_readable_batch(lowerCAmelCase ) UpperCAmelCase_ = self(lowerCAmelCase , attention_mask=lowerCAmelCase , decoder_input_ids=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase_ = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase_ = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase_ = nn.functional.log_softmax(lowerCAmelCase , dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = label_smoothed_nll_loss( lowerCAmelCase , lowerCAmelCase , self.hparams.label_smoothing , ignore_index=lowerCAmelCase ) return (loss,) @property def A__ ( self ): return self.tokenizer.pad_token_id def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self._step(lowerCAmelCase ) UpperCAmelCase_ = dict(zip(self.loss_names , lowerCAmelCase ) ) # tokens per batch UpperCAmelCase_ = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() UpperCAmelCase_ = batch["input_ids"].shape[0] UpperCAmelCase_ = batch["input_ids"].eq(self.pad ).sum() UpperCAmelCase_ = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return self._generative_step(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase="val" ): self.step_count += 1 UpperCAmelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase_ = losses["loss"] UpperCAmelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } UpperCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).type_as(lowerCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase ) UpperCAmelCase_ = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase_ = self.step_count self.metrics[prefix].append(lowerCAmelCase ) # callback writes this to self.metrics_save_path UpperCAmelCase_ = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return calculate_rouge(lowerCAmelCase , lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase_ = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=lowerCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase_ = (time.time() - ta) / batch["input_ids"].shape[0] UpperCAmelCase_ = self.ids_to_clean_text(lowerCAmelCase ) UpperCAmelCase_ = self.ids_to_clean_text(batch["labels"] ) UpperCAmelCase_ = self._step(lowerCAmelCase ) UpperCAmelCase_ = dict(zip(self.loss_names , lowerCAmelCase ) ) UpperCAmelCase_ = self.calc_generative_metrics(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = np.mean(lmap(lowerCAmelCase , lowerCAmelCase ) ) base_metrics.update(gen_time=lowerCAmelCase , gen_len=lowerCAmelCase , preds=lowerCAmelCase , target=lowerCAmelCase , **lowerCAmelCase ) return base_metrics def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return self._generative_step(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return self.validation_epoch_end(lowerCAmelCase , prefix="test" ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.n_obs[type_path] UpperCAmelCase_ = self.target_lens[type_path] UpperCAmelCase_ = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , max_target_length=lowerCAmelCase , **self.dataset_kwargs , ) return dataset def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): UpperCAmelCase_ = self.get_dataset(lowerCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_sortish_sampler(lowerCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase , num_workers=self.num_workers , sampler=lowerCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase , batch_sampler=lowerCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase , num_workers=self.num_workers , sampler=lowerCAmelCase , ) def A__ ( self ): UpperCAmelCase_ = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase ) return dataloader def A__ ( self ): return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def A__ ( self ): return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase ): BaseTransformer.add_model_specific_args(lowerCAmelCase , lowerCAmelCase ) add_generic_args(lowerCAmelCase , lowerCAmelCase ) parser.add_argument( "--max_source_length" , default=1024 , type=lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=lowerCAmelCase ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=lowerCAmelCase ) parser.add_argument("--max_tokens_per_batch" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument("--logger_name" , type=lowerCAmelCase , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=lowerCAmelCase , default=500 , required=lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=lowerCAmelCase , default="summarization" , required=lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=lowerCAmelCase , default=0.0 , required=lowerCAmelCase ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default="" , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default="" , required=lowerCAmelCase ) parser.add_argument("--eval_beams" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--val_metric" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=lowerCAmelCase , default=lowerCAmelCase , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = 'translation' lowerCAmelCase_ : Optional[Any] = ['loss'] lowerCAmelCase_ : Optional[Any] = ['bleu'] lowerCAmelCase_ : List[str] = 'bleu' def __init__( self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = hparams.src_lang UpperCAmelCase_ = hparams.tgt_lang def A__ ( self , lowerCAmelCase , lowerCAmelCase ): return calculate_bleu(lowerCAmelCase , lowerCAmelCase ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) check_output_dir(__SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase_ = SummarizationModule(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = TranslationModule(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): UpperCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = os.environ.get("WANDB_PROJECT" , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=__SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase_ = False UpperCAmelCase_ = args.val_metric == "loss" UpperCAmelCase_ = generic_train( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __SCREAMING_SNAKE_CASE ) , early_stopping_callback=__SCREAMING_SNAKE_CASE , logger=__SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model UpperCAmelCase_ = "" UpperCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=__SCREAMING_SNAKE_CASE ) ) if checkpoints: UpperCAmelCase_ = checkpoints[-1] UpperCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() SCREAMING_SNAKE_CASE = pl.Trainer.add_argparse_args(parser) SCREAMING_SNAKE_CASE = SummarizationModule.add_model_specific_args(parser, os.getcwd()) SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
1
SCREAMING_SNAKE_CASE = tuple[float, float, float] SCREAMING_SNAKE_CASE = tuple[float, float, float] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Vectorad: UpperCAmelCase_ = end_pointa[0] - end_pointa[0] UpperCAmelCase_ = end_pointa[1] - end_pointa[1] UpperCAmelCase_ = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Vectorad: UpperCAmelCase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCAmelCase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCAmelCase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: return tuple(round(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10 ) -> bool: UpperCAmelCase_ = create_vector(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = create_vector(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : List[str] = PegasusConfig lowerCAmelCase_ : str = {} lowerCAmelCase_ : str = 'gelu' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=20 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_pegasus_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(lowerCAmelCase ) UpperCAmelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) UpperCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , ) UpperCAmelCase_ = model.decode(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(lowerCAmelCase ) UpperCAmelCase_ = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) UpperCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) UpperCAmelCase_ = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) -> List[Any]: if attention_mask is None: UpperCAmelCase_ = np.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ : List[str] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : str = False def A__ ( self ): UpperCAmelCase_ = FlaxPegasusModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = model_class(lowerCAmelCase ) @jax.jit def encode_jitted(lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ): return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = encode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = encode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): return model.decode( decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = decode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = decode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A__ ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCAmelCase ) UpperCAmelCase_ = np.ones((1, 1) ) UpperCAmelCase_ = model(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @slow def A__ ( self ): UpperCAmelCase_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCAmelCase_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCAmelCase_ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCAmelCase_ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCAmelCase_ = tokenizer(lowerCAmelCase , return_tensors="np" , truncation=lowerCAmelCase , max_length=512 , padding=lowerCAmelCase ) UpperCAmelCase_ = model.generate(**lowerCAmelCase , num_beams=2 ).sequences UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) assert tgt_text == decoded
23
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase ( lowercase__ ): '''simple docstring''' @slow @require_torch def A__ ( self ): UpperCAmelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = bertabert.config.encoder.vocab_size UpperCAmelCase_ = tokenizer.sep_token_id UpperCAmelCase_ = tokenizer.cls_token_id UpperCAmelCase_ = 128 UpperCAmelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCAmelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCAmelCase_ = train_dataset.select(range(32 ) ) UpperCAmelCase_ = val_dataset.select(range(16 ) ) UpperCAmelCase_ = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase_ = tokenizer(batch["article"] , padding="max_length" , truncation=lowerCAmelCase , max_length=512 ) UpperCAmelCase_ = tokenizer(batch["highlights"] , padding="max_length" , truncation=lowerCAmelCase , max_length=128 ) UpperCAmelCase_ = inputs.input_ids UpperCAmelCase_ = inputs.attention_mask UpperCAmelCase_ = outputs.input_ids UpperCAmelCase_ = outputs.input_ids.copy() UpperCAmelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase_ = outputs.attention_mask assert all(len(lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase ): UpperCAmelCase_ = pred.label_ids UpperCAmelCase_ = pred.predictions # all unnecessary tokens are removed UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase ) )] ) / len(lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCAmelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase , per_device_train_batch_size=lowerCAmelCase , per_device_eval_batch_size=lowerCAmelCase , predict_with_generate=lowerCAmelCase , evaluation_strategy="steps" , do_train=lowerCAmelCase , do_eval=lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase_ = SeqaSeqTrainer( model=lowerCAmelCase , args=lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # start training trainer.train()
23
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = data UpperCAmelCase_ = [0x6745_2301, 0xEFCD_AB89, 0x98BA_DCFE, 0x1032_5476, 0xC3D2_E1F0] @staticmethod def A__ ( lowerCAmelCase , lowerCAmelCase ): return ((n << b) | (n >> (32 - b))) & 0xFFFF_FFFF def A__ ( self ): UpperCAmelCase_ = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def A__ ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = list(struct.unpack(">16L" , lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def A__ ( self ): UpperCAmelCase_ = self.padding() UpperCAmelCase_ = self.split_blocks() for block in self.blocks: UpperCAmelCase_ = self.expand_block(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ = (b & c) | ((~b) & d) UpperCAmelCase_ = 0x5A82_7999 elif 20 <= i < 40: UpperCAmelCase_ = b ^ c ^ d UpperCAmelCase_ = 0x6ED9_EBA1 elif 40 <= i < 60: UpperCAmelCase_ = (b & c) | (b & d) | (c & d) UpperCAmelCase_ = 0x8F1B_BCDC elif 60 <= i < 80: UpperCAmelCase_ = b ^ c ^ d UpperCAmelCase_ = 0xCA62_C1D6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = ( self.rotate(lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xFFFF_FFFF, a, self.rotate(lowerCAmelCase , 30 ), c, d, ) UpperCAmelCase_ = ( self.h[0] + a & 0xFFFF_FFFF, self.h[1] + b & 0xFFFF_FFFF, self.h[2] + c & 0xFFFF_FFFF, self.h[3] + d & 0xFFFF_FFFF, self.h[4] + e & 0xFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def snake_case__ ( ) -> int: UpperCAmelCase_ = B"Test String" assert SHAaHash(__SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(__SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324 def snake_case__ ( ) -> Any: UpperCAmelCase_ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = bytes(__SCREAMING_SNAKE_CASE , "utf-8" ) print(SHAaHash(__SCREAMING_SNAKE_CASE ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = time.time() locka.acquire(__SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ = "a" * 1000 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__SCREAMING_SNAKE_CASE ): locka.acquire(0 )
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from statistics import mean, stdev def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 ) -> list: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = max(__SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , __SCREAMING_SNAKE_CASE ) for x in data] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 ) -> list: UpperCAmelCase_ = mean(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = stdev(__SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , __SCREAMING_SNAKE_CASE ) for x in data]
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) lowerCAmelCase_ : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : Optional[str] = field(default=lowercase__, metadata={'help': 'The input training data file (a text file).'} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase__, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) lowerCAmelCase_ : bool = field( default=lowercase__, metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) }, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowerCAmelCase_ : Optional[int] = field( default=lowercase__, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def A__ ( self ): if self.train_file is not None: UpperCAmelCase_ = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : PreTrainedTokenizerBase lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = True lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase_ = [feature.pop(lowerCAmelCase ) for feature in features] UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = len(features[0]["input_ids"] ) UpperCAmelCase_ = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase )] for feature in features ] UpperCAmelCase_ = list(chain(*lowerCAmelCase ) ) UpperCAmelCase_ = self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten UpperCAmelCase_ = {k: v.view(lowerCAmelCase , lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase_ = torch.tensor(lowerCAmelCase , dtype=torch.intaa ) return batch def snake_case__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ = training_args.get_process_log_level() logger.setLevel(__SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(__SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split("." )[-1] UpperCAmelCase_ = load_dataset( __SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase_ = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase_ = [f'''ending{i}''' for i in range(4 )] UpperCAmelCase_ = "sent1" UpperCAmelCase_ = "sent2" if data_args.max_seq_length is None: UpperCAmelCase_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) UpperCAmelCase_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = [[context] * 4 for context in examples[context_name]] UpperCAmelCase_ = examples[question_header_name] UpperCAmelCase_ = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__SCREAMING_SNAKE_CASE ) ] # Flatten out UpperCAmelCase_ = list(chain(*__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = list(chain(*__SCREAMING_SNAKE_CASE ) ) # Tokenize UpperCAmelCase_ = tokenizer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) UpperCAmelCase_ = raw_datasets["train"] if data_args.max_train_samples is not None: UpperCAmelCase_ = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) UpperCAmelCase_ = train_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): UpperCAmelCase_ = train_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) UpperCAmelCase_ = raw_datasets["validation"] if data_args.max_eval_samples is not None: UpperCAmelCase_ = min(len(__SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) UpperCAmelCase_ = eval_dataset.select(range(__SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): UpperCAmelCase_ = eval_dataset.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ = eval_predictions UpperCAmelCase_ = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase_ = Trainer( model=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , compute_metrics=__SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: UpperCAmelCase_ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint UpperCAmelCase_ = trainer.train(resume_from_checkpoint=__SCREAMING_SNAKE_CASE ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("train" , __SCREAMING_SNAKE_CASE ) trainer.save_metrics("train" , __SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("eval" , __SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**__SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
23
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ , UpperCAmelCase_ = len(__SCREAMING_SNAKE_CASE ), len(grid[0] ) if ( min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase_ = 0 count += depth_first_search(__SCREAMING_SNAKE_CASE , row + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , row - 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col + 1 , __SCREAMING_SNAKE_CASE ) count += depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , col - 1 , __SCREAMING_SNAKE_CASE ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCAmelCase_ = ( "Wrong input data's dimensions... " f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase_ = ( "Wrong input data's shape... " f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__SCREAMING_SNAKE_CASE ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: UpperCAmelCase_ = ( "Input data have different datatype... " f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [] for value in value_array: UpperCAmelCase_ = euclidean(__SCREAMING_SNAKE_CASE , dataset[0] ) UpperCAmelCase_ = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase_ = euclidean(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if dist > temp_dist: UpperCAmelCase_ = temp_dist UpperCAmelCase_ = dataset_value.tolist() answer.append([vector, dist] ) return answer def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: return np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) / (norm(__SCREAMING_SNAKE_CASE ) * norm(__SCREAMING_SNAKE_CASE )) if __name__ == "__main__": import doctest doctest.testmod()
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass(frozen=lowercase__ ) class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : str lowerCAmelCase_ : str lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[str] = None @dataclass(frozen=lowercase__ ) class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : List[int] lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[List[int]] = None lowerCAmelCase_ : Optional[Union[int, float]] = None lowerCAmelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[InputFeatures] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase=False , lowerCAmelCase = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = os.path.join( lowerCAmelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCAmelCase ) , lowerCAmelCase , ) , ) UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ = cached_features_file + ".lock" with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCAmelCase_ = torch.load(lowerCAmelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCAmelCase_ = ( processor.get_dev_examples(lowerCAmelCase ) if evaluate else processor.get_train_examples(lowerCAmelCase ) ) logger.info("Training examples: %s" , len(lowerCAmelCase ) ) UpperCAmelCase_ = hans_convert_examples_to_features(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) logger.info("Saving features into cached file %s" , lowerCAmelCase ) torch.save(self.features , lowerCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , lowerCAmelCase ): return self.features[i] def A__ ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : List[InputFeatures] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 128 , lowerCAmelCase=False , lowerCAmelCase = False , ): UpperCAmelCase_ = hans_processors[task]() UpperCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ = label_list[2], label_list[1] UpperCAmelCase_ = label_list UpperCAmelCase_ = processor.get_dev_examples(lowerCAmelCase ) if evaluate else processor.get_train_examples(lowerCAmelCase ) UpperCAmelCase_ = hans_convert_examples_to_features(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ = tf.data.Dataset.from_generator( lowerCAmelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A__ ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , lowerCAmelCase ): return self.features[i] def A__ ( self ): return self.label_list class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self , lowerCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase , "heuristics_train_set.txt" ) ) , "train" ) def A__ ( self , lowerCAmelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCAmelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def A__ ( self ): return ["contradiction", "entailment", "neutral"] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = [] for i, line in enumerate(lowerCAmelCase ): if i == 0: continue UpperCAmelCase_ = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ = line[5] UpperCAmelCase_ = line[6] UpperCAmelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ = line[0] examples.append(InputExample(guid=lowerCAmelCase , text_a=lowerCAmelCase , text_b=lowerCAmelCase , label=lowerCAmelCase , pairID=lowerCAmelCase ) ) return examples def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: UpperCAmelCase_ = {label: i for i, label in enumerate(__SCREAMING_SNAKE_CASE )} UpperCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__SCREAMING_SNAKE_CASE ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" , truncation=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**__SCREAMING_SNAKE_CASE , label=__SCREAMING_SNAKE_CASE , pairID=__SCREAMING_SNAKE_CASE ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features SCREAMING_SNAKE_CASE = { "hans": 3, } SCREAMING_SNAKE_CASE = { "hans": HansProcessor, }
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as reader: UpperCAmelCase_ = reader.readlines() for index, token in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = token.rstrip("\n" ) UpperCAmelCase_ = index return vocab class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase="<unk>" , lowerCAmelCase=200 ): UpperCAmelCase_ = vocab UpperCAmelCase_ = unk_token UpperCAmelCase_ = max_input_chars_per_word def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = list(lowerCAmelCase ) if len(lowerCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while start < len(lowerCAmelCase ): UpperCAmelCase_ = len(lowerCAmelCase ) UpperCAmelCase_ = None while start < end: UpperCAmelCase_ = "".join(chars[start:end] ) if substr in self.vocab: UpperCAmelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCAmelCase ) UpperCAmelCase_ = end return sub_tokens class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ['input_ids', 'attention_mask'] lowerCAmelCase_ : Optional[int] = False def __init__( self , lowerCAmelCase , lowerCAmelCase="<d>" , lowerCAmelCase="</d>" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<unk>" , lowerCAmelCase="</n>" , lowerCAmelCase="</_>" , lowerCAmelCase="left" , **lowerCAmelCase , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowerCAmelCase , eod_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , unk_token=lowerCAmelCase , line_token=lowerCAmelCase , space_token=lowerCAmelCase , padding_side=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = bod_token UpperCAmelCase_ = eod_token UpperCAmelCase_ = load_vocab(lowerCAmelCase ) UpperCAmelCase_ = self.encoder[space_token] UpperCAmelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase : x[1] ) ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A__ ( self ): return self.encoder[self.bod_token] @property def A__ ( self ): return self.encoder[self.eod_token] @property def A__ ( self ): return self.encoder["\n"] @property def A__ ( self ): return len(self.encoder ) def A__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for x in jieba.cut(lowerCAmelCase , cut_all=lowerCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase ) ) return output_tokens def A__ ( self , lowerCAmelCase , **lowerCAmelCase ): UpperCAmelCase_ = [i for i in token_ids if i >= 0] UpperCAmelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return token in self.encoder def A__ ( self , lowerCAmelCase ): return "".join(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self , lowerCAmelCase ): return self.decoder.get(lowerCAmelCase , self.unk_token ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if os.path.isdir(lowerCAmelCase ): UpperCAmelCase_ = os.path.join( lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCAmelCase_ = (filename_prefix + "-" if filename_prefix else "") + save_directory UpperCAmelCase_ = 0 if " " in self.encoder: UpperCAmelCase_ = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase_ = self.encoder["\n"] del self.encoder["\n"] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase : x[1] ) ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) return [1] + ([0] * len(lowerCAmelCase ))
23
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case__ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__SCREAMING_SNAKE_CASE ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def snake_case__ ( ) -> int: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def snake_case__ ( ) -> List[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" )
23
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : Dict = PegasusConfig lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Optional[int] = 'gelu' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=40 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ = prepare_pegasus_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFPegasusModel(config=lowerCAmelCase ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = inputs_dict["head_mask"] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1e-3 ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase_ : Optional[int] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ : Optional[Any] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : List[str] = False def A__ ( self ): UpperCAmelCase_ = TFPegasusModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase_ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase_ : Any = 'google/pegasus-xsum' @cached_property def A__ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A__ ( self ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A__ ( self , **lowerCAmelCase ): UpperCAmelCase_ = self.translate_src_text(**lowerCAmelCase ) assert self.expected_text == generated_words def A__ ( self , **lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer(self.src_text , **lowerCAmelCase , padding=lowerCAmelCase , return_tensors="tf" ) UpperCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase , ) UpperCAmelCase_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def A__ ( self ): self._assert_generated_batch_equal_expected()
23
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
1
from math import factorial def snake_case__ ( __SCREAMING_SNAKE_CASE = 20 ) -> int: UpperCAmelCase_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase_ = n // 2 return int(factorial(__SCREAMING_SNAKE_CASE ) / (factorial(__SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , lowerCAmelCase=-1 ): # in NER datasets, the last column is usually reserved for NER label UpperCAmelCase_ = label_idx def A__ ( self , lowerCAmelCase , lowerCAmelCase ): if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(lowerCAmelCase , f'''{mode}.txt''' ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(lowerCAmelCase , encoding="utf-8" ) as f: UpperCAmelCase_ = [] UpperCAmelCase_ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCAmelCase , labels=lowerCAmelCase ) ) guid_index += 1 UpperCAmelCase_ = [] UpperCAmelCase_ = [] else: UpperCAmelCase_ = line.split(" " ) words.append(splits[0] ) if len(lowerCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCAmelCase , labels=lowerCAmelCase ) ) return examples def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(lowerCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(lowerCAmelCase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def A__ ( self , lowerCAmelCase ): if path: with open(lowerCAmelCase , "r" ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def A__ ( self , lowerCAmelCase ): if path: with open(lowerCAmelCase , "r" ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCamelCase ( lowercase__ ): '''simple docstring''' def A__ ( self , lowerCAmelCase , lowerCAmelCase ): if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(lowerCAmelCase , f'''{mode}.txt''' ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(lowerCAmelCase , encoding="utf-8" ) as f: for sentence in parse_incr(lowerCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowerCAmelCase , labels=lowerCAmelCase ) ) guid_index += 1 return examples def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = 0 for sentence in parse_incr(lowerCAmelCase ): UpperCAmelCase_ = preds_list[example_id] UpperCAmelCase_ = "" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowerCAmelCase ) example_id += 1 def A__ ( self , lowerCAmelCase ): if path: with open(lowerCAmelCase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
23
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(__SCREAMING_SNAKE_CASE ) } for i in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) UpperCAmelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''down.{i}.block''', "new": f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''mid.block_{i}''', "new": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) conv_attn_to_linear(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] UpperCAmelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''up.{block_id}.block''', "new": f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] UpperCAmelCase_ = renew_vae_resnet_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": f'''mid.block_{i}''', "new": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=__SCREAMING_SNAKE_CASE ) conv_attn_to_linear(__SCREAMING_SNAKE_CASE ) return new_checkpoint def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> List[str]: # Only support V1 UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = 512 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(__SCREAMING_SNAKE_CASE , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(__SCREAMING_SNAKE_CASE , image_size=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoencoderKL(**__SCREAMING_SNAKE_CASE ) vae.load_state_dict(__SCREAMING_SNAKE_CASE ) vae.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") SCREAMING_SNAKE_CASE = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
23
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [0] * len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [] UpperCAmelCase_ = [1] * len(__SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: UpperCAmelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) print(max(__SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph SCREAMING_SNAKE_CASE = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
23
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
1
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case__ ( __SCREAMING_SNAKE_CASE = 1_0001 ) -> int: try: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase_ = [] UpperCAmelCase_ = 2 while len(__SCREAMING_SNAKE_CASE ) < nth: if is_prime(__SCREAMING_SNAKE_CASE ): primes.append(__SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(__SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 22 ) -> int: UpperCAmelCase_ = range(1 , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = range(1 , __SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(__SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(__SCREAMING_SNAKE_CASE ) + str(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = str(__SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(__SCREAMING_SNAKE_CASE ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
23
1
SCREAMING_SNAKE_CASE = "Input must be a string of 8 numbers plus letter" SCREAMING_SNAKE_CASE = "TRWAGMYFPDXBNJZSQVHLCKE" def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = f'''Expected string as input, found {type(__SCREAMING_SNAKE_CASE ).__name__}''' raise TypeError(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = spanish_id.replace("-" , "" ).upper() if len(__SCREAMING_SNAKE_CASE ) != 9: raise ValueError(__SCREAMING_SNAKE_CASE ) try: UpperCAmelCase_ = int(spanish_id_clean[0:8] ) UpperCAmelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(__SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
23
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCAmelCase_ = model(input_ids.to(lowerCAmelCase ) , labels=labels.to(lowerCAmelCase ) ).loss UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = int(__SCREAMING_SNAKE_CASE ) if n_element < 1: UpperCAmelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (0, 0, 0) UpperCAmelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") SCREAMING_SNAKE_CASE = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
23
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(lowerCAmelCase , size["shortest_edge"] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): UpperCAmelCase_ = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["height"], size["width"]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(lowerCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(lowerCAmelCase , size=lowerCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) return image def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ): UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(lowerCAmelCase , param_name="crop_size" ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(lowerCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=lowerCAmelCase , do_resize=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , do_center_crop=lowerCAmelCase , crop_size=lowerCAmelCase , do_rescale=lowerCAmelCase , rescale_factor=lowerCAmelCase , do_normalize=lowerCAmelCase , image_mean=lowerCAmelCase , image_std=lowerCAmelCase , data_format=lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
23
1
from __future__ import annotations import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: if num <= 0: UpperCAmelCase_ = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = [True] * (num + 1) UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , __SCREAMING_SNAKE_CASE ): if sieve[i] is True: UpperCAmelCase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : Node | None class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): UpperCAmelCase_ = Node(lowerCAmelCase , self.head ) def __iter__( self ): UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self ): return sum(1 for _ in self ) def __str__( self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> SortedLinkedList: return SortedLinkedList(list(__SCREAMING_SNAKE_CASE ) + list(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE = "src/transformers" SCREAMING_SNAKE_CASE = "docs/source/en/tasks" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: with open(__SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Find the start prompt. UpperCAmelCase_ = 0 while not lines[start_index].startswith(__SCREAMING_SNAKE_CASE ): start_index += 1 start_index += 1 UpperCAmelCase_ = start_index while not lines[end_index].startswith(__SCREAMING_SNAKE_CASE ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__SCREAMING_SNAKE_CASE , set() ) UpperCAmelCase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = _find_text_in_file( filename=os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) UpperCAmelCase_ = get_model_list_for_task(__SCREAMING_SNAKE_CASE ) if current_list != new_list: if overwrite: with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
23
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase_ : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase_ : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def A__ ( self ): UpperCAmelCase_ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) UpperCAmelCase_ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) UpperCAmelCase_ = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) UpperCAmelCase_ = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) UpperCAmelCase_ = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior UpperCAmelCase_ = text_classifier("This is great !" , return_all_scores=lowerCAmelCase ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) UpperCAmelCase_ = text_classifier("This is great !" , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) UpperCAmelCase_ = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) UpperCAmelCase_ = text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def A__ ( self ): import torch UpperCAmelCase_ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) UpperCAmelCase_ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def A__ ( self ): UpperCAmelCase_ = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) UpperCAmelCase_ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def A__ ( self ): UpperCAmelCase_ = pipeline("text-classification" ) UpperCAmelCase_ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCAmelCase_ = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCAmelCase_ = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def A__ ( self ): UpperCAmelCase_ = pipeline("text-classification" , framework="tf" ) UpperCAmelCase_ = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCAmelCase_ = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCAmelCase_ = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": "POSITIVE", "score": 0.988}] ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TextClassificationPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase_ = "HuggingFace is in" UpperCAmelCase_ = text_classifier(lowerCAmelCase ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) UpperCAmelCase_ = ["HuggingFace is in ", "Paris is in France"] UpperCAmelCase_ = text_classifier(lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}, {"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase_ = text_classifier(lowerCAmelCase , top_k=lowerCAmelCase ) UpperCAmelCase_ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [[{"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}] * N, [{"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}] * N] , ) UpperCAmelCase_ = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} UpperCAmelCase_ = text_classifier(lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , {"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase_ = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCAmelCase ): text_classifier(lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase_ = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{"label": ANY(lowerCAmelCase ), "score": ANY(lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : jnp.ndarray lowerCAmelCase_ : jnp.ndarray class lowerCamelCase ( nn.Module ): '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : Tuple[int] = (16, 32, 96, 256) lowerCAmelCase_ : jnp.dtype = jnp.floataa def A__ ( self ): UpperCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase_ = self.block_out_channels[i] UpperCAmelCase_ = self.block_out_channels[i + 1] UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) UpperCAmelCase_ = blocks UpperCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase ): UpperCAmelCase_ = self.conv_in(lowerCAmelCase ) UpperCAmelCase_ = nn.silu(lowerCAmelCase ) for block in self.blocks: UpperCAmelCase_ = block(lowerCAmelCase ) UpperCAmelCase_ = nn.silu(lowerCAmelCase ) UpperCAmelCase_ = self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class lowerCamelCase ( nn.Module, lowercase__, lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = 32 lowerCAmelCase_ : int = 4 lowerCAmelCase_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase_ : Union[bool, Tuple[bool]] = False lowerCAmelCase_ : Tuple[int] = (320, 640, 1280, 1280) lowerCAmelCase_ : int = 2 lowerCAmelCase_ : Union[int, Tuple[int]] = 8 lowerCAmelCase_ : Optional[Union[int, Tuple[int]]] = None lowerCAmelCase_ : int = 1280 lowerCAmelCase_ : float = 0.0 lowerCAmelCase_ : bool = False lowerCAmelCase_ : jnp.dtype = jnp.floataa lowerCAmelCase_ : bool = True lowerCAmelCase_ : int = 0 lowerCAmelCase_ : str = "rgb" lowerCAmelCase_ : Tuple[int] = (16, 32, 96, 256) def A__ ( self , lowerCAmelCase ): # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase_ = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(lowerCAmelCase ) UpperCAmelCase_ = {"params": params_rng, "dropout": dropout_rng} return self.init(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )["params"] def A__ ( self ): UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase_ = FlaxTimestepEmbedding(lowerCAmelCase , dtype=self.dtype ) UpperCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCAmelCase_ = self.only_cross_attention if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) UpperCAmelCase_ = down_blocks UpperCAmelCase_ = controlnet_down_blocks # mid UpperCAmelCase_ = block_out_channels[-1] UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCAmelCase_ = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1.0 , lowerCAmelCase = True , lowerCAmelCase = False , ): UpperCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase_ = jnp.flip(lowerCAmelCase , axis=1 ) # 1. time if not isinstance(lowerCAmelCase , jnp.ndarray ): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase_ = jnp.expand_dims(lowerCAmelCase , 0 ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) # 2. pre-process UpperCAmelCase_ = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) UpperCAmelCase_ = self.conv_in(lowerCAmelCase ) UpperCAmelCase_ = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) UpperCAmelCase_ = self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ , UpperCAmelCase_ = down_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(lowerCAmelCase , lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase_ = self.mid_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) # 5. contronet blocks UpperCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowerCAmelCase , self.controlnet_down_blocks ): UpperCAmelCase_ = controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = controlnet_down_block_res_samples UpperCAmelCase_ = self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling UpperCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase , mid_block_res_sample=lowerCAmelCase )
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[str] = RetriBertTokenizer lowerCAmelCase_ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : int = ['input_ids', 'attention_mask'] lowerCAmelCase_ : str = DistilBertTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
23
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case__ ( __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=1026 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="data/tokenized_stories_train_wikitext103.jbl" , __SCREAMING_SNAKE_CASE="igf_context_pairs.jbl" , ) -> Optional[int]: set_seed(3 ) # generate train_data and objective_set UpperCAmelCase_ , UpperCAmelCase_ = generate_datasets( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , number=__SCREAMING_SNAKE_CASE , min_len=1026 , trim=__SCREAMING_SNAKE_CASE ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCAmelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model UpperCAmelCase_ = load_gpta("gpt2" ).to(__SCREAMING_SNAKE_CASE ) print("computing perplexity on objective set" ) UpperCAmelCase_ = compute_perplexity(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).item() print("perplexity on objective set:" , __SCREAMING_SNAKE_CASE ) # collect igf pairs and save to file demo.jbl collect_objective_set(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=15 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE="igf_model.pt" , ) -> Tuple: set_seed(42 ) # Load pre-trained model UpperCAmelCase_ = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model UpperCAmelCase_ = SecondaryLearner(__SCREAMING_SNAKE_CASE ) # Train secondary learner UpperCAmelCase_ = train_secondary_learner( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , max_epochs=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , eval_freq=100 , igf_model_path=__SCREAMING_SNAKE_CASE , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1000 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=recopy_gpta , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE="gpt2_finetuned.pt" , ) -> Tuple: UpperCAmelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = RandomSampler(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = DataLoader(__SCREAMING_SNAKE_CASE , sampler=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = max_steps // (len(__SCREAMING_SNAKE_CASE )) + 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = recopy_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.train() if secondary_learner is not None: secondary_learner.to(__SCREAMING_SNAKE_CASE ) secondary_learner.eval() UpperCAmelCase_ = [] UpperCAmelCase_ = 0 UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCAmelCase_ = compute_perplexity(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) test_perps.append(__SCREAMING_SNAKE_CASE ) print("Test perplexity, step" , __SCREAMING_SNAKE_CASE , ":" , __SCREAMING_SNAKE_CASE ) for epoch in range(int(__SCREAMING_SNAKE_CASE ) ): for step, example in enumerate(__SCREAMING_SNAKE_CASE ): torch.cuda.empty_cache() UpperCAmelCase_ = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCAmelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCAmelCase_ = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = True if secondary_learner is not None: UpperCAmelCase_ = secondary_learner.forward( torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__SCREAMING_SNAKE_CASE ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCAmelCase_ = -1 if predicted_q < threshold: UpperCAmelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCAmelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCAmelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCAmelCase_ = compute_perplexity(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) test_perps.append(__SCREAMING_SNAKE_CASE ) print("Test perplexity, step" , __SCREAMING_SNAKE_CASE , ":" , __SCREAMING_SNAKE_CASE ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case__ ( ) -> Dict: UpperCAmelCase_ = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=__SCREAMING_SNAKE_CASE , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=__SCREAMING_SNAKE_CASE , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=__SCREAMING_SNAKE_CASE , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=__SCREAMING_SNAKE_CASE , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=__SCREAMING_SNAKE_CASE , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=__SCREAMING_SNAKE_CASE , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=__SCREAMING_SNAKE_CASE , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=__SCREAMING_SNAKE_CASE , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=__SCREAMING_SNAKE_CASE , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=__SCREAMING_SNAKE_CASE , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=__SCREAMING_SNAKE_CASE , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=__SCREAMING_SNAKE_CASE , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__SCREAMING_SNAKE_CASE , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner UpperCAmelCase_ = joblib.load("data/IGF_values.jbl" ) # Train secondary learner UpperCAmelCase_ = training_secondary_learner( __SCREAMING_SNAKE_CASE , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model UpperCAmelCase_ = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCAmelCase_ , UpperCAmelCase_ = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=__SCREAMING_SNAKE_CASE ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__SCREAMING_SNAKE_CASE , secondary_learner=__SCREAMING_SNAKE_CASE , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
23
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.array: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(__SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "f32le" , ) -> Dict: UpperCAmelCase_ = f'''{sampling_rate}''' UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in iterator: yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "f32le" , ) -> int: if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , format_for_conversion=__SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=__SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=__SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: UpperCAmelCase_ = B"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(__SCREAMING_SNAKE_CASE ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__SCREAMING_SNAKE_CASE ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=__SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(__SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
23
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = StableUnCLIPImgaImgPipeline lowerCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Optional[int] = frozenset([] ) def A__ ( self ): UpperCAmelCase_ = 32 UpperCAmelCase_ = embedder_hidden_size # image encoding components UpperCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase , projection_dim=lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase ) UpperCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase , layers_per_block=1 , upcast_attention=lowerCAmelCase , use_linear_projection=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 , lowerCAmelCase=True ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if pil_image: UpperCAmelCase_ = input_image * 0.5 + 0.5 UpperCAmelCase_ = input_image.clamp(0 , 1 ) UpperCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) inputs.update({"image_embeds": None} ) UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , "anime turle" , generator=lowerCAmelCase , output_type="np" ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = pipe( lowerCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
23
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 768 , ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.ones(1 , lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase = None , lowerCAmelCase = None , ): UpperCAmelCase_ = nn.Parameter(self.mean.to(lowerCAmelCase ).to(lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(self.std.to(lowerCAmelCase ).to(lowerCAmelCase ) ) return self def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (embeds * self.std) + self.mean return embeds
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(__SCREAMING_SNAKE_CASE ) )[2:] UpperCAmelCase_ = max(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__SCREAMING_SNAKE_CASE ) , b_binary.zfill(__SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
23
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} if prompt is not None: UpperCAmelCase_ = prompt if generate_kwargs is not None: UpperCAmelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCAmelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCAmelCase , **lowerCAmelCase ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): UpperCAmelCase_ = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) UpperCAmelCase_ = self.model.config.model_type if model_type == "git": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase_ = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: UpperCAmelCase_ = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase_ = None return model_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCAmelCase_ = None if generate_kwargs is None: UpperCAmelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase_ = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = [] for output_ids in model_outputs: UpperCAmelCase_ = { "generated_text": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
23
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE = TypeVar("T") def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: return (position - 1) // 2 def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 1 def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 2 class lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): UpperCAmelCase_ = [] UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __len__( self ): return self.elements def __repr__( self ): return str(self.heap ) def A__ ( self ): # Check if the priority queue is empty return self.elements == 0 def A__ ( self , lowerCAmelCase , lowerCAmelCase ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCAmelCase_ = self.elements self.elements += 1 self._bubble_up(lowerCAmelCase ) def A__ ( self ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[0] self._bubble_down(lowerCAmelCase ) return elem def A__ ( self , lowerCAmelCase , lowerCAmelCase ): # Update the weight of the given key UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ = (elem, weight) if position > 0: UpperCAmelCase_ = get_parent_position(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCAmelCase ) else: self._bubble_down(lowerCAmelCase ) else: self._bubble_down(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): # Place a node at the proper position (upward movement) [to be used internally # only] UpperCAmelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCAmelCase_ = get_parent_position(lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase ) return self._bubble_up(lowerCAmelCase ) return None def A__ ( self , lowerCAmelCase ): # Place a node at the proper position (downward movement) [to be used # internally only] UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ = get_child_left_position(lowerCAmelCase ) UpperCAmelCase_ = get_child_right_position(lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase ) return self._bubble_down(lowerCAmelCase ) if child_left_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase ) return self._bubble_down(lowerCAmelCase ) else: return None if child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase ) return self._bubble_down(lowerCAmelCase ) return None def A__ ( self , lowerCAmelCase , lowerCAmelCase ): # Swap the nodes at the given positions UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ , UpperCAmelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCAmelCase_ = nodea_pos UpperCAmelCase_ = nodea_pos class lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __repr__( self ): return str(self.connections ) def __len__( self ): return self.nodes def A__ ( self , lowerCAmelCase ): # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCAmelCase_ = {} self.nodes += 1 def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Add an edge between 2 nodes in the graph self.add_node(lowerCAmelCase ) self.add_node(lowerCAmelCase ) UpperCAmelCase_ = weight UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]: UpperCAmelCase_ = {node: maxsize for node in graph.connections} UpperCAmelCase_ = {node: None for node in graph.connections} UpperCAmelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization UpperCAmelCase_ = priority_queue.extract_min() UpperCAmelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCAmelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCAmelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCAmelCase_ = node return dist, parent
23
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = TextToVideoSDPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase_ : Optional[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A__ ( self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A__ ( self ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = TextToVideoSDPipeline(**lowerCAmelCase ) UpperCAmelCase_ = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**lowerCAmelCase ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase_ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A__ ( self ): pass def A__ ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=25 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A__ ( self ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCAmelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCAmelCase_ = pipe.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="pt" ).frames UpperCAmelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
23
1
import unittest from transformers import DonutProcessor SCREAMING_SNAKE_CASE = "naver-clova-ix/donut-base" class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = DonutProcessor.from_pretrained(lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } UpperCAmelCase_ = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) UpperCAmelCase_ = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase , lowerCAmelCase )
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ugly_nums.append(__SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
23
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase_ = str(abs(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int("".join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
23
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=12 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=32 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=0.02 , lowerCAmelCase=0 , lowerCAmelCase=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = bos_token_id def A__ ( self ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ = input_mask.shape UpperCAmelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCAmelCase ) def A__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = TFBlipTextModel(config=lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , training=lowerCAmelCase ) UpperCAmelCase_ = model(lowerCAmelCase , training=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[Any] = False def A__ ( self ): UpperCAmelCase_ = BlipTextModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): pass def A__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def A__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A__ ( self ): pass @slow def A__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFBlipTextModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def A__ ( self , lowerCAmelCase=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCAmelCase )
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import re def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list: return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: try: UpperCAmelCase_ = split_input(__SCREAMING_SNAKE_CASE ) if upper: UpperCAmelCase_ = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase_ = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: return to_simple_case(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: try: UpperCAmelCase_ = to_simple_case(__SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "_" ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return to_complex_case(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
23
import math def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> list[int]: UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
23
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def snake_case__ ( __SCREAMING_SNAKE_CASE = 8 ) -> str: UpperCAmelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = i // 3 UpperCAmelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase_ = ( chars_incl + random(__SCREAMING_SNAKE_CASE , quotient + remainder ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) + random(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) shuffle(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: pass # Put your code here... def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(__SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase_ = any(char in ascii_uppercase for char in password ) UpperCAmelCase_ = any(char in ascii_lowercase for char in password ) UpperCAmelCase_ = any(char in digits for char in password ) UpperCAmelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def snake_case__ ( ) -> Optional[Any]: UpperCAmelCase_ = int(input("Please indicate the max length of your password: " ).strip() ) UpperCAmelCase_ = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(__SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
23
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
1
import argparse from collections import defaultdict def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = f'''class {class_name}(''' UpperCAmelCase_ = f'''{4 * ' '}def {test_name}(''' UpperCAmelCase_ = f'''{8 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ = f'''{16 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = [] for line in lines: if line.startswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = True elif in_class and line.startswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase_ = True elif in_class and in_func and (line.startswith(__SCREAMING_SNAKE_CASE ) or line.startswith(__SCREAMING_SNAKE_CASE )): UpperCAmelCase_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * ' '}{correct_line}''' ) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = False else: new_lines.append(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , "w" ) as f: for line in new_lines: f.write(__SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Dict: if fail is not None: with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ = None with open(__SCREAMING_SNAKE_CASE , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) SCREAMING_SNAKE_CASE = parser.parse_args() main(args.correct_filename, args.fail_filename)
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1